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Matrices et Applications linéaires Indications

1

Suivre la stratégie du savoir faire SF 1 :

• Commencer par déterminer la taille de la matrice :

• nombre de colonnes = dimension de l’espace de départ
• nombre de lignes = dimension de l’espace d’arrivée

• On calcule f (b1) et on met ses coordonnées dans la pre-
mière colonne

• On calcule f (b2) et on met ses coordonnées dans la
deuxième colonne

• . . .

• On calcule f (bn) et on met ses coordonnées dans la der-
nière colonne

Commentaire

2 1. Ici B = C = (1,X, . . .Xn) donc la matrice est de taille

(n+ 1)× (n+ 1) et pour calculer les coefficients sur la k e

colonne, il suffit de calculer f (Xk).
2. Ici B = (1,X, . . .Xn) et C = (1,X) donc la matrice possède

2 lignes et n+ 1 colonnes.
Pour calculer les coefficients de la ke colonne il suffit
de calculer f (Xk) i.e. de calculer le reste de la division
euclidienne de Xk par X2−3X+2 : si le reste est akX+bk

alors la ke colonne sera
(
bk
ak

)
.

3 1. La matrice est de taille (n+ 1)× (n+ 1) et

A =

1 X + a (X + a)2 (X + a)3 . . . (X + a)n

↓ ↓ ↓ ↓ ↓ ↓



· · · · · · ← 1
· · · · · · ← X
· · · · · · ← X2

· · · · · · ← X3

· · · · · · ←
...

· · · · · · ← Xn

Pour calculer les coefficients sur la j e colonne, il suffit
de développer (X + a)j .

2. La matrice est de taille (n+ 1)× (n+ 1) et

A =

1 X X2 X3 . . . Xn

↓ ↓ ↓ ↓ ↓ ↓



· · · · · · ← 1
· · · · · · ← X − a
· · · · · · ← (X − a)2

· · · · · · ← (X − a)3

· · · · · · ←
...

· · · · · · ← (X − a)n

La je colonne est formée des coordonnées de Pj = Xj

dans la base (1, (X − a), . . . , (X − a)n).
Il s’agit donc d’exprimer Pj = Xj comme une combinai-
son linéaire de (1, (X − a), . . . , (X − a)n)

4 1. Ici B = (1,X, . . . ,Xn−1) et

C =
(
(1,0, . . . ,0) , (0,1,0, . . . ,0) , . . . , (0, . . . ,0,1)

)
donc la ma-

trice est de taille n × n et pour calculer les coefficients
sur la j e colonne, il suffit de calculer Φ(Xj ).

2. Ici B′ = (L1, . . . ,Ln) et
C =

(
(1,0, . . . ,0) , (0,1,0, . . . ,0) , . . . , (0, . . . ,0,1)

)
donc la ma-

trice est de taille n × n et pour calculer les coefficients
sur la j e colonne, il suffit de calculer Φ(Lj ).

5 • Noyau. Suivre le savoir-faire SF 3 .

On commence par : « Soit P = aX2 + bX + c ∈ R2[X] » en-
suite par équivalence :

f ( P︸︷︷︸
Espace de

départ :
R2[X]

) = (0,0,0)︸ ︷︷ ︸
Espace

d’arrivée : R3

⇐⇒ A×

cb
a

︸︷︷︸
Coordonnées de
P dans (1,X,X2)

=

0
0
0


Il suffit ensuite de résoudre le système.
Attention : une fois le système résolu, ne pas oublier de reve-
nir à P = ....
Réponse : Kerf = Vect(X2 + 4X − 2).

• Image. Imf = Vect
(
f (1) , f (X), f (X2)

)
Ici les vecteurs f (1), f (X), f (X2) ∈R2 se lisent sur les co-
lonnes de A
Chasser enfin du Vect les vecteurs combinaisons linéaires.
Réponse : Imf = Vect

(
(1,2), (0,1)

)
6 • Noyau. Suivre le savoir-faire SF 3 .

On commence par : « Soit P = aX3 + bX2 + cX + d ∈
R3[X] » ensuite par équivalence :

f ( P︸︷︷︸
Espace de

départ :
R3[X]

) = 0︸︷︷︸
Polynôme nul

car l’espace
d’arrivée est
R3[X]

⇐⇒ A×


d
c
b
a

︸︷︷︸
Coordonnées de

P dans
(1,X,X2 ,X3)

=


0
0
0
0



• Image. Imf = Vect
(
f (1) , f (X), f (X2) , f (X3)

)
et les polynômes f (1), f (X), f (X2), f (X3) ∈R3[X] se lisent
sur les colonnes de A
Chasser enfin du Vect les vecteurs combinaisons linéaires

7 1. Il y a deux points à montrer :

• f est linéaire.
• f est à valeurs dans R3[X]. Pour P ∈R3[X], il s’agit de

justifier que f (P ) = (3X + 1)P + (1−X2)P ′ ∈R3[X]

2. Réponse : M =


1 1 0 0
3 1 2 0
0 2 1 3
0 0 1 1

.

3. • Noyau. Suivre le savoir-faire SF 3 .
On commence par : « Soit P = aX3 + bX2 + cX + d ∈
R3[X] » ensuite par équivalence :

ϕ( P︸︷︷︸
Espace de

départ :
R3[X]

) = 0︸︷︷︸
Polynôme nul

car l’espace
d’arrivée est
R3[X]

⇐⇒ M×


d
c
b
a

︸︷︷︸
Coordonnées de

P dans
(1,X,X2 ,X3)

=


0
0
0
0



Réponse : Kerϕ = Vect(X3 −X2 −X + 1)
• Image.Deux possibilités :

• Méthode 1. A partir de
Imϕ = Vect

(
ϕ(1) , ϕ(X), ϕ(X2) ,ϕ(X3)

)
en « chassant » ensuite dans le Vect



• Méthode 2. Avec le théorème du rang dimImϕ = 3.
Il suffit donc de trouver une famille libre de Imϕ
de cardinal 3 : on se contente de vérifier que
(ϕ(1),ϕ(X),ϕ(X2)) est libre.

8 1. Procéder par inclusion dimension pour les deux égali-

tés.
On sait déjà que Imf 2 ⊂ Imf .
On peut montrer que dimImf 2 = 2.
En effet A = MatBf 2 où B =

(
(1,0,0), (0,1,0), (0,0,1)

)
est

la base canonique de R3 donc avec les colonnes de A on
peut déterminer une base de Imf 2.
Vu que Imf 2 ⊂ Imf ⊂R3 : dimImf = 2 ou 3.
Il suffit de montrer que dimImf , 3. Procéder par l’ab-
surde : si dimImf = 3, f serait surjective donc aussi
bijective et on peut en déduire une contradiction avec la
matrice M.
Une fois Imf = Imf 2 démontré, on a l’égalité des di-
mension de Kerf et Kerf 2 (th du rang) et Kerf 2 ⊂ Kerf
est toujours vraie.

2. Traduire les colonnes de M pour trouver les conditions
exigées sur f . Il s’agit en fait de montrer que :

• (1,0,0) ∈ Kerf

• f (0,1,0) et f (0,0,1) appartiennent à Vect
(
(1,0,0), (0,1,0

)
Aussi

• Avec 1. Kerf = Kerf 2 et Imf = Imf 2

• On dispose de A = MatBf 2 sur laquelle on peut
constate que :

• Kerf 2 = Vect
(
(1,0,0)

)
• Imf 2 = Vect

(
(1,0,0), (0,1,0

)
3. Les questions 1. et 2. constituent la phase d’analyse du

problème : si M ∈S alors M est de la forme trouvée à
la question 2.. Tester les candidats obtenus : calculer M2

et montrer qu’il est impossible d’obtenir A.

9 On note (e1, . . . , en) la base canonique de Rn.
1. Montrer que Imf = Vect(e1,u) où u = (a1, . . . , an−1, an).
2. Si λ = 0 ,dimKerf = n− 2 avec la question 1..

Pour λ , 0 et u = (x1, . . . ,xn) ∈Rn :

f (u) = λu⇔ (A−λIn)


x1
...
xn

 = 0

Echelonner le système et constater, en posant s = a2
1 +

· · ·+ a2
n−1 , 0, que :

• Si −λ2 +anλ+s , 0, alors f (u) = λu ssi x1 = · · · = xn = 0.
• Si −λ2 + anλ+ s = 0, il y a des solutions autres que le

vecteur nul (xn est arbitraire).

3. Former une base (b1, . . . , bn−2,u1,u2) de Rn où

• (b1, . . . , bn−2) est une base de Kerf .
• u1 ∈ Ker(f −λ1Id

R
n ) et u2 ∈ Ker(f −λ2Id

R
n ) où λ1 et

λ2 sont les racines réelles de −X2 + anX + s.

10 1. Utiliser la matrice A pour calculer ϕ(1), ϕ(X), ϕ(X2),

ϕ(X3) et ϕ(X4) (penser à la formule du binôme).
2. A = MatBϕ où B = (1,X,X2,X3,X4) est la base la base

canonique de R4[X].
On peut utiliser l’application ϕ pour

• Calculer A−1. En effet A−1 = MatB
(
ϕ−1

)
.

Il suffit donc de trouver ϕ−1 puis d’écrire sa matrice.

• Calculer Ak . En effet Ak = MatB
(
ϕk

)
.

Il suffit donc de calculer ϕk = ϕ◦ϕ◦· · ·◦ϕ puis d’écrire
sa matrice.

Réponse à trouver : Ak =


1 k k2 k3 k4

1 2k 3k2 4k3

1 3k 6k2

1 4k
1


et la formule vaut aussi pour k = −1

11 1. Matrice de ϕ. M =

1 1 4
0 2 2
0 0 5


2. Suivre le savoir-faire SF 3 .

On commence par : « Soit P = aX2 + bX + c ∈R2[X] » en-
suite par équivalence :

P ∈ Ker(ϕ −λId)⇔ ϕ(P ) = λP

⇔ A×
cb
a

︸︷︷︸
Coordonnées de
P dans (1,X,X2)

= λ

cb
a

︸︷︷︸
Coordonnées de
P dans (1,X,X2)

Ensuite distinguer des cas selon que des coefficients dia-
gonaux soient nuls ou non : Réponse :
• Si λ < 1,2,5 : Ker(ϕ −λId) = {0}
• Ker(ϕ − 5Id) = Vect

(
X2 + 2

3X + 7
6

)
.

• Ker(ϕ − Id) = Vect(1)
• Ker(ϕ − 2Id) = Vect(1 +X)

3. La base
(
1 , 1 +X , X2 + 2

3X + 7
6

)
convient

12 1. Par construction : E = Vect(f1, f2, f3) où f1 : x 7→ ex,

f2 : x 7→ xex et f1 : x 7→ x2ex.
Il reste à prouver la liberté de B = (f1, f2, f3).

2. Il y a deux points à vérifier :
• ϕ est linéaire.
• ϕ est à valeurs dans E

3. Procéder colonne par colonne Réponse : A =

1 1 0
0 1 2
0 0 1


Calculer A−1 par la méthode du pivot.

Réponse : A−1 =

1 −1 2
0 1 −2
0 0 1

.

4. Posant f : x 7→ (x2 +x+ 1)ex i.e. f = f1 + f2 + f3, il s’agit de
trouver F telle que ϕ(F) = f .
Si on cherche F = af1 + bf2 + cf3 ∈ E on peut traduire
matriciellement l’équation :

ϕ(F) = f ⇔ A

ab
c

︸︷︷︸
coordonnées
de F dans B

=

1
1
1

︸︷︷︸
coordonnées
de F dans B

Il suffit d’utiliser A−1 pour trouver

ab
c

 et donc F.

13 Stratégie :
1. Ecrire la matrice A de ϕ dans la base canonique
2. Trouver A−1

3. Trouver ϕ−1 via MatB
(
ϕ−1

)
= A−1.

Quelques détails pour chacune des étapes ci-dessus :

2



1. La matrice A est de taille n×n et ses coef se trouvent
en calculant ϕ(Xj ) pour 0 ≤ j ≤ n − 1. Il faut faire
attention au « décalage » d’indice, le calcul de ϕ(Xj )

donne la j+1e colonne de A : si ϕ(Xj ) =
n−1∑
i=0

ai+1,j+1X
i .

Réponse : A = 1√
n

(
ω(i−1)(j−1)

)
1≤i,j≤n

.

2. Calculer A×A.
3. La matrice de ϕ−1 s’obtient en changeant ω en ω dans

celle de ϕ : il suffit d’en faire de même pour passer de
ϕ(P ) à ϕ−1(P ).

14 1. Montrer que F ∩G = {0} et que dimF + dimG+ 3.

2. On cherche λ,a,b,c tels que :


(a,b,c) +λ(1,2,3) = (x,y,z)
(a,b,c) ∈ F(
λ(1,2,3) ∈ G

) .

On résout le système, puis p(x,y,z) = (a,b,c) (compo-
sante de u selon F).
On calcule ensuite p(1,0,0), p(0,1,0) puis p(0,0,1)

3. Considérer une base B′ =
(
u1,u2,v

)
adaptée à F ⊕G.

15 • Analyse du problème. Une telle base B = (b1, . . . , bn) vérifie

nécessairement
f (b1) = b2, f (b2) = b3, . . . f (bn−1) = bn et f (bn) = 0
i.e. b1 ∈ Kerf n \Kerf n−1 puis :

b2 = f (b1) , b3 = f 2(b1) , . . . , bn = f n−1(b1)
• Synthèse. Fixer e ∈ E tel que f n−1(e) , 0 (après

avoir justifié qu’un tel vecteur existe) et montrer que
(e, f (e), . . . , f n−1(e)) est une base de E.

16 1. • s est une symétrie. On sait que s est une symétrie ssi

s2 = Id donc ssi A2 = I2.
• Base de F = Inv s. Fixer u = (x,y) ∈R2 :

u ∈ F⇔ s(u) = u⇔ A

(
x
y

)
=

(
x
y

)
il suffit ensuite de résoudre le système.

• Base de G = AntiInv s. Fixer u = (x,y) ∈R2 :

u ∈ G⇔ s(u) = u⇔ A

(
x
y

)
= −

(
x
y

)
il suffit ensuite de résoudre le système.

2. Considérer une base (u1,u2) adaptée F ⊕G

17 1. Calculer A2

2. Suivre le savoir-faire SF 3 . Fixer u = (x,y,z) ∈ R3 puis
utiliser A

u ∈ Kerf ⇔ f (u) = (0,0,0)⇔ A

xy
z

 =

0
0
0


3. Suivre le savoir-faire SF 7 :

• Analyse du problème On cherche une base
B = (b1,b2,b3) de R3 telle que

MatBf =

f (b1) f (b2) f (b3)
↓ ↓ ↓

0 1 0 ← coordonnée selon b1
0 0 0 ← coordonnée selon b2
0 0 0 ← coordonnée selon b3

c’est à dire telle
(1) b1,b3 ∈ Kerf et (2) f (b2) = b1

• Synthèse Il s’agit de trouver une base B = (b1,b2,b3)
qui vérifie les conditions (1), (2) et (3) ci-dessus.
Commencer par b2 :

• Chercher b2 ∈ Kerf 2 \Kerf

• Calculer b1 = f (b2)

• Prendre b3 ∈ Kerf mais pas colinéaire à b1.

Ensuite :

• Justifier que B = (b1,b2,b3) est une base de R3.

• C’est tout ! Par construction MatBf = B.

18 1. Utiliser la matrice A. Pour u = (x,y,z) ∈R3 :

• u ∈ Ker(f − 2Id)⇔ (A− 2I3)

xy
z

 =

0
0
0


• u ∈ Ker

(
(f + Id)2

)
⇔ (A+ I3)2

xy
z

 =

0
0
0

 (note 1)

2. Suivre le savoir-faire SF 7 :

• Analyse du problème On cherche une base
B = (b1,b2,b3) de R3 telle que

MatBf =

f (b1) f (b2) f (b3)
↓ ↓ ↓

2 0 0 ← coordonnée selon b1
0 −1 0 ← coordonnée selon b2
0 2 −1 ← coordonnée selon b3

c’est à dire telle que :
f (b1) = 2b1 i.e. b1 ∈ Ker(f − 2Id)
f (b2) = −b2 + 2b3 i.e. (f + Id)(b2) = 2b3

f (b3) = −b3 i.e. b3 ∈ Ker(f + Id)
Ainsi :

(1) b2 ∈ Ker
(
(f + Id)2

)
mais b2 < Ker(f + Id) (note 2).

(2) b3 = 1
2 (f + Id)(b2).

(3) b1 ∈ Ker(f − 2Id)

• Synthèse Trouver une base B = (b1,b2,b3) qui vérifie
les conditions (1), (2) et (3) ci-dessus.
Concrètement :

• La question 1 permet de définir b1 et b2

• Prendre b3 = 1
2 (f + Id)(b2)

1. Pour calculer (A+ I3)2, il est maladroit d’utiliser (A+ I3)2 = A2 + 2A+ I3. Le plus simple est de calculer B = A+ I3 puis d’élever au carré
2. si b2 ∈ Ker(f + Id) alors b3 = 0 et la famille n’est pas libre

3



19 • Analyse du problème. Il s’agit de prouver qu’il

existe une base B = (b1, . . . , bn−r , c1, . . . , cr ) de E t.q.

f (b1) = · · · = f (bn−r ) = 0
f (c1) = b1

f (c2) = b2

. . .

f (cr ) = br

i.e.



b1, . . . , bn−r ∈ Kerf
c1, . . . , cr < Kerf
b1 = f (c1)

. . .

br = f (cr )

• Synthèse. Définir c1, . . . , cr en considérant un supplémen-
taire S de Kerf . Définir ensuite b1, . . . , br puis compléter
en une base (b1, . . . , bn−r ) de Kerf .

20 1. Procéder par inclusion-dimension. Pour les dimension,

le fait que g soit un automorphisme assure en particulier
que dim

(
g(F)

)
= dimF et dim

(
g(G)

)
= G.

2. Considérer une base (b1, . . . , bm) de F et montrer que la
famille C =

(
b1, . . . , bm, g(b1), . . . , g(bm)

)
satisfait les condi-

tions requises.

21
• Commencer par montrer que Kerf = Kerf 2

• A l’aide de ce qui précède, montrer que E = Kerf ⊕ Imf .

• Considérer une base adaptée à E = Kerf ⊕ Imf .

22 1. Fixer u = (x,y,z) ∈R3 :

u ∈ Ker(f − Id)⇔ f (u) = u⇔ A

xy
z

 =

xy
z


Réponse : Ker(f − Id) = Vect(u1,u2).

2. Il suffit de calculer le produit (A− I3)

1
1
1


3. Ne pas utiliser de formule de changement de base ici :

revenir à la définition

MatB′ f =

f (u1) f (u2) f (u3)
↓ ↓ ↓

a · · ← coordonnée selon u1
b · · ← coordonnée selon u2
c · · ← coordonnée selon u3

Ce qui nous intéresse ce n’est pas la valeur de f (u1), f (u2)
et f (u3) mais leurs coordonnées dans la base (u1,u2,u3).
Par exemple, pour trouver la première colonne il suffit
d’écrire f (u1) comme une CL de u1,u2,u3 i.e. sous la forme :
f (u1) = a×u1 + b ×u2 + c ×u3

Important :

4. Utiliser la formule du changement de base.
En notant B =

(
(1,0,0) , (0,1,0)(0,0,1)

)
la base cano-

nique : A = P T P −1 où P = PB′

B .
Ainsi (par récurrence) : ∀n ∈N, An = P T nP −1.

23 1. • Base de F = Ker(f − Id).

Commencer par « Soit u = (x,y,z) ∈R3 » ensuite :

u ∈ Ker(f − Id)⇔ f (u) = u⇔ A

xy
z

 =

xy
z



Réponse :
F = Vect(u1,u2) où u1 = (1,1,0), u2 = (1,0,1).

• Base de G = Ker(f + 2Id).
Réponse : G = Vect(u3) où u3 = (−1,1,1).

2. Vérifier que :

• dimF + dimG = dimR3.
• F ∩G = {(0,0,0)}.

3. Réponse à trouver : D =

1 0 0
0 1 0
0 0 −2

.
4. Utiliser la formule du changement de base pour les en-

domorphismes

24 1. • Base du Noyau. Kerf = Vect
(
u1, . . . ,un−1

)
où

u1 = (−1,1, . . . ,0), u2 = (−1,0,1, . . . ,0), . . . un−1 =
(−1,0, . . . ,0,1).

• Base de l’image. Imf = Vect
(
(1, . . . ,1)︸   ︷︷   ︸

=v

)
2. Vérifier que :

• dimKerf + dimImf = dimRn.
• Kerf ∩ Imf = {0}.

3. Réponse : D =


0 . . . 0
...

...
...

0 . . . 0
0 . . . 0 n

.

Pour le lien entre J et D c’est la formule du changement
de base pour les endomorphismes

25 1. a) Kerf 2 = Vect(u1,u2) où u1 = (1,1,0,0) et u2 =

(−1,0,1,0)
b) La première colonne de (A − I4)2 est nulle : cela in-

dique que (f − Id)2(e1) = (0,0,0,0).

2. Suivre le savoir-faire SF 7 :

• Analyse du problème On cherche une base
B = (b1,b2,b3,b4) de R4 telle que

f (b1) = 0 i.e. b1 ∈ Kerf
f (b2) = b1

f (b3) = b3 i.e. b3 ∈ Ker(f − Id)
f (b4) = b3 + b4 i.e. (f − Id)(b4) = b3

On cherche donc une base (b1,b2,b3,b4) telle que

(1) b2 ∈ Ker
(
f 2

)
mais b2 < Kerf (note 3).

(2) b1 = f (b2)

(3) b4 ∈ Ker
(
(f − Id)2

)
mais b4 < Ker(f − Id)

(4) b3 = (f − Id)(b4).

• Synthèse Trouver une base B = (b1,b2,b3,b4) qui véri-
fie les conditions (1), (2), (3) et (4) avec 1.

3. Utiliser la formule du changement de base pour les en-
domorphismes.

3. si b2 ∈ Kerf alors b1 = 0 et la famille n’est pas libre

4


