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Matrices de niveau 3 / Formes linéaires Indications

1 Montrer que KerV = {0}.

Considérer X =


a0
...

an−1

 ∈Mn,1(R) tel que VX = 0.

Il s’agit de montrer que a0 = · · · = an.
Pour cela observer que l’égalité VX = 0 se traduit par

P (x1) = · · · = P (xn) où P =
n−1∑
j=0

ajX
j .

2 Introduire l’endomorphisme f deKn canoniquement asso-
cié à f .
1. Observer que f est une symétrie.

2. Montrer que la somme Ker(f − Id) + Ker(f + Id) est di-
recte (ou utiliser la formule de Grassmann) puis utiliser
le théorème du rang.

3 1. Découle de la définition du produit matriciel.

2. Pour le sens direct appliquer le critère de 1. à la matrice
A−1.
Pour le sens réciproque commencer par montrer que A
est inversible en montrant que KerA = {0}. Pour cela,
noter que si AX = 0 alors AX ≥ 0 et A(−X) ≥ 0.

3. Considérer X tel que BX ≥ 0 et considérer le plus petit
indice i ∈ ⟦1 ,n⟧ tel que xi = min

j∈⟦1 ,n⟧
xj .

4 1. Echelonner la matrice avec la méthode du pivot.

2. On peut échelonner la matrice avec la méthode du pivot
ou trouver directement le rang des colonnes en écrivant
rgA = rg(C1,C2,C3,C4) puis en « chassant » les combi-
naisons linéaires jusqu’à obtenir une famille libre.

5 a) En échelonnant on peut transformer la matrice ena 0 1
0 1 −1
0 0 1 + a


Ensuite distinguer deux cas selon la nullité des coeffi-
cients sur la diagonale : a < {0,−1} et a ∈ {0,1}.

b) En échelonnant on peut transformer la matrice en1 1 a
0 a− 1 1− a
0 0 (1− a)(2 + a)


Ensuite distinguer trois cas selon la nullité des coeffi-
cients sur la diagonale : a < {1,2}, a = 1 et a = −2.

c) En échelonnant on peut transformer la matrice en
1 1 1 1
0 b − a 0 b − a
0 0 d − c d − c
0 0 0 (b − a)(d − c)


Ensuite distinguer des cas selon la nullité des coefficients
sur la diagonale :

• Premier cas : b − a , 0 et d − c , 0.

• Deuxième cas : b − a = 0 et d − c , 0.

• Troisième cas : b − a , 0 et d − c = 0.

• Quatrième cas : b − a , 0 et d − c , 0.

6 a) Il suffit de trouver rang de

A =

(u − v)(1) (u − v)(X) (u − v)(X2) . . . (u − v)(Xn)
↓ ↓ ↓ ↓



· · · · · ← 1
· · · · · ← X
· · · · · ← X2

· · · · · ←
...

· · · · · ← Xn

b) On peut utiliser le théorème du rang :
rg(u − v) = n+ 1−dimKer(u − v)

Montrer alors que Ker(u − v) =R0[X] (ensemble des po-
lynômes constants) par double inclusion.

7 • Si M = CL avec C =


c1
...
cn

 et L =
(
ℓ1 . . . ℓp

)
alors la

matrice CL a pour colonnes (ℓ1C,ℓ2C, . . . , ℓpC) (toutes
proportionnelles à C).

• Pour la réciproque, si M est de rang 1, montrer que
les colonnes (C1, . . . ,Cp) de M sont toutes proportion-
nelles à une même colonne C en utilisant le fait que
1 = rg(C1, . . . ,Cp) = dimVect(C1, . . . ,Cp).

8 1. Notant E l’élément neutre de G, on peut montrer que

rg(A) = rg(E) pour tout A ∈ G. Pour cela exploiter judi-
cieusement la propriété rg(MN ) ≤min(rgM,rgN ) pour
montrer successivement que rg(A) ≤ rg(E) puis que
rg(E) ≤ rg(A).

2. Remarquer que E est la matrice d’un projecteur (calculer

E2) donc E est semblable à la matrice Jr =
(
Ir 0
0 0

)
. Ceci

permet de se « ramener » au cas où E = Jr . Précisément,
en fixant P ∈ GLn(K) telle que Jr = P −1EP , l’ensemble

G′ =
{
P −1AP ; A ∈ G

}
est un groupe pour × d’élément neutre Jr et A 7→ P −1AP
est un isomorphisme de G sur G′ . Montrer alors que les

éléments de G′ sont de la forme
(
Ã 0
0 0

)
où Ã ∈ GLr(K)

(exploiter le fait que Jr est l’élément neutre de G′) ce

qui assure que
(
Ã 0
0 0

)
7→ Ã est un morphisme de groupe

injectif de G′ dans GLr (K).

9 1. Calculer (AB)2.

2. Vérifier que rg(AB) = 2 (aucun calcul n’est nécessaire en
utilisant la question 1). Ensuite exploiter les propriétés
sur le rang d’un produit et le fait que rg(M) ≤min(n,p)
lorsque M est de taille (n,p).

3. Observer que A(BA− I2)B = 0.
Pour montrer que BA− I2 = 0 il s’agit d’assurer que l’on
peut « simplifier » par A et B.
Pour cela noter f ∈L (R2,R3) et g ∈L (R3,R2) les appli-
cations canoniquement associées à A et B
L’égalité ci-dessus devient f ◦ (g ◦ f − Id

R
2 ) ◦ g = 0.

Pour en déduire que g ◦ f − Id
R

2 il suffit de montrer que :

• g est surjective.
• f est injective

1. Ici on a le choix : on peut aussi partir de f canoniquement associé à N et chercher une base dans laquelle la matrice de f est T . L’idée est de partir de



10 1. Utiliser les applications linéaires. Noter f l’endomor-

phisme de R3 canoniquement associé à T (note 1)
T est semblable à N ssi il existe une base B = (b1,b2,b3)
de R3 telle que MatBf =N .
Suivre le savoir-faire SF 7 :

• Analyse du problème On cherche une base
B = (b1,b2,b3) de R3 telle que

f (b1) = 0 i.e. b1 ∈ Kerf
f (b2) = −b1

f (b3) = −b2

Le vecteur b3 doit vérifier :
f 3(b3) = −f 2(b2) = f (b1) = 0

On cherche donc une base (b1,b2,b3) de R3 telle que

(1) b3 ∈ Kerf 3 mais b3 < Kerf 2

(2) b2 = −f (b3).
(3) b1 = −f (b2) (Par construction : b1 ∈ Kerf )

La bonne méthode : commencer par b3

• Synthèse Trouver B = (b1,b2,b3) revient à trouver
b3.Concrètement :

• Calculer T 2 et T 3.
• Chercher un vecteur dans Kerf 3 mais pas de Kerf 2

• Calculer b2 = −f (b3) (utiliser la matrice T )
• Calculer de même b1 = −f (b2).

Ensuite :

• Justifier que B = (b1,b2,b3) est une base de R3.
• C’est tout ! Par construction MatBf =N .

2. a) Avec le pivot on trouve M−1 =

1 −1 0
0 1 −1
0 0 1

.

b) Ici ne pas utiliser les applications linéaires mais la
définition de la similitude des matrices.
Constater que : M = I3 + T et M−1 = I3 +N .
On sait que T et N sont semblables : on peut donc
exprimer T en fonction de N . On peut en déduire M
en fonction de M−1.

11 1. Utiliser les applications linéaires. Noter f l’endomor-

phisme deR3 canoniquement associé àA et chercher une
base B = (b1,b2,b3) de R3 telle que MatBf = T (suivre
le savoir-faire SF 7 ).

2. Fixer N =

a d g
b e h
c f i

 et résoudre : NT = TN .

3. Montrer que M ∈ CA ssi P −1MP ∈ CT et en déduire que
CA et CT ont la même dimension.

12 Notant f l’endomorphisme canoniquement associé à A. Il
s’agit de montrer l’existence d’une base B = (b1, . . . , bn) dans
laquelle f a pour matrice λE1,1 ou E2,1. Distinguer deux
cas :

• Le cas où Imf ∩ Kerf = {0}. Dans ce cas Imf et Kerf
sont supplémentaires. Considérer une base B adaptée à
la somme directe et montrer que MatBf est de la forme
λE1,1.

• Le cas où Imf ∩ Kerf , {0}. Montrer dans ce cas que
Imf ⊂ Kerf et construire une base B = (b1, . . . ,bn) telle
que f (b1) = b2 et (b2, . . . , bn) est une base de Kerf .

13 1. Il suffit de montrer que A est de rang 3

2. Utiliser les applications linéaires. Noter f l’applica-
tion canoniquement associée à A et chercher une base
B′ = (b1,b2,b3) de R3 et une base C ′ = (c1, c2, c3) de
R

3 telles que MatB′ ,C ′ f = J i.e. telles que f (b1) = c1,
f (b2) = c2 et f (b3) = 0.

3. Calculer la dimension de Ker(f − IdE) à l’aide de A et en
déduire par l’absurde que J ne peut être la matrice de f
dans une autre base.

14 Se ramener à Jr :

• Ecrire A sous la forme A =UJrV

• Ecrire Jr comme une somme de r matrices de rang 1
(prendre des matrices élémentaires)

• En déduire A comme une somme de r matrices de rang 1

15 Se ramener à Jr :

• Ecrire A sous la forme A =UJrV

• Ecrire Jr comme une somme de 2 matrices inversibles
(prendre des matrices diagonales )

• En déduireA comme une somme de 2 matrices inversibles

16 Se ramener à Jr :

• Ecrire A sous la forme A =UJrV

• Ecrire Jr =
(
Ir 0
0 0

)
∈Mn,p(K) sous la forme Jr = B̃× C̃ où

B̃ est de taille (n,r) et C̃ est de taille (r,p) (prendre des
matrices « de type Jr » )

• En déduire l’écriture attendue pour A

17 Plusieurs possibilités, par exemple :

• Option 1 : se ramener à Jr

• Ecrire A sous la forme A =UJrV où r < n.
• Chercher une matrice B̃ de rang 1 telle que JrB = BJr = 0

(prendre une matrice diagonale très simple)
• Prendre alors B = V −1B̃U−1.

• Option 2 : utiliser les applications linéaires En notant
f l’endomorphisme de Rn canoniquement associé à A,
construire un endomorphisme g de rang 1 tel que Img ⊂
Kerf et Imf ⊂ Kerg. Procéder par « interpolation li-
néaire » en définissant g sur une base de Imf complétée
en une base de E.

18 Se ramener à Jr :

• Ecrire A sous la forme A =UJrV

• Ecrire Jr =
(
Ir 0
0 0

)
∈Mn,p(K) sous la forme Jr = Jr ×M̃ × Jr

où M̃ est de taille (p,n) (prendre une matrice « de type
Jr » )

• En déduire l’écriture attendue pour A

la matrice la plus « compliquée », ici T pour définir l’application et de chercher une base dans laquelle f a la matrice la plus « simple » (celle avec le plus de
0), ici N , ceci parce que c’est la matrice N qui va donner les conditions que doivent satisfaire les vecteurs

2



19 1. Chercher N par bloc sous la forme N =
(
N1 N3
N2 N4

)
et ef-

fectuer le produit par bloc JrNJr . On constate que le pro-
duit est nul ssi N1 = 0 donc une base de G est la famille
des Ei,j pour (i, j) ∈ ⟦r + 1 ,p⟧× ⟦1 , r⟧∪ ⟦1 ,p⟧× ⟦r + 1 ,n⟧

2. • Ecrire A sous la forme A =UJrV
• Montrer que M ∈ F ssi VBU ∈ G.
• En déduire un isomorphisme de F sur G.

20 En posant p = rg(A) et q = rg(B) constater que :

• A est équivalente à Jr =
(
Ip 0
0 0

)
∈Mn,p(K)

• B est équivalente à Kq =
(
0 0
0 Iq

)
∈Mn,p(K)

• La matrice Jr +Kq est diagonale et de rang min(n,p+ q).

21 Calculer tr(A⊤A) en fonction des coefficients a2
i,j de A (et

se rappeler qu’une somme de réels positifs n’est nulle que
lorsque tous les termes sont nuls).

22 Pour toute A ∈Mn(K), l’application T (A) : M 7→ tr(AM)
est une forme linéaire de Mn(K). Il s’agit de montrer qu’il
existe une unique A ∈Mn(K) telle que T (A) = f .
Autrement dit il s’agit de montrer que

T : Mn(K) −→L (Mn(K),K)
A 7−→ T (A)

est bijective.
Montrer que T est un isomorphisme à l’aide du théorème
« miracle ».

23 A l’aide de A = AB−BA montrer que Ap = ABAp−1 −BAp.
En utilisant les deux propriétés de la trace (linéarité et sy-
métrie), montrer alors que trAp = 0.

24 1. a) Comparer les cardinaux.

b) Il reste à prouver la stabilité par passage à l’inverse.
Pour cela la non injectivité établie à la question 1a)
assure l’existence de deux indices k < ℓ tels que
Mk = Mℓ. Exploiter cette égalité pour écrire M−1

comme une puissance de M.
2. a) Il s’agit de prouver que ϕ est une bijection de G dans

lui-même. Ici on peut par exemple fixer B ∈ G et ré-
soudre ϕ(N ) = B.

b) A×A =
∑
M∈G

(
∑
N∈G

M×N ) et constater que
∑
N∈G

M×N = A

(poser N ′ =M ×N dans la somme intérieure).

Pour la conclusion noter que B =
1
p
×A est la matrice

d’un projecteur et exploiter le lien entre la trace et la
rang pour les projecteurs.

25 1. Piocher dans la base canonique pour A1 et A2 et noter

que
(

1 1
−1 −1

)
est nilpotente.

2. Montrer que la matrice M de f dans cette base est de la

forme :

0 0 0 a
0 0 0 b
0 0 0 c
0 0 0 0

 puis calculer M2.

26 Il existe A1, . . . ,AN ∈ G telles que : Mn(C) =
Vect(A1, . . . ,AN ). Montrer que l’application

ϕ : Mn(C) −→ CN

M 7−→
(
tr(MA1), . . . , tr(MAN )

)

est injective.

27 1. Procéder par l’absurde et calculer tr(C−1AB−C−1BA).

2. Procéder par récurrence sur n.

28 Si B = (1,X, . . . ,Xn) alors trf = trA où A = MatBf .
Or pour tout k ∈ ⟦1 ,n⟧ :

f (Xk) =
∫ X+1

X
tk dt =

[
tk+1

k + 1

]X+1

X

=
1

k + 1

(
(X + 1)k+1 −Xk

)
Il suffit de trouver la trace de :

A =

f (1) f (X) f (X2) . . . f (Xn)
↓ ↓ ↓ ↓


· · · · · ← 1
· · · · · ← X
· · · · · ← X2

· · · · · ←
...

· · · · · ← Xn

Il n’est pas utile de calculer tous les coefficients : seuls les
coefficients diagonaux comptent (ce qui signifie qu’il s’agit
de savoir ce que vaut le coefficient de Xk lors du calcul de
f (Xk)).

29 Commencer par écrire la matrice MatBf dans la base ca-
nonique B = (E1,1,E1,2,E2,1,E2,2).
Il s’agit d’une matrice de taille (4,4).
La première colonne s’obtient par exemple en calculant

f (E1,1) = AE1,1 =
(

1 0
−1 0

)
puis en décomposant cette ma-

trice comme combinaison linéaire de B :(
1 0
−1 0

)
= 1×E1,1 + 0×E1,2 + (−1)×E2,1 + 0×E2,2

Procéder de même pour les trois autres colonnes.
Réponse à trouver : trf = 4

30 1.

2. Il s’agit de calculer, pour chaque couple (i, j) ∈ ⟦1 ,n⟧2,
la coordonnée de ϕ(Ei,j ) selon Ei,j , puis de sommer.
Etant donné i, j ∈ ⟦1 ,n⟧, calculer par exemple ϕ(Ei,j ) en

décomposant A =
n∑
k=1

n∑
ℓ=1

ak,ℓEk,ℓ puis en utilisant les ré-

sultats sur les produits Ei,j ×Ek,ℓ et Ek,ℓ ×Ei,j .
Réponse : trϕ = 2ntrA.

31 1. • Si trA = 1 Montrer que T (A) = 0.

• Si T n’est pas bijectif. Alors T n’est pas injectif (th
miracle). Considérer une matrice M , 0 telle que
T (M) = 0. Cela permet d’écrire que deux matrices
sont égales : prendre la trace dans cette égalité.

2. • T est un projecteur. Montrer que T ◦ T = Id.
Fixer M ∈Mn(R) et montrer que T

(
T (M)

)
=M.

• Calcul de l’image.
T est un projecteur donc : M ∈ ImT ⇔ T (M) =M.
On trouve ImT = {M ∈Mn(R) | trM = 0}

• Calcul du noyau.
KerT = VectA par inclusion-dimension.

32 Montrer que :
Kerϕ = VectA et Imϕ = {M ∈Mn(R) | trM = 0}︸                         ︷︷                         ︸

H

3



Procéder par inclusion-dimension :

• Montrer que Kerϕ ⊂ VectA et que Imϕ ⊂H .

• On peut montrer que dim(Kerϕ) = dim(VectA) et
dim(Imϕ) = dimH sans efforts en combinant judicieu-
sement :

• Le théorème du rang appliqué à ϕ
• Le calcul de dimVectA et dim(Imϕ)

33
• H = {P ∈Kn[X] | P (α) = 0} est un hyperplan de Kn[X].

Ecrire H comme le noyau d’une forme linéaire
i.e. H = Kerϕ où ϕ : P 7→ . . . .
L’expression de ϕ(P ) se lit sur la définition de H (vu que
Kerϕ = {P | ϕ(P ) = 0}).

• Base de H Ecrire H comme un Vect. Deux possibilités :

• Méthode 1. Fixer P =
n∑
k=0

akX
k ∈Kn[X] et procéder par

équivalences

P ∈H ⇔
n∑
k=0

akα
k = 0

On peut prendre a1, . . . , an arbitraires et exprimer a0
puis P en fonction de a1, . . . an.
On arrive à H = Vect

(
(Xk −αk)

)
1≤k≤n

.

Reste à prouver la liberté de
(
(Xk −αk)

)
1≤k≤n

.

• Méthode 2. Fixer ∈Kn[X] et utiliser le lien entre racine
et divisibilité :

P ∈H ⇔ (X −α) | P
On arrive à H = Vect

(
(X −α)Xk

)
0≤k≤n−1

.

Reste à prouver la liberté de
(
(X −α)Xk

)
0≤k≤n−1

.

34 1. L (Rn−1[X] ,R) est de même dimension que Rn−1[X] à

savoir n donc la liberté suffit.
Fixer α1, . . ., αn tels que

n∑
k=1

αkϕk = 0

Attention, cette égalité est une égalité entre applications
définies sur Rn−1[X] et elle signifie :

∀P ∈Kn[X] ,
n∑
k=1

αkϕk(P ) = 0

c’est à dire :

∀P ∈Kn[X] ,
n∑
k=1

αkP (xk) = 0

Evaluer en des polynômes P judicieusement choisis de
sorte que toutes les P (xk) soient nulles sauf une seule.

2. Il s’agit de montrer que l’application Ψ : P 7→
∫ 1

0
P est

une combinaison linéaire des ϕk .

35 En introduisant une forme linéaire ϕ de Mn(K) pur la-
quelle H = Kerϕ il s’agit de construire une matrice inver-
sible M pour laquelle ϕ(M) = 0.

• S’il existe i , j tels que ϕ(Ei,j ) , 0, on peut trouver M
sous la forme In +λEi,j .

• Si ϕ(Ei,j ) = 0 pour tous i , j alors il faut procéder diffé-
remment pour construire M (mais c’est encore possible)

36

37 1. Etant donné λ,µ ∈ K et ϕ,ψ ∈ L (E,K), vérifier que

f ∗(λϕ +µψ) = λf ∗(ϕ) +µf ∗(ψ), c’est vérifier que
(λϕ +µψ)

(
f (x)

)
= λϕ

(
f (x)

)
+µψ

(
f (x)

)
pour tout x ∈ E.

2. En notant M = (mi,j ) la matrice MatB′ (f ∗), pour tout

j ∈ ⟦1 ,n⟧ : f ∗(ϕj ) =
n∑
i=1

mi,jϕi donc les coefficients sont

donnés par :
mi,j =

(
f ∗(ϕj )

)
(bi) = (ϕj ◦ f )(bi) = ϕj

(
f (bi)

)
Il suffit de calculer f (bi) en fonction des coefficients de
la matrice A = MatBf .
Réponse : MatB′ (f ∗) = MatBf

T .
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