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= E est dit fini si, pour un certain n € N : il existe une bijection u
de [1,n] sur E.

= Dans ce cas I'entier n est unique : appelé cardinal de E, noté
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1 Résultzigebbaaziques

= E est dit fini si, pour un certain n € N : il existe une bijection u
de [1,n] sur E.

= Dans ce cas I'entier n est unique : appelé cardinal de E, noté
Card(E), ou |E|

Interprétation Card(@) =0

= |’'entier n est : le nombre d'éléments de E

= L’'application u est : une numérotation des éléments de E.

Exercice 1

1. Montrer que [a, b] est fini et que Card([a,b]) =b—a+1.



1 Résultats théoriques

Définlv,n 1

= E est dit fini si, pour un certain n € N : il existe une bijection u
de [1,n] sur E.

= Dans ce cas I'entier n est unique : appelé cardinal de E, noté
Card(E), ou |E|

Interprétation Card(2) = 0

= |’'entier n est : le nombre d'éléments de E

= L’'application u est : une numérotation des éléments de E.

Exercice 1

2. On suppose que E est fini et qu'il existe une bijection de E sur F.
Montrer que F est fini et que Card(F) = Card(E)
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Théoreme 2 : Cas des applications

= Si E est fini et s'il existe une surjection f de E sur F alors :
F est fini et |F| < |E|

= Si F est fini et s'il existe une injection f de E dans F alors :
E est fini et |E| < |F|

Si E et F sont finis et Card(E) = Card(F), il y a équivalence entre
i) f estinjective i) f est surjective iii) f est bijective
Principe des tiroirs

Si on place n+ 1 objets dans n tiroirs, alors I'un des tiroirs contient
au moins deux objets

Exemple 1: a;,...a, € Z

Montrer qu'il existe 0 </ < j < n tels que aj41 +---+a; =0 [n]
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Principe des bergers

La réunion disjointe de n ensembles tous de cardinal p est un
ensemble de cardinal np

SF 1 : Dénombrement par étapes successives



2 Multiplier ou additionner les résultats ?

'd N - , ~\
Si I'on dénombre :

o = n possibilités a |'étape 1
Principe des bergers s s i

= p possibilités a I'étape 2 pour chaque
La réunion disjointe de n en§  possibilité de I'étape 1

ensemble de cardinal np

Alors il y a en tout n X p possibilités
v

SF 1 : Dénombrement par étapes successives




2 Multiplier ou additionner les résultats ?

'd N - , ~\
Si I'on dénombre :

o = n possibilités a |'étape 1
Principe des bergers s s i

= p possibilités a I'étape 2 pour chaque
La réunion disjointe de n en§  possibilité de I'étape 1

ensemble de cardinal np

Alors il y a en tout n X p possibilités
v

SF 1 : Dénombrement par étapes successives

Exemple 2

Combien y-a-t-il d'entiers pairs formés de trois chiffres (i.e. dans
I'ensemble [100,999]) ?
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'd N - , ~\
Si I'on dénombre :

o = n possibilités a |'étape 1
Principe des bergers s s i

= p possibilités a I'étape 2 pour chaque
La réunion disjointe de n en§  possibilité de I'étape 1

ensemble de cardinal np

Alors il y a en tout n X p possibilités
v

SF 1 : Dénombrement par étapes successives

Exemple 3

On forme des mots de n lettres avec un alphabet de p lettres.
Combien peut-on former de mots ne contenant jamais deux lettres
consécutives identiques ?
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2 Multiplier ou additionner les résultats ?

Théoreme 3 : Produit cartésien

= Si E et F sont finis: Card(E x F) = |E| x |F|

» Généralisation :  Card(Ey x -+ x E,) = HCard(E,-)
i=1

Exercice 2

Démontrer le premier point par étapes successives.
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2 Multiplier ou additionner les résultats ?

Théoreme 4 : Ensemble des applications de E dans F

L'ensemble .7 (E, F) = FE est fini et : |Z(E,F)| = ‘F“E‘

Exercice 3

Dénombrer les éléments de .7 (E, F) par étapes successives.
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2 Multiplier A additinnnor lac vécultate ?

Si I'on dénombre

= ny possibilités dans le premier cas : « ou bien ceci »
= np possibilités dans le premier cas : « ou bien cela »

Alors il y a en tout ny + np possibilités
V

SF 1 : Dénombrement par disjonction de cas

Exemple 4

On tire une par une sans remise les boules d'une urne contenant n
boules rouges distinctes et n vertes distinctes. Combien de tirages
donnent un changement de couleur a chaque tirage ?
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1 p-listes générales

Théoréme 1

Le nombre de p-listes de E est : nP

SF 2 : Dénombrer des tirages successifs et avec remise

On tire successivement et avec remise p boules dans une urne
contentant n boules. Il y a nP tirages possibles.

Exemple 2

1. On lance un dé quatre fois de suite. Combien de résultats peut-on
obtenir?

10



1 p-listes générales

Théoréme 1

Le nombre de p-listes de E est : nP

SF 2 : Dénombrer des tirages successifs et avec remise
On tire successivement et avec remise p boules dans une urne

contentant n boules. Il y a nP tirages possibles.

Exemple 2

2. Un jardinier doit installer une rangée de douze pots de plans de
tomates.
Combien de semi différents peut-il réaliser sachant qu'il peut
semer entre 1 et 4 graines dans chaque pot?

10
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Théoréme 2

Si p < n, le nombre de p-arrangements de E est :
n!
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2 Arrangements

Un arrangement de p éléments de E est : une p-liste d'éléments de
E deux a deux distincts.

Exemple 3 : Les 2-arrangements de E = {a, b, ¢}
(a,b), (a;¢), (b;a), (b, c), (c,a), (c,b)

Théoréme 2

Si p < n, le nombre de p-arrangements de E est :

\ n(n—1)...(n—p+1)= (nf!p)!

[Aucun si p > n)




2 Arrangements

ou p-arrangement

Un arrangement de p éléments de E est : une p-liste d'éléments de
E deux a deux distincts.

Exemple 3 : Les 2-arrangements de E = {a, b, ¢}

(a,b), (a;¢), (b;a), (b, c), (c,a), (c,b)

Théoréme 2

Si p < n, le nombre de p-arrangements de E est :

\ n(n—l)...(n—p—l—l)—(ni!p)!

[Aucun si p > n)

Exercice 1

Etablir le résultat par étapes successives.



SF 2 : Dénombrer des tirages successifs et sans remise

On tire successivement et sans remise p boules dans une urne

contenant n boules. Il y a | tirages possibles

(n—p)
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SF 2 : Dénombrer des tirages successifs et sans remise

On tire successivement et sans remise p boules dans une urne

contenant n boules. Il y a | tirages possibles

(n—p)

Exemple 4 : Le tiercé

Un joueur assiste a une course de 15 chevaux et parie sur le premier,
le second et le troisieme cheval a I'arrivée.
Combien y-a-t-il de tiercés gagnants possibles ?

12
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Si Card(E) = p et Card(F) = n, alors il y a :
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On tire successivement et sans remise p boules dans une urne

contenant n boules. Il y a | tirages possibles
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Théoreme 3 : Applications injectives

Si Card(E) = p et Card(F) = n, alors il y a :
E dans Fsip<n

ntoo
; injections de
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2 Arrangements

SF 2 : Dénombrer des tirages successifs et sans remise

On tire successivement et sans remise p boules dans une urne

contenant n boules. Il y a | tirages possibles

(n—p)

Théoreme 3 : Applications injectives

|
Si Card(E) = p et Card(F) = n, alors il y a : T  injections de

(n—p)!

E dans F si p < n (et aucune si p < n)

12



2 Arrangements

SF 2 : Dénombrer des tirages successifs et sans remise

On tire successivement et sans remise p boules dans une urne

contenant n boules. Il y a | tirages possibles

(n—p)

Théoreme 3 : Applications injectives

|
Si Card(E) = p et Card(F) = n, alors il y a : ﬁ injections de

E dans F si p < n (et aucune si p < n)

Exercice 2

En procédant par étapes successives prouver le résultat précédent
lorsque p < n.

12



3 Permutations

Rappel

Une permutation de E est une bijection de E sur E.
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3 Permutations

Rappel

Une permutation de E est une bijection de E sur E.

Théoréme 4 : Permutations

Le nombre de permutations de E est :  n!

Interprétation

Une permutation correspond a une facon de : ranger n éléments
distincts.
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3 Permutations

Rappel

Une permutation de E est une bijection de E sur E.

Théoréme 4 : Permutations

Le nombre de permutations de E est :  n!

Interprétation

Une permutation correspond a une facon de : ranger n éléments
distincts

Retenir :
[I'y a n! facons d'ordonner les n éléments d’un ensemble
Exemple 5

Combien de facons de disposer 8 livres cote a cote sur une étagere ?



3 Permutations

Rappel

Une permutation de E est une bijection de E sur E.

Théoréme 4 : Permutations

Le nombre de permutations de E est :  n!

Interprétation

Une permutation correspond a une facon de : ranger n éléments
distincts

Retenir :
[I'y a n! facons d'ordonner les n éléments d’un ensemble
Exemple ©

Combien d'anagrammes peut-on former a partir du mot CHEVAL ?



3 Permutations

Rappel

Une permutation de E est une bijection de E sur E.

Théoréme 4 : Permutations

Le nombre de permutations de E est :  n!

Interprétation

Une permutation correspond a une facon de : ranger n éléments
distincts

Retenir :
[I'y a n! facons d'ordonner les n éléments d’un ensemble
Exemple 7

Combien de permutations de [1, n] envoient 1 sur 2 et 2 sur n?



Il Parties d’un ensemble

M Parties d’un ensemble
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Définition 1

Une combinaison de p éléments de E est :
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Définition 1

Une combinaison de p éléments de E est : une partie de E de

cardinal p i.e. de la forme {xi,...,x,}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}



1 Combinaisons

YR Al Entier relatif

Une combinaison de p éléments de E est : une partie de E de

cardinal p i.e. de la forme {xi,...,x,}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}

{a,b}, {a,c}, {b,c}



Définition 1

Une combinaison de p éléments de E est : une partie de E de

cardinal p i.e. de la forme {xi,...,xp}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}

{a,b}, {a,c}, {b,c)

Remarque

= Dans une combinaison :



Définition 1

Une combinaison de p éléments de E est : une partie de E de
cardinal p i.e. de la forme {xi,...,xp}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}
{av b}' {3, C}' {b7 C}

Remarque

= Dans une combinaison : les éléments sont donnés sans ordre .
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Définition 1

Une combinaison de p éléments de E est : une partie de E de

cardinal p i.e. de la forme {xi,...,xp}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}

{a, b}, {a,c}, {b,c}

{a,b} = {b, a}

Remarque

= Dans une combinaison : les éléments sont donnés sans ordre .
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Définition 1

Une combinaison de p éléments de E est : une partie de E de
cardinal p i.e. de la forme {xi,...,xp}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}

{a, b}, {a,c}, {b,c}

{a,b} = {b, a}

Remarque

= Dans une combinaison : les éléments sont donnés sans ordre .

= Dans une combinaison de p éléments, les p éléments en question
sont :

115}



Définition 1

Une combinaison de p éléments de E est : une partie de E de
cardinal p i.e. de la forme {xi,...,x,}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}

{a,b}, {a,c}, {b,c}

Remarque {a, b} = {b,a}

= Dans une combinaison : les éléments sont donnés sans ordre .

= Dans une combinaison de p éléments, les p éléments en question
sont : tous distincts.

Le nombre de combinaisons de p éléments de E est :
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Définition 1

Une combinaison de p éléments de E est : une partie de E de
cardinal p i.e. de la forme {xi,...,x,}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}

{a,b}, {a,c}, {b,c}

Remarque {a, b} = {b,a}

= Dans une combinaison : les éléments sont donnés sans ordre .

= Dans une combinaison de p éléments, les p éléments en question
sont : tous distincts.

n
Le nombre de combinaisons de p éléments de E est : ( )
p

115}



1 Combinaisons

n
Le nombre de combinaisons de p éléments de E est : ( > ol
p

= = i0<p<
p ) déf. p! p!(n— p)! S S S

<n> n(n—1)...(n—p+1) n!



1 Combinaisons

n
Le nombre de combinaisons de p éléments de E est : ( > ol
p

= = i0<p<
p ) déf. p! p!(n— p)! SR

<n> n(n—1)...(n—p+1) n!

(;) =0 sinon
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1 Combinaisons

n
Le nombre de combinaisons de p éléments de E est : ( ) ol
p

= = i0<p<
p ) déf. p! p!(n— p)! SR

<n> n(n—1)...(n—p+1) n!

(;) =0 sinon

Exercice 1

Démontrer cette formule pour p < n en dénombrant autrement le
nombre de p-arrangements de E
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1 Combinaisons

n N
Le nombre de combinaisons de p éléments de E est : ( > ol
p

= = i0<p<
p ) déf. p! p!(n— p)! SR

<n> n(n—1)...(n—p+1) n!

(;) =0 sinon

SF 4 : Dénombrer des tirages simultanés

On tire simultanément p boules dans une urne contenant n boules.
Le nombre de tirages possibles est : (/’;)
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1 Combinaisons

n
Le nombre de combinaisons de p éléments de E est : ( > ol
p

<n> n(n—1)...(n—p+1) n!

= = i0<p<
p ) déf. p! p!(n— p)! SR

(;) =0 sinon

SF 4 : Dénombrer des tirages simultanés

On tire simultanément p boules dans une urne contenant n boules.
Le nombre de tirages possibles est : (/’;)

Exemple 2 : Dans un jeu de 32 cartes

De combien de facons peut-on tirer 3 cartes simultanément ?

16



1 Combinaisons

n
Le nombre de combinaisons de p éléments de E est : ( > ol
p

n n(n—1)...(n—p+1) n! _
<p> def. p! B p!(n— p)! i0<p=n

(;) =0 sinon

SF 4 : Dénombrer des tirages simultanés

On tire simultanément p boules dans une urne contenant n boules.
Le nombre de tirages possibles est : (/’;)

Exemple 3 : Combien d’anagrammes peut-on former

a partir du mot NARVAL, du mot ANAGRAMME ?

16



1 Combinaisons

n N
Le nombre de combinaisons de p éléments de E est : ( > ou
p

_ = si0<p<n
p

déf. p! p!(n— p)! \
[(g) =0 sinonJ

<n> n(n—1)...(n—p+1) n!

SF 4 : Dénombrer des tirages simultanés

On tire simultanément p boules dans une urne contenant n boules.
Le nombre de tirages possibles est : (l’;)

Exemple 4 : Combien peut-on former de codes de carte bleue

1. a I'aide de deux chiffres distincts ?



1 Combinaisons

n N
Le nombre de combinaisons de p éléments de E est : ( > ou
p

n n(n—1)...(n—p+1) n! _
<p> def. p! ~ pl(n—p)! si0<ps=n

() =0 sinon

SF 4 : Dénombrer des tirages simultanés

On tire simultanément p boules dans une urne contenant n boules.
Le nombre de tirages possibles est : (l’;)

Exemple 4 : Combien peut-on former de codes de carte bleue

2. a I'aide d’une suite de quatre chiffres strictement croissante ?

16



Retenir

Iy a (n) listes (x1,...,xp) € [1,n]P telles que x < -+ < xp
p

17



[(,’;) parties {x1,...,x,} de [1,n] a p éIéments]

Retenir

Iy a (n) listes (x1,...,xp) € [1,n]P telles que xq < -+ < xp
p

17



[ (g) parties {x1,...,xp} de [1,n] a p éléments ]

1 facon de ranger {xi,...,Xp} par ordre croissant

Retenir

Iy a (n) listes (x1,...,%p) € [1,n]P telles que xq < -+ < xp
p

17



(g) parties {x1,...,x,} de [1,n] a p éléments
1 facon de ranger {xi,...,Xp} par ordre croissant

Retenir

Iy a (n) listes (x1,...,%p) € [1,n]P telles que xq < -+ < xp
p

Exemple 5

On considére p boules identiques que I'on désire ranger dans n
boites numérotées de 1 a n (chaque boite peut recevoir un nombre
quelconque de boules).

-1
Montrer qu'il y a <n TP ) rangements possibles.

17



2 Formulaire a savoir sur les coefficients binomiaux

Théoreme 2 _____________

() (6 ots)- G026

Théoreme 3 : Valeurs remarquables a connaitre

s =0=1 «O=(")=n =) =(",)="15"

18
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2 Formulaire a savoir sur les coefficients binomiaux

s =0=1 «O=(")=n =) =(",)="15"
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2 Formulaire a savoir sur les coefficients binomiaux

Théoreme 3 : Valeurs remarquables a connaitre
n n n n n n n(n—1
" (p)=()=1 (D =(")=n (o) =("0) = (2 !

Exercice 2

Etablir la formule de Pascal pour n > 1 et p € [0, n] en comptant
de deux facons le nombre de parties a p + 1 éléments d'un ensemble
E={x1,...,xnt1} de cardinal n+ 1.

18



2 Formulaire a savoir sur les coefficients binomiaux

Théoreme 3 : Valeurs remarquables a connaitre
n n n n n n n(n—1
" (p)=()=1 (D =(")=n (o) =("0) = (2 !

Exercice 3

Soit E = {x1,...,xp} de cardinal n > 1 et p € [1,n].

1. Montrer la formule « sans nom » en comptant le nombre de facon
de former une équipe de p éléments de E dont un élément
capitaine.

18



2 Formulaire a savoir sur les coefficients binomiaux

Théoreme 3 : Valeurs remarquables a connaitre
n n n n n n n(n—1
" (p)=()=1 (D =(")=n (o) =("0) = (2 !

Exercice 3
Soit E = {x1,...,%,} de cardinal n > 1 et p € [1,n].

n\(p n\(n—k
2. Mont tout k < p: =
ontrer que pour tout k < p (p) (k) <k> (p—k)

18



2 Formulaire a savoir sur les coefficients binomiaux

Théoreme 3 : Valeurs remarquables a connaitre
n n n n n n n(n—1
" (p)=()=1 (D =(")=n (o) =("0) = (2 !

Exercice 3
Soit E = {x1,...,%,} de cardinal n > 1 et p € [1,n].

n\(p n\(n—k
2. Mont tout k < p: =
ontrer que pour tout k < p (p) (k) k) (p—k)

(« formule des titulaires »)
18




3 Dénombrement de Z(E)

L'ensemble Z(E) est fini et :
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3 Dénombrement de Z(E)

L'ensemble Z2(E) est fini et : | 22(E)| = 2/El (=2")
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3 Dénombrement de Z(E)

L'ensemble Z(E) est fini et : | 2(E)| = 2/El (=2")

Exercice 4

Démontrer le résultat précédant.

19



3 Dénombrement de Z(E)

SF 5 : Exploiter un recouvrement disjoint

Exercice 5

1. Déterminer le nombre a de couples (A, B) de parties de E tels
que ANB =g

20
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3 Dénombrement de Z(E)

Nombre de parties de E

n
a k éléments : (k)

1. Déterminer le nombre a de couples (A, B) de parties de E tels
que ANB =g

2. Plus généralement, pour p € [0, n], déterminer le nombre de
couples (A, B) de parties de E tels que |[ANB| =p

[Nombre de parties de E : 2”]
SF 5 : Exploit

un recouvrement di

20



3 Dénombrement de Z(E)

Nombre de parties de E
[Nombre de parties de E : 2”] 3 k éléments - (”)
SF 5 : Exploit &

1. Déterminer le nombre a de couples (A, B) de pa E tels
que ANB =g

2. Plus généralement, pour p € [0, n], déterminer le nombre de
couples (A, B) de parties de E tels que |[ANB| =p

un recouvrement di
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3 Dénombrement de Z(E)

Nombre de parties de E
[Nombre de parties de E : 2”J 3 k éléments - (”)
SF 5 : Exploit .

1. Déterminer le nombre a de couples (A, B) de pa E tels
que ANB =g

2. Plus généralement, pour p € [0, n], déterminer le nombre de
couples (A, B) de parties de E tels que |[ANB| =p

un recouvrement di

3. Déterminer le nombre b de couples (A, B) de parties de E tels
que A C B.

20



Indicatrices

Indicatrices
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1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

tout x € E par:  1a(x) =

22



1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

1 sixeA
tout x € E par:  Ta(x) = )
0 sinon

22



1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour
1 sixeA

tout x € E par : ]lA(x):{ )
0 sinon

Théoreme 1 : Propriétés des indicatrices

s Inclusion : AC B & v Fgalité : A= B &

22



1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour
1 sixeA

tout x € E par : ]lA(x):{ )
0 sinon

Théoreme 1 : Propriétés des indicatrices

= Inclusion : AC B 1, <1 = Egalit¢é: A=B <&

22



1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour
1 sixeA

tout x € E par : ]lA(x):{ )
0 sinon

Théoreme 1 : Propriétés des indicatrices

w Inclusion : AC B 1, <1 = Egalitée:A=B<< 1l,=1p

22



1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

1 sixeA
tout x € E par : ]lA(x):{ S!X
0 sinon

Théoreme 1 : Propriétés des indicatrices

w Inclusion : AC B 1, <1 = Egalitée:A=B<< 1l,=1p

» Complémentaire : 13 =

22



1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour
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Théoreme 1 : Propriétés des indicatrices

w Inclusion : AC B 1, <1 = Egalitée:A=B<< 1l,=1p

» Complémentaire : 1z=1-14
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1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

1 sixeA
tout x € E par : ]lA(x):{ S!X
0 sinon

Théoreme 1 : Propriétés des indicatrices

w Inclusion : AC B 1, <1 = Egalitée:A=B<< 1l,=1p

» Complémentaire : 1z=1-14

= Intersection : 1ang =
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1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

1 sixeA
tout x € E par : ]lA(x):{ S!X
0 sinon

Théoreme 1 : Propriétés des indicatrices

w Inclusion : AC B 1, <1 = Egalitée:A=B<< 1l,=1p
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1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

1 sixeA
tout x € E par : ]lA(x):{ S!X
0 sinon

Inclusion : AC B 14 <1g = Egalit¢t: A=B < 1,=1pg

» Complémentaire : 1z=1-14
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= Réunion : Tl =
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1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

1 sixeA
tout x € E par : ]lA(x):{ S!X
0 sinon

Inclusion : AC B 14 <1g = Egalit¢t: A=B < 1,=1pg

» Complémentaire : 1z=1-14

= [ntersection : lpng = lallp

= Réunion: Taug=1a+15—1xlp
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1 Indicatrice d’une partie

Définition 1

L'indicatrice de A est |'application 14 : E — {0, 1} définie pour

1 sixeA
tout x € E par : ]lA(x):{ S!X
0 sinon

Inclusion : AC B 14 <1g = Egalit¢t: A=B < 1,=1pg

» Complémentaire : 1z=1-14
= [ntersection : lpng = lallp

= Réunion: Taug=1a+15—1xlp

Exercice 1

Démontrer les propriétés relatives a I'inclusion et a l'intersection.

22



1 Indicatrice d’une partie

Exercice 2

1. Montrer que ¢ : Z(E) — Z(E,{0,1}) est bijective.
A — Ta




1 Indicatrice d’une partie

Exercice 2

1. Montrer que ¢ : Z(E) — Z(E,{0,1}) est bijective.
A — Ta

2. En déduire une nouvelle preuve de : | Z2(E)| = 2/El.
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Théoréme 2 : Lien avec le cardinal

Pour toute partie A de E : |A] =
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2 Lien avec le cardinal

Théoréeme 2 : Lien avec le cardinal

Pour toute partie A de E : |A] = Z T1a(x)
xeE

Exercice 3

Démontrer le théoreme.




2 Lien avec le cardinal

SF 6 : Utiliser les indicatrices pour calculer des cardinaux

Exercice 4

On cherche a calculer: S = |A].
AcP(E)

M|

1. Calculer S en sommant par paquet selon le recouvrement
disjoint (Zk(E)) <)<, de Z(E).
2. Calculer S en exprimant |A| a I'aide d'indicatrices.



2 Lien avec le cardinal Recouvrement disjoint d'un ensemble E
= familles de parties de E telles que

u UA,’ZE
i€l
» ANA =0sii#j

SF 6 : Utiliser les in

On cherche a calculer:  S= Y |A]
AcP(E)

1. Calculer S en sommant par paquet selon le recouvrement
disjoint (Zk(E)) <)<, de Z(E).

2. Calculer S en exprimant |A| a I'aide d'indicatrices.
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2 Lien avec le cardinal

Exercice 5

Soient A, ..., A, des parties de E.

1. Vérifier que :

n

H(l - ]lAi) =1+ i(_l)k Z ]lAilﬁ-"ﬂAik
k=1

i=1 1<ip<---<ix<n

2. En déduire :

n

| =D (=0 > A NN A

k=1 1<in<-<ik<n
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