Matrices de niveau 3 / Formes linéaires

Indications

1 | Montrer que Ker V = {0}.

ap
Considérer X = € My, (R) tel que VX =0.
ap-1

Il s’agit de montrer que ag =--- = a,.
Pour cela observer que l'égalité VX = 0 se traduit par

n—1
P(x;)=+-=P(x,)ou P = anf.

j=0

2 | Introduire I'endomorphisme f de K" canoniquement asso-
ciéa f.
1. Observer que f est une symétrie.
2. Montrer que la somme Ker(f —1d) + Ker(f +1d) est di-

recte (ou utiliser la formule de Grassmann) puis utiliser
le théoréme du rang.

. Découle de la définition du produit matriciel.

w
-y

2. Pour le sens direct appliquer le critére de 1. a la matrice
AL
Pour le sens réciproque commencer par montrer que A
est inversible en montrant que Ker A = {0}. Pour cela,
noter que si AX =0 alors AX >0 et A(-X) > 0.

3. Considérer X tel que BX > 0 et considérer le plus petit

indice i € [[1,n] tel que x; = min x;.
jell.n]

. Echelonner la matrice avec la méthode du pivot.

=Y
-t

2. On peut échelonner la matrice avec la méthode du pivot
ou trouver directement le rang des colonnes en écrivant
rgA =rg(Cy,Cy,C5,Cy) puis en « chassant » les combi-
naisons linéaires jusqu’a obtenir une famille libre.

En échelonnant on peut transformer la matrice en

a 0 1
01 -1
0 0 1+a

Ensuite distinguer deux cas selon la nullité des coeffi-
cients sur la diagonale : a ¢ {0,—1} et a € {0, 1}.

b)

En échelonnant on peut transformer la matrice en

1 1 a
[O a—1 1-a ]
0 0 (l1-a)2+a)

Ensuite distinguer trois cas selon la nullité des coeffi-

cients sur la diagonale:a e {1,2},a=1 et a=-2.
c) En échelonnant on peut transformer la matrice en
1 1 1 1
0 b-a O b—a
0 0 d-c d—c
0 0 0 (b—a)d-c)

Ensuite distinguer des cas selon la nullité des coefficients
sur la diagonale :

e Premiercas:b—a=0etd—-c=0.
e Deuxiéemecas:b—a=0etd-c=0.
e Troisitmecas:b—-a=z0etd—-c=0.

e Quatriéeme cas:b—a=0etd—c=0.

6 | a) Il suffit de trouver rang de

(w=v)(1)  (u=-v)(X) (u-v)(X?) ... (u-v)(X")
l l l !
. . . . . - 1
«— X
A= P X2
— X"

b) On peut utiliser le théoréme du rang :
rg(u—v)=n+1-dimKer(u -v)
Montrer alors que Ker(u —v) = IRo[X] (ensemble des po-
lyndmes constants) par double inclusion.

€
J et L = (51 €p) alors la
Cn

matrice CL a pour colonnes (¢;C,6,C,...,¢,C) (toutes
proportionnelles a C).

71 *SiM=CLavec C=

* Pour la réciproque, si M est de rang 1, montrer que
les colonnes (Cl,...,CP) de M sont toutes proportion-
nelles a une méme colonne C en utilisant le fait que
1 =1g(Cy,...,Cp) =dim Vect(Cy, ..., Cp).

g | 1. Notant E I'élément neutre de G, on peut montrer que

rg(A) = rg(E) pour tout A € G. Pour cela exploiter judi-
cieusement la propriété rg(MN) < min(rgM,rgN) pour
montrer successivement que rg(A) < rg(E) puis que
rg(E) <rg(A).
2. Remarquer que E est la matrice d’un projecteur (calculer
E?) donc E est semblable a la matrice ], = (Ié 8) Ceci
permet de se « ramener » au cas ou E = J,. Précisément,
en fixant P € GL,(K) telle que J, = P"'EP, I’ensemble
G ={PT'AP; A€ G}
est un groupe pour x d’élément neutre J, et A > P~LAP
est un isomorphisme de G sur G’. Montrer alors que les

éléments de G’ sont de la forme (13 8) ott A € GL,(K)
(exploiter le fait que J, est ’élément neutre de G’) ce

qui assure que O) > A est un morphisme de groupe

0 0
injectif de G’ dans GL,(K).

9 | 1. Calculer (AB)>.

2. Vérifier que rg(AB) = 2 (aucun calcul n’est nécessaire en
utilisant la question 1). Ensuite exploiter les propriétés
sur le rang d’un produit et le fait que rg(M) < min(n, p)
lorsque M est de taille (1, p).

3. Observer que A(BA—-1;)B=0.

Pour montrer que BA — I, = 0 il s’agit d’assurer que 'on
peut « simplifier » par A et B.

Pour cela noter f € Z(R? R?) et ¢ € Z(R3,R?) les appli-
cations canoniquement associées a A et B

L'égalité ci-dessus devient f o (go f —Idg2)og=0.

Pour en déduire que go f —Idp2 il suffit de montrer que :

* g est surjective.
* f estinjective

1. Ici on a le choix : on peut aussi partir de f canoniquement associé a N et chercher une base dans laquelle la matrice de f est T. L'idée est de partir de



10/ 1. Utiliser les applications linéaires. Noter f l’endomor-

phisme de R® canoniquement associé & T (note !)
T est semblable a N ssi il existe une base & = (by, by, b3)
de R telle que Matzf = N.

Suivre le savoir-faire

* Analyse du probléme On cherche une base
% = (by,b,,b3) de R® telle que

f(by)=0 ie. by eKerf
f(ba)=-b
f(bs3)=-b,

La bonne méthode : commencer par b;

* Le cas ou Imf NnKerf # {0}. Montrer dans ce cas que

Im f C Ker f et construire une base # = (by,...,b,) telle
que f(by)=0b, et (by,...,b,) est une base de Ker f.

13| 1. Il suffit de montrer que A est de rang 3

2. Utiliser les applications linéaires. Noter f l'applica-

tion canoniquement associée a A et chercher une base
B’ = (by,by,b3) de R? et une base €’ = (cy,ca,c3) de
R3 telles que Matg o f = ] i.e. telles que f(by) = ¢y,
f(b2) =c; et f(b3) =0.

. Calculer la dimension de Ker(f —Idg) a 'aide de A et en

déduire par I'absurde que J ne peut étre la matrice de f

T dans une autre base.
Le vecteur b3 doit vérifier :

f2(b3) = =f2(b2) = f(b1) = 0
On cherche donc une base (by,b,,b3) de R? telle que
(1) b3 € Ker £ mais b3 & Ker f?
(2) by =—f(b3).
(3) by =—f(by) (Par construction : by € Ker f )
—

14| Se ramenera J, :
* Ecrire A sous la forme A=U]J,V

* Ecrire J, comme une somme de r matrices de rang 1
(prendre des matrices élémentaires)

* En déduire A comme une somme de r matrices de rang 1

o Synthése Trouver % = (by, by, b3) revient a trouver
b;.Concrétement :

* Calculer T? et T3.
* Chercher un vecteur dans Ker f3 mais pas de Ker f2

15/ Se ramener a J, :
* Ecrire A sous la forme A =U]J,V
e Ecrire J, comme une somme de 2 matrices inversibles

» Calculer b, = —f(b3) (utiliser la matrice T) (prendre des matrices diagonales )

* Calculer de méme by = —f(b,).

Ensuite :

* Justifier que & = (b1, by, b3) est une base de R>.
* C’est tout! Par construction Matgf = N.

¢ En déduire A comme une somme de 2 matrices inversibles

16 Seramenera J, :

* Ecrire A sous la forme A=U]J,V
. I, 0
e Ecrire ], = (Or 0

B est de taille (n,7) et C est de taille (r,p) (prendre des
matrices « de type J, » )

) € My ,p(K) sous la forme J, = BxC ot

0 0 1
b) Ici ne pas utiliser les applications linéaires mais la
définition de la similitude des matrices.
Constater que: M=I3+TetM ' =I;+N.
On sait que T et N sont semblables : on peut donc |17 Plusieurs possibilités, par exemple :
exprimer T en fonction de N. On peut en déduire M
en fonction de M.

1 -1 0
2. a) Avec le pivot on trouve M~! = [0 1 —1].
* En déduire I’écriture attendue pour A

* Option 1 :se ramener a J,

* Ecrire A sous la forme A=UJ,Vour<n.

11| 1. Utiliser les applications linéaires. Noter f l'endomor- « Chercher une matrice B de rang 1 telle que J,B = BJ, = 0

(prendre une matrice diagonale trés simple)
* Prendre alors B= V'BU™L.

phisme de R® canoniquement associé a A et chercher une
base % = (b1, by, b3) de R3 telle que Matzf = T (suivre

le savoir-faire )- * Option 2 : utiliser les applications linéaires En notant
a d g f I'endomorphisme de IR" canoniquement associé a A,
2. Fixer N=|b e h|etrésoudre: NT=TN. construire un endomorphisme ¢ de rang 1 tel que Img C

c f i
3. Montrer que M € € ssi P"'MP € €r et en déduire que
%4 et €1 ont la méme dimension.

Kerf et Imf C Kerg. Procéder par «interpolation li-
néaire » en définissant ¢ sur une base de Im f complétée
en une base de E.

12] Notant f I'endomorphisme canoniquement associé a A. 11|18 Se ramener a J, :

s’agit de montrer l’existepce d’une base #Z = (.bl.’"" b,) dans « Ecrire A sous la forme A = UJ,V

laquelle f a pour matrice AE;; ou E;;. Distinguer deux Lo

cas: * Ecrire ], = (Or O) € My,p(K) sous la forme J, = J, xMx]J,

* Le cas ou Im f NKer f = {0}. Dans ce cas Imf et Ker f i de taill J . J
sont supplémentaires. Considérer une base % adaptée a ot M est de taille (p,n) (prendre une matrice «de type
la somme directe et montrer que Matgf est de la forme Jr>)
AE; ;. * En déduire I’écriture attendue pour A

la matrice la plus « compliquée », ici T pour définir I'application et de chercher une base dans laquelle f a la matrice la plus « simple » (celle avec le plus de
0), ici N, ceci parce que c’est la matrice N qui va donner les conditions que doivent satisfaire les vecteurs



N, N,
fectuer le produit par bloc J,NJ,. On constate que le pro-
duit est nul ssi Ny = 0 donc une base de G est la famille
des E;; pour (i,j) € [r+ 1, p x[1,rJU[L, p] x[r +1,n]

2. « Ecrire A sous la forme A=U]J,V
* Montrer que M € F ssi VBU € G.

* En déduire un isomorphisme de F sur G.

19| 1. Chercher N par bloc sous la forme N = ( ) et ef-

20! En posant p =rg(A) et g =rg(B) constater que :

* Aestéquivalentea J, = (Ig 8) € My,p(K)
P N 0 0

* Best équivalente a K, = 0 1.]€ My,p(K)
q

¢ La matrice J, + K, est diagonale et de rang min(n, p +g).

21| Calculer tr(ATA) en fonction des coefficients a7 de A (et
se rappeler qu'une somme de réels positifs n’est nulle que
lorsque tous les termes sont nuls).

Pour toute A € #,(KK), I'application T(A) : M +— tr(AM)
est une forme linéaire de .#,(K). Il s’agit de montrer qu’il
existe une unique A € .#,(IK) telle que T(A) = f.
Autrement dit il s’agit de montrer que

T: #,K)— ZL(A,(K
A — T(A)

22

), K)

est bijective.
Montrer que T est un isomorphisme a I'aide du théoréeme
«miracle ».

A l'aide de A = AB— BA montrer que AP = ABAP™! — BAP.
En utilisant les deux propriétés de la trace (linéarité et sy-
métrie), montrer alors que trA” = 0.

23

24| 1.a) Comparer les cardinaux.

b) Il reste a prouver la stabilité par passage a l'inverse.
Pour cela la non injectivité établie a la question 1a)
assure l'existence de deux indices k < ¢ tels que
M = MC. Exploiter cette égalité pour écrire M~!
comme une puissance de M.

Il s’agit de prouver que ¢ est une bijection de ¢ dans
lui-méme. Ici on peut par exemple fixer B € ¢ et ré-
soudre ¢(N) = B.

AxA= ) () MxN)etconstaterque ) MxN=A

Me¥ Ne¥ Ne¥
(poser N’ = M x N dans la somme intérieure).

2.a)
b)

. 1 .
Pour la conclusion noter que B = — x A est la matrice

d’un projecteur et exploiter le lien entre la trace et la
rang pour les projecteurs.

25| 1. Piocher dans la base canonique pour A; et A; et noter

1 1 .
que (_1 _1) est nilpotente.

2. Montrer que la matrice M de f dans cette base est de la
0 0 0 a

R R : 2
forme : [0 0 o C] puis calculer M~.
0 0 0 0

26! Il existe Ay,...,Ay € G telles que My(C) =
Vect(Ay,...,Ay). Montrer que 'application
9 Mpy(C)— cN

M (tr(MAy),..., tr(MAy))

est injective.

27! 1. Procéder par I'absurde et calculer tr(C"'AB— C~!BA).

2. Procéder par récurrence sur .

ogl Si#=(1,X,...,X")alors trf =trA ou A =Matgf.
Or pour tout k € [[1,n] :

B X+1 L e+l X+1 1 rel L
f(X)_L tdt—[k+lx _k+1((X+1) x)
Il suffit de trouver la trace de :

) fX) f(x?) F(X")
\ | l )
. . . . . — 1
— X
A= — X2
—
«— X"

Il n’est pas utile de calculer tous les coefficients : seuls les
coefficients diagonaux comptent (ce qui signifie qu’il s’agit
de savoir ce que vaut le coefficient de X* lors du calcul de

FXK)).

Commencer par écrire la matrice Matgf dans la base ca-
nonique B = (El,ll EI,Z’ E2,1: Ez’z).

Il s’agit d’'une matrice de taille (4, 4).

La premiére colonne s’obtient par exemple en calculant

29

f(E11) =AE;; = (_11 8) puis en décomposant cette ma-

trice comme combinaison linéaire de &4 :
1 0

-1 0
Procéder de méme pour les trois autres colonnes.
Réponse a trouver : trf =4

=1 XEI,I +OXE1’2+(—1)XE2,1 +OXE272

30 1.

2. 11 s’agit de calculer, pour chaque couple (i, /) € [1,1]?,
la coordonnée de ¢(E; ;) selon E; ;, puis de sommer.
Etant donné i, € [[1,n]), calculer par exemple ¢(E; ;) en

n n
décomposant A = ZZak,gEk,g puis en utilisant les ré-

k=10=1
sultats sur les produits E; ; x Ex s et Ex ¢ X E; ;.
Réponse :  tro = 2ntrA.
31| 1. ¢ SitrA =1 Montrer que T(A) = 0.
e Si T nlest pas bijectif. Alors T n'est pas injectif (th
miracle). Considérer une matrice M = 0 telle que
T(M) = 0. Cela permet d’écrire que deux matrices
sont égales : prendre la trace dans cette égalité.
2. * T est un projecteur. Montrer que T o T =1d.

Fixer M € .#,(R) et montrer que T(T(M)) =M.

* Calcul de I'image.
T est un projecteur donc: MeImT & T(M)= M.
On trouve ImT ={M € #,(R) | trM = 0}

* Calcul du noyau.
Ker T = VectA par inclusion-dimension.

32 Montrer que :

Kerp=VectA et Imep={Me.#,(R) | trM =0}

H



Procéder par inclusion-dimension : 37! 1. Etant donné A,y € K et @, ¢ € Z(E,K), vérifier que

* Montrer que Ker ¢ C VectA et que Im¢p C H. A+ uh) = Af*(@)+ uf (), c’est vérifier que

* On peut montrer que dim(Kerq) = dim(VectA) et (Ap+ ,MlP)(f(X)) = /\@(f(x)) + l“P(f(X))
dim(Im¢) = dim H sans efforts en combinant judicieu- pour tout x € E.
sement : 2. En notant M = (m; ;) la matrice Matg(f"), pour tout

* Le théoreme du rang appliqué a ¢ . o 3
* Le calcul de dim VectA et dim(Im ¢) jelt,nl: fe;) =
donnés par :

mi ;= (£ (@) () = (pj 0 F)b;) = i £ (b1)
11 suffit de calculer f(b;) en fonction des coefficients de
la matrice A =Matgf.

ie. H=Kerpoug@p:Pr.... Réponse :  Matow(F*) = MatoofT
L'expression de ¢(P) se lit sur la définition de H (vu que P . #(f) 2

Kerg ={P | ¢(P)=0}).
* Base de H Ecrire H comme un Vect. Deux possibilités :

n
m; ip; donc les coefficients sont

i=1

33
* H={PekK,[X] | P(a)=0} est un hyperplan de K,[X].
Ecrire H comme le noyau d’une forme linéaire

n
 Méthode 1. Fixer P = Y ayX* € K,[X] et procéder par
k=0
équivalences
n
PeHeo Zakak =0
k=0
On peut prendre ay,...,a, arbitraires et exprimer a
puis P en fonction de ay,...a,.

On arrive a H = Vect((Xk - ak)) .
1<k<n
N . , k k
Reste a prouver la liberté de ((X -a ))1skgn'
* Méthode 2. Fixer € K, [X] et utiliser le lien entre racine
et divisibilité :
PeHeo (X-a)|P
On arrive a H = Vect((X - a)Xk) .
0<k<n-1

Reste a prouver la liberté de ((X - a)Xk)

0<k<n-1"

34 1. Z(R,-1[X], R) est de méme dimension que R,_1[X] a

savoir n donc la liberté suffit.
Fixer aq, ..., a, tels que

iak(Pk =0
k=1

Attention, cette égalité est une égalité entre applications
définies sur R,,_; [X] et elle signifie :

n
)_age(P)=0
k=1
c’est a dire : .
VP € K,[X] ZakP(xk) =0
k=1

Evaluer en des polynomes P judicieusement choisis de
sorte que toutes les P(xy) soient nulles sauf une seule.

1
2. 1l s’agit de montrer que 'application W : P J P est
0

une combinaison linéaire des ¢y.

35 En introduisant une forme linéaire ¢ de .#,(K) pur la-
quelle H = Ker ¢ il s’agit de construire une matrice inver-
sible M pour laquelle ¢(M) = 0.

* S’il existe i = j tels que @(E; ;) # 0, on peut trouver M
sous la forme I, + AE; ;.

* Si @(E;;) = 0 pour tous i # j alors il faut procéder diffé-
remment pour construire M (mais c’est encore possible)

36



