Matrices et Applications linéaires

Commentaire

Suivre la stratégie du savoir faire

* Commencer par déterminer la taille de la matrice :
* nombre de colonnes = dimension de 'espace de départ
* nombre de lignes = dimension de 'espace d’arrivée

* On calcule f(b;) et on met ses coordonnées dans la pre-
mieére colonne

* On calcule f(by) et on met ses coordonnées dans la
deuxieéme colonne

L]

* On calcule f(b,) et on met ses coordonnées dans la der-
niére colonne
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1. Icd & =% = (1,X,...X") donc la matrice est de taille
(n+1)x(n+1) et pour calculer les coefficients sur la k ¢
colonne, il suffit de calculer f(X¥).

I #=(1,X,...X") et € = (1,X) donc la matrice possede
2 lignes et n+ 1 colonnes.

Pour calculer les coefficients de la k¢ colonne il suffit
de calculer f(X¥)i.e. de calculer le reste de la division
euclidienne de X* par X2 —3X +2: si le reste est a X + by

alors la k¢ colonne sera ( Z;k )
k

1. La matrice est de taille (n+1)x (n+1) et

1 X+a X+a? X+a)d ... X+a)"
U U ! ! ) !

T

T 1

X

Pour calculer les coefficients sur la j ¢ colonne, il suffit
de développer (X +a)/.
. La matrice est de taille (n+ 1) x (n+1) et

1 X x? x3 .. Xxno
S A

T

()

La j¢ colonne est formée des coordonnées de P; = XJ
dans la base (1,(X —a),..., (X —a)").

Il s’agit donc d’exprimer P; = X/ comme une combinai-
son linéaire de (1,(X —a),..., (X —a)")

LI B =(1,X,..., X" et

% =((1,0,...,0),(0,1,0,...,0),...,(0,...,
trice est de taille n x n et pour calculer les coefficients
sur la j € colonne, il suffit de calculer ®(X/).

LI B = (Ly,...,L,) et
% =((1,0,...,0) ,(0,1,0,...,0),...,(0,...,0,1))donclama-

0, 1)) donc la ma-

trice est de taille n x n et pour calculer les coefficients
sur la j € colonne, il suffit de calculer CD(L]-).

* Noyau. Suivre le savoir-faire
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On commence par : « Soit P =aX?+bX +c € R,[X] » en-
suite par équivalence :

c 0
f P )= (0,00 < Ax b =lo
E\/—; a 0
space de Espace L
d t: P
H‘:I;F;;] darrivée : R® Coordonnées de

P dans (1,X,X2)
I1 suffit ensuite de résoudre le systéme.
Attention : une fois le systéme résolu, ne pas oublier de reve-
nirda P =....
Réponse: Ker f = Vect(X? +4X -2).
* Image. Tm f = Vect(f(1), f(X), f(X?))
Ici les vecteurs f(1), f(X), f(X?) € R? se lisent sur les co-
lonnes de A

Chasser enfin du Vect les vecteurs combinaisons linéaires.
Réponse: Imf = Vect((l,Z),(O, 1))

6 | * Novau. Suivre le savoir-faire
On commence par : «Soit P = aX> + bX?> + cX +d €
R3[X] » ensuite par équivalence :
d 0
c 0
ft P )= 0 — Ax =
Espace de Polynome nul a 0
départ : v
Ri[X) darrivée est —
R3[X] Coordonnées de
P dans
(1,X,Xx2,x3)
« Image. Im f = Vect(f(1), f(X), f(X?), f(X?) )
et les polyndmes f (1), f(X), f(X?), f(X3) € R3[X] se lisent
sur les colonnes de A
Chasser enfin du Vect les vecteurs combinaisons linéaires
7 | 1. Il y a deux points a montrer :

* f est linéaire.
* f estdvaleurs dans R3[X]. Pour P € R3[X], il s’agit de
justifier que f(P)=(3X + 1)P + (1 — X?)P’ € R3[X]

1 1 0 0
; 31 2 0

2. Réponse:  M=|, , | ;5|
0 0 1 1

3. * Noyau. Suivre le savoir-faire
On commence par : «Soit P = aX> +bX? +cX +d €
R3[X] » ensuite par équivalence :

d 0
c 0
o P )= 0 — Mx =
Espace de Polynéme nul a 0
départ : car l'espace
R3[X] d’arrivée est —
R3[X] Coordonnées de
P dans
(1,X,x2,x3)

Réponse : Ker¢p = Vect(X3 - X? - X +1)
* Image.Deux possibilités :
* Meéthode 1. A partir de
Im ¢ = Vect(q(1), p(X), p(X?), (X))
en « chassant » ensuite dans le Vect
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* Meéthode 2. Avec le théoréme du rang dimIm¢ = 3.
11 suffit donc de trouver une famille libre de Im ¢
de cardinal 3 : on se contente de vérifier que

(p(1),p(X), p(X?)) est libre.

1. Procéder par inclusion dimension pour les deux égali-

tés.

On sait déja que Im f? CIm f.

On peut montrer que dimIm f2 = 2.

En effet A = Matgf? ott # =((1,0,0),(0,1,0),(0,0,1)) est

la base canonique de R*> donc avec les colonnes de A on
peut déterminer une base de Im f2.
VuqueImf?cImfcR?’: dimImf=2ou3.

I1 suffit de montrer que dimIm f # 3. Procéder par l'ab-
surde : si dimIm f = 3, f serait surjective donc aussi
bijective et on peut en déduire une contradiction avec la
matrice M.

Une fois Im f = Im f? démontré, on a 1’égalité des di-
mension de Ker f et Ker f? (th du rang) et Ker f? c Ker f
est toujours vraie.

. Traduire les colonnes de M pour trouver les conditions

exigées sur f. Il s’agit en fait de montrer que :
* (1,0,0) eKer f

* £(0,1,0)et f(0,0,1) appartiennent a Vect((l, 0,0),(0,1, 0)

Aussi

» Avec1.Kerf =Kerf?etImf =Im f?
+ On dispose de A = Matgzf? sur laquelle on peut
constate que :

* Ker f2 = Vect((1,0,0))
* Im f2 = Vect((1,0,0),(0,1,0)

. Les questions 1. et 2. constituent la phase d’analyse du

probléme : si M € . alors M est de la forme trouvée a
la question 2.. Tester les candidats obtenus : calculer M?
et montrer qu’il est impossible d’obtenir A.

9 | On note (ey,...,e,) la base canonique de R".

1. Montrer que Im f = Vect(e, u) ot u = (ay,...,a,_1,4,).
2. SiA=0,dimKer f =n—-2 avec la question 1..

Pour A=0etu=(xy,...,x,) €R":
X1

flu)=Alues (A-AL,)| : |=0
xﬂ
Echelonner le systeme et constater, en posant s = a% +
~'+aﬁ_l #0, que:
e Si-A?+a,A+s=0,alors f(u)=Aussix; =---=x,=0.

¢ Si-A2+a,A+s=0,ilyades solutions autres que le
vecteur nul (x,, est arbitraire).

3. Former une base (by,...,b,_»,uy,u;) de R" ou

* (by,...,b,_5) est une base de Ker f.
* uyp € Ker(f — AIdgn) et u; € Ker(f — A,Idgn) ou A et
A, sont les racines réelles de —X? +a, X +s.

10! 1. Utiliser la matrice A pour calculer ¢(1), p(X), p(X?),

P(X3) et p(X*) (penser a la formule du bindme).

2. A=Matgp ou Z =(1,X,X? X3, X*) est la base la base

canonique de Ry[X].
On peut utiliser I'application ¢ pour

11

12

. Par construction : E = Vect(fy, f»,f3) ou fi : x — ¢%,

. Procéder colonne par colonne Réponse: A= [0 12

e Calculer A™'. En effet A~ = Mat%(q)‘l).
11 suffit donc de trouver @~! puis d’écrire sa matrice.
e Calculer A¥. En effet A* = Mat@(gok).

I suffit donc de calculer ¢f = pogo---o@ puis d’écrire
sa matrice.
1k k2K Kt
1 2k 3kr 4k’
Réponse a trouver : A¥ = 1 3k 6k?
1 4k
1
et la formule vaut aussi pour k = -1

1 1 4
. Matricede p. M =|0 2 2
0 0 5

. Suivre le savoir-faire

On commence par : « Soit P = aX?+bX +c € Ry[X] » en-
suite par équivalence :
PeKer(p—-Ald) & @(P)= AP

R

—_——

Coordonnées de  Coordonnées de
Pdans (1,X,X?) P dans(1,X,X?)

Ensuite distinguer des cas selon que des coefficients dia-
gonaux soient nuls ou non : Réponse :

* Sidlel,2,5: Ker(p—Ald)={0}
* Ker(p—5Id) = Vect(X2 + 3X + 7).
* Ker(p—1Id) = Vect(1)

» Ker(qp —2Id) = Vect(1 + X)

. La base (1, 1+X,X%+ %X+ %) convient

frixsxe¥et fi x> x2e”,

Il reste a prouver la liberté de Z = (fi, f>, f3)-

. Il y a deux points a vérifier :

* @ est linéaire.
* @ est a valeurs dans E
1 1

(=)
~——————

0 0 1
Calculer A~! par la méthode du pivot.

1 -1 2
Réponse: A= =]o 1 -2
0 0 1

. Posant f: x> (x> +x+1)e¥ie. f = fi + fo+ f3, il s'agit de

trouver F telle que ¢(F) = f.
Si on cherche F = af; +bf, + c¢f; € E on peut traduire
matriciellement I’équation :

a 1
e -
c 1
~—— ~——
coordonnées coordonnées
de F dans & de F dans &

a
1l suffit d’utiliser A~! pour trouver [b] et donc F.

c

13| Stratégie :

1. Ecrire la matrice A de ¢ dans la base canonique
2. Trouver A™!

3. Trouver ¢! via Mat@((p’l ) =A7l

Quelques détails pour chacune des étapes ci-dessus :



1. La matrice A est d‘e taille n x n et ses coef se trouvent
en calculant ¢@(X/) pour 0 < j < n—1. Il faut faire

attention au « décalage » d’indice, le calcul de (X/)
n-1

donne la j+1¢ colonne de A : si (p(Xf) = Zai+1,]~+1X" .
i=0

Réponse: A= \/Lﬁ(w(f—l)(f—l))

1<i,j<n’

2. Calculer Ax A.

3. La matrice de ¢! s'obtient en changeant w en @ dans
celle de ¢ : il suffit d’en faire de méme pour passer de

P(P)a @ !(P).
14! 1. Montrer que F NG = {0} et que dimF + dim G + 3.
(a,b,c)+ A(1,2,3) =(x,9,2)

2. Oncherche A,a,b,c tels que: (a,b,c)eF
(/\(1,2,3) € G)
On résout le systeme, puis p(x,v,z) = (a,b,c) (compo-
sante de u selon F).
On calcule ensuite p(1,0,0), p(0,1,0) puis p(0,0,1)
3. Considérer une base £’ = (ul, uz,v) adaptée a F®G.

15/ * Analyse du probléme. Une telle base % = (by, ..., b,) vérifie

nécessairement
f(br)=by, f(by) = b3,
i.e. by € Ker f"\Ker f*! puis :
by=f(b1), by=fb1), ..., by=f""(by)
o Synthése. Fixer e € E tel que f"!(e) = 0 (apres
avoir justifié qu’un tel vecteur existe) et montrer que
(e, f(e),..., f""1(e)) est une base de E.

16/ 1. ¢ sest une symétrie. On sait que s est une symétrie ssi
s> =1d donc ssi A% = 1I,.
* Base de F = Inv s. Fixer u = (x,7) € R?:

ueF<:>s(u):u<:>A(;):(;)

il suffit ensuite de résoudre le systéme.
s Base de G = Antilnv s. Fixer u = (x,p) € R?:

uch)s(u):u(:)A(x):—(x)
Y v

il suffit ensuite de résoudre le systéme.
2. Considérer une base (u1,u,) adaptée F® G

17! 1. Calculer A?

2. Suivre le savoir-faire
utiliser A
X

v

Z

ueKerf e f(u)=(0,0,0) A

0
=0
0
3. Suivre le savoir-faire

* Analyse du probléme On cherche une base
% = (by,b,,b3) de R® telle que
f(br)  f(by)  f(b3)
\ \ l

Matgf = 0 1 0 — coordonn?e selon by
0 0 0 « coordonnée selon b,

0 0 0 « coordonnée selon bs

X 0
* ueKer(f-2Id) & (A—213)[y] = [0]
z

f(bn—l):bn et f(bn)zo

Matgyf =

. Fixer u = (x,v,z) € R? puis

c’est a dire telle
(1) by bseKerf et (2) f(b2) =0

Syntheése 11 s’agit de trouver une base % = (b, b,,b3)
qui vérifie les conditions (1), (2) et (3) ci-dessus.
Commencer par b, :

e Chercher b, € Ker f2\ Ker f

» Calculer by = f(b,)

* Prendre b3 € Ker f mais pas colinéaire a b;.
Ensuite :

o Justifier que Z = (b, b, b3) est une base de R>.

» C’est tout! Par construction Matgf = B.

1g| 1. Utiliser la matrice A. Pour u = (x,9,z) € R®:

X 0
u eKer((f+Id)2) & (A+1;)? [y] = [0] (note )

2. Suivre le savoir-faire

* Analyse du probléme On cherche une base

B = (by,by,b3) de R telle que
f(by) f(fz) f(fa)

l

2 0 0 « coordonnée selon by
0 -1 0 « coordonnée selon b,
0 2 -1 « coordonnée selon bj

c’est a dire telle que :
f(by)=2b i.e. by € Ker(f —2Id)
f(by)==by+2bs ie. (f +1d)(by) =2b;
f(b3)=~bs i.e. by € Ker(f +1d)
Ainsi :

(1) by e Ker((f+ld)2) mais b, € Ker(f +1d) (note ?).
(2) by = 5(f +1d)(by).

(3) by € Ker(f - 21d)

* Syntheése Trouver une base & = (b, b,,b3) qui vérifie
les conditions (1), (2) et (3) ci-dessus.
Concrétement :

* La question 1 permet de définir b; et b,

* Prendre b3 = %(f+Id)(b2)

1. Pour calculer (A +I3)2, il est maladroit d’utiliser (A +3)2 = A2+ 2A +I3. Le plus simple est de calculer B= A + I3 puis d’élever au carré

2. si by e Ker(f +1d) alors b3 = 0 et la famille n’est pas libre



19| * Analyse du probléme. Il s’agit de prouver qu’il
existe une base # = (by,...,b,_,,c1,...,c;) de E t.q.

bi,...,b,_, €Ker f
by)=-=f(b,_,) =
,J;Ecll)):bl f( ) ’ Cl;'..,Cr@Kerf
flea)=b ie. by =f(c1)
fer=s 'b.r.=f(cr)

» Synthese. Définir cy,...,c, en considérant un supplémen-
taire S de Ker f. Définir ensuite by,...,b, puis compléter
en une base (by,...,b,_,) de Ker f.

20! 1. Procéder par inclusion-dimension. Pour les dimension, 24

le fait que g soit un automorphisme assure en particulier
que dim(g(P)) =dimF et dim(g(G)) =G.
2. Considérer une base (by,...,b,,) de F et montrer que la

famille ¥ = (bl,..., b, g(by ),...,g(bm)) satisfait les condi-
tions requises.

21
« Commencer par montrer que Ker f = Ker
* Alaide de ce qui précede, montrer que E =Ker f @Im f.

29| 1. Fixer u = (x,9,z) e R*:
x

v

z

uekKer(f-Ild)e f(u)=usA

Réponse : Ker(f —1d) = Vect(uy, u,). 25

1)

3. Ne pas utiliser de formule de changement de base ici :
revenir a la définition

* Considérer une base adaptée a E=Ker f ®@Im f.
1
2. 1l suffit de calculer le produit (A—13)|1

fluy)  flua)  f(usz)
\J 8 \
Matgy f=( ¢ . . ] « coordonnée selon i
‘ b . . « coordonnée selon u;
c « coordonnée selon u3

Ce qui nous intéresse ce n'est pas la valeur de f(uy), f(us)
et f(u3) mais leurs coordonnées dans la base (uq, uy, us).
Par exemple, pour trouver la premiere colonne il suffit
d’écrire f(uy) comme une CL de uy, u,,us i.e. sous la forme :
f(up)=axuy+bxu,+cxus

4. Utiliser la formule du changement de base.
En notant ¥4 = ((1,0,0),(0,1,0)(0,0,1)) la base cano-
nique: A=PTP~'ouP=PZ.
Ainsi (par récurrence): YneIN, A" =PT"P~L

23| 1. ¢ Basede F = Ker(f —1d).

Commencer par « Soit u = (x,7,z) € R3 » ensuite :

X X
=Y
z

ueKer(f-1d) e f(u)=u o Aly

z

3. si by € Ker f alors by = 0 et la famille n’est pas libre

Réponse :
F =Vect(uy,up)ou uy =(1,1,0), u, =(1,0,1).
* Basede G =Ker(f +21d).
Réponse : G = Vect(uz) ou uz =(-1,1,1).
2. Vérifier que :
e dimF+dim G = dimR>.
* FNG={(0,0,0)}.
1 0 O]
0 1 0|

0 0 =2
4. Utiliser la formule du changement de base pour les en-
domorphismes

3. Réponse a trouver : D =

(e

1. ¢ Base du Noyau.
u = (—1,1,...,0), U, =
(-1,0,...,0,1).

* Base de I'image. Im f :Vect((l,...,l))

—_—
=v

Kerf = Vect(ul,...,un_l) o
(-1,0,1,...,0), ...

Up1 =

2. Vérifier que:
* dimKer f +dimIm f = dimR".
e KerfNnImf ={0}.

0 ... 0

3. Réponse: D = -
0
0 ... 0 n

Pour le lien entre | et D c’est la formule du changement
de base pour les endomorphismes

1.a) Ker f2 = Vect(uj,u;) ou u; = (1,1,0,0) et u, =
(-1,0,1,0)

b) La premiére colonne de (A —I4)? est nulle : cela in-
dique que (f —1d)%(e;) = (0,0,0,0).

2. Suivre le savoir-faire

* Analyse du probléme On cherche une base
B = (by,by,b3,by) de R* telle que

f(by)=0 ie. by eKerf
f(ba) =0
f(bs)=b; i.e. by e Ker(f —1d)

fba)=bs+by ie. (f~1d)(bs) = bs
On cherche donc une base (b1,b5,b3,b,) telle que
(1) by e Ker(fz) mais b,  Ker f (note 3).
(2) by =f(b2)
(3) by € Ker((f —1d)?) mais by € Ker(f - 1d)
(4) bz =(f —1d)(b4).

» Syntheése Trouver une base % = (by, b, b3, by) qui véri-
fie les conditions (1), (2), (3) et (4) avec1.

3. Utiliser la formule du changement de base pour les en-
domorphismes.



