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1 Résultats théoriques

Définition 1

• E est dit fini si, pour un certain n ∈ N :

il existe une bijection u
de J1 , nK sur E .

• Dans ce cas l’entier n est unique :

appelé cardinal de E , noté
Card(E ), ou |E |

Interprétation

• L’entier n est :

le nombre d’éléments de E
• L’application u est :

une numérotation des éléments de E .

Exercice 1

Ensemble

Card(∅) = 0
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1 Résultats théoriques

Théorème 1 : Sous-ensembles
Soit A une partie de E , fini :
• A est finie et :

|A| ≤ |E |

• Card(A) = Card(E ) ssi :

A = E

Théorème 2 : Réunion

• Card(A ∪ B) =

|A| + |B| − |A ∩ B|

• Si A et B sont disjoints :

Card(A ∪ B) = |A| + |B|

• Si A ⊂ E : Card(A) =

Card(E ) − Card(A)

• Pour toutes parties A1, . . . , An ∈ P(E ) deux à deux disjointes :

Card
( n⋃

i=1
Ai
)

=
n∑

i=1
|Ai |

Théorème 2 : Cas des applications

• Si E est fini et s’il existe une surjection f de E sur F alors :

F est fini et |F | ≤ |E |
• Si F est fini et s’il existe une injection f de E dans F alors :

E est fini et |E | ≤ |F |

Principe des tiroirs
Si on place n + 1 objets dans n tiroirs, alors l’un des tiroirs contient
au moins deux objets

Exemple 1 : a1, . . . an ∈ Z

Montrer qu’il existe 0 ≤ i < j ≤ n tels que ai+1 + · · · + aj ≡ 0 [n]

3
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2 Multiplier ou additionner les résultats ?

Principe des bergers
La réunion disjointe de n ensembles tous de cardinal p est un
ensemble de cardinal np

SF 1 : Dénombrement par étapes successives

Si l’on dénombre :
• n possibilités à l’étape 1
• p possibilités à l’étape 2 pour chaque

possibilité de l’étape 1
Alors il y a en tout n × p possibilités
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2 Multiplier ou additionner les résultats ?

Théorème 3 : Produit cartésien

• Si E et F sont finis : Card(E × F ) =

|E | × |F |

• Généralisation :

Card(E1 × · · · × En) =
n∏

i=1
Card(Ei)

Exercice 2
Démontrer le premier point par étapes successives.
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2 Multiplier ou additionner les résultats ?

Théorème 4 : Ensemble des applications de E dans F
L’ensemble F (E , F ) = F E est fini et :

|F (E , F )| = |F ||E |

Exercice 3
Dénombrer les éléments de F (E , F ) par étapes successives.
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2 Multiplier ou additionner les résultats ?

SF 1 : Dénombrement par disjonction de cas

Exemple 4
On tire une par une sans remise les boules d’une urne contenant n
boules rouges distinctes et n vertes distinctes. Combien de tirages
donnent un changement de couleur à chaque tirage ?

Si l’on dénombre
• n1 possibilités dans le premier cas : « ou bien ceci »
• n2 possibilités dans le premier cas : « ou bien cela »
Alors il y a en tout n1 + n2 possibilités
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II p-listes d’un ensemble fini E

I Ensembles finis

II p-listes d’un ensemble fini E

III Parties d’un ensemble

IV Indicatrices
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1 p-listes générales

Définition 1
Une p -liste (ou p-uplet) de E est :

un élément (x1, . . . , xp) de Ep

Exemple 1 : Les 2-listes de E = {a, b, c}

(a, a), (a, b), (a, c)

,

(b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Remarque
Dans une p-liste :

• l’ordre des éléments compte •un même élément peut être répété

Théorème 1
Le nombre de p-listes de E est :

np

Entier naturel
non-nul

(a, b) ̸= (b, a)

= Card(Ep)
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1 p-listes générales

Théorème 1
Le nombre de p-listes de E est : np

SF 2 : Dénombrer des tirages successifs et avec remise
On tire successivement et avec remise p boules dans une urne
contentant n boules. Il y a np tirages possibles.

Exemple 2

1. On lance un dé quatre fois de suite. Combien de résultats peut-on
obtenir ?

2. Un jardinier doit installer une rangée de douze pots de plans de
tomates.
Combien de semi différents peut-il réaliser sachant qu’il peut
semer entre 1 et 4 graines dans chaque pot ?

= Card(Ep)
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2 Arrangements

Définition 2
Un arrangement de p éléments de E est :

une p-liste d’éléments de
E deux à deux distincts.

Exemple 3 : Les 2-arrangements de E = {a, b, c}

(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)

Théorème 2
Si p ≤ n , le nombre de p-arrangements de E est :

n(n − 1) . . . (n − p + 1)

= n!
(n − p)!

Aucun si p > n

Exercice 1
Etablir le résultat par étapes successives.

ou p-arrangement
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(n − p)!
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2 Arrangements

SF 2 : Dénombrer des tirages successifs et sans remise
On tire successivement et sans remise p boules dans une urne
contenant n boules. Il y a n!

(n − p)! tirages possibles
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2 Arrangements

SF 2 : Dénombrer des tirages successifs et sans remise
On tire successivement et sans remise p boules dans une urne
contenant n boules. Il y a n!

(n − p)! tirages possibles

Exemple 4 : Le tiercé
Un joueur assiste à une course de 15 chevaux et parie sur le premier,
le second et le troisième cheval à l’arrivée.
Combien y-a-t-il de tiercés gagnants possibles ?
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Théorème 3 : Applications injectives

Si Card(E ) = p et Card(F ) = n, alors il y a :

n!
(n − p)! injections de

E dans F si p ≤ n (et aucune si p < n)
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En procédant par étapes successives prouver le résultat précédent
lorsque p ≤ n.
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3 Permutations

Rappel
Une permutation de E est une bijection de E sur E .

Théorème 4 : Permutations
Le nombre de permutations de E est :

n!

Interprétation
Une permutation correspond à une façon de :

ranger n éléments
distincts.

Retenir :
Il y a n! façons d’ordonner les n éléments d’un ensemble
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Rappel
Une permutation de E est une bijection de E sur E .

Théorème 4 : Permutations
Le nombre de permutations de E est : n!

Interprétation
Une permutation correspond à une façon de : ranger n éléments
distincts.

Exemple 5
Combien de façons de disposer 8 livres côte à côte sur une étagère ?

Retenir :
Il y a n! façons d’ordonner les n éléments d’un ensemble
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3 Permutations

Rappel
Une permutation de E est une bijection de E sur E .

Théorème 4 : Permutations
Le nombre de permutations de E est : n!

Interprétation
Une permutation correspond à une façon de : ranger n éléments
distincts.

Exemple 6
Combien d’anagrammes peut-on former à partir du mot CHEVAL ?

Retenir :
Il y a n! façons d’ordonner les n éléments d’un ensemble
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3 Permutations

Rappel
Une permutation de E est une bijection de E sur E .

Théorème 4 : Permutations
Le nombre de permutations de E est : n!

Interprétation
Une permutation correspond à une façon de : ranger n éléments
distincts.

Exemple 7
Combien de permutations de J1 , nK envoient 1 sur 2 et 2 sur n ?

Retenir :
Il y a n! façons d’ordonner les n éléments d’un ensemble
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III Parties d’un ensemble

I Ensembles finis

II p-listes d’un ensemble fini E

III Parties d’un ensemble

IV Indicatrices
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1 Combinaisons

Définition 1
Une combinaison de p éléments de E est :

une partie de E de
cardinal p i.e. de la forme {x1, . . . , xp}

Exemple 1 : Combinaisons de deux éléments de E = {a, b, c}

{a, b}, {a, c}, {b, c}

Remarque

• Dans une combinaison :

les éléments sont donnés sans ordre .
• Dans une combinaison de p éléments, les p éléments en question

sont :

tous distincts.

Théorème 1

Le nombre de combinaisons de p éléments de E est :

(
n
p

)

Entier relatif

{a, b} = {b, a}
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1 Combinaisons

Théorème 1

Le nombre de combinaisons de p éléments de E est :
(

n
p

)
où

(
n
p

)
=

déf.

n(n − 1) . . . (n − p + 1)
p! = n!

p!(n − p)! si 0 ≤ p ≤ n

(n
p
)

= 0 sinon
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1 Combinaisons

Théorème 1

Le nombre de combinaisons de p éléments de E est :
(

n
p

)
où

(
n
p

)
=

déf.

n(n − 1) . . . (n − p + 1)
p! = n!

p!(n − p)! si 0 ≤ p ≤ n

Exercice 1
Démontrer cette formule pour p ≤ n en dénombrant autrement le
nombre de p-arrangements de E

(n
p
)

= 0 sinon
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1 Combinaisons

Théorème 1

Le nombre de combinaisons de p éléments de E est :
(

n
p

)
où

(
n
p

)
=

déf.

n(n − 1) . . . (n − p + 1)
p! = n!

p!(n − p)! si 0 ≤ p ≤ n

SF 4 : Dénombrer des tirages simultanés
On tire simultanément p boules dans une urne contenant n boules.
Le nombre de tirages possibles est :

(n
p
)
.

Exemple 2 : Dans un jeu de 32 cartes
De combien de façons peut-on tirer 3 cartes simultanément ?

(n
p
)

= 0 sinon
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à partir du mot NARVAL, du mot ANAGRAMME ?
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1 Combinaisons

Théorème 1

Le nombre de combinaisons de p éléments de E est :
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)
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Exemple 4 : Combien peut-on former de codes de carte bleue
1. à l’aide de deux chiffres distincts ?
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1 Combinaisons

Théorème 1

Le nombre de combinaisons de p éléments de E est :
(

n
p

)
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(
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=
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SF 4 : Dénombrer des tirages simultanés
On tire simultanément p boules dans une urne contenant n boules.
Le nombre de tirages possibles est :

(n
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)
.

Exemple 4 : Combien peut-on former de codes de carte bleue
2. à l’aide d’une suite de quatre chiffres strictement croissante ?
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= 0 sinon

16



1 Combinaisons

Retenir

Il y a
(

n
p

)
listes (x1, . . . , xp) ∈ J1 , nKp telles que x1 < · · · < xp

Exemple 5
On considère p boules identiques que l’on désire ranger dans n
boîtes numérotées de 1 à n (chaque boîte peut recevoir un nombre
quelconque de boules).

Montrer qu’il y a
(

n + p − 1
p

)
rangements possibles.

(n
p
)

parties {x1, . . . , xp} de J1 , nK à p éléments

17
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2 Formulaire à savoir sur les coefficients binomiaux

Théorème 2(
n
p

)
=
(

n
n − p

) (
n
p

)
+
(

n
p + 1

)
=
(

n + 1
p + 1

) (
n
p

)
= n

p

(
n − 1
p − 1

)

Théorème 3 : Valeurs remarquables à connaître
•
(n

0
)

=
(n

n
)

= 1 •
(n

1
)

=
( n

n−1
)

= n •
(n

2
)

=
( n

n−2
)

= n(n−1)
2

Symétrie Pascal « sans nom »

« formule des titulaires »
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3 Dénombrement de P(E )

Théorème 4
L’ensemble P(E ) est fini et :

|P(E )| = 2|E |

(= 2n)

Exercice 4
Démontrer le résultat précédant.
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3 Dénombrement de P(E )

SF 5 : Exploiter un recouvrement disjoint

Exercice 5

1. Déterminer le nombre a de couples (A, B) de parties de E tels
que A ∩ B = ∅

2. Plus généralement, pour p ∈ J0 , nK, déterminer le nombre de
couples (A, B) de parties de E tels que |A ∩ B| = p

3. Déterminer le nombre b de couples (A, B) de parties de E tels
que A ⊂ B.

Nombre de parties de E : 2n
Nombre de parties de E

à k éléments :
(

n
k

)

défi !
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IV Indicatrices

I Ensembles finis

II p-listes d’un ensemble fini E

III Parties d’un ensemble

IV Indicatrices
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1 Indicatrice d’une partie

Définition 1
L’indicatrice de A est l’application 1A : E → {0, 1} définie pour

tout x ∈ E par : 1A(x) =

{
1 si x ∈ A
0 sinon

Théorème 1 : Propriétés des indicatrices
• Inclusion : A ⊂ B ⇔

1A ≤ 1B

• Egalité : A = B ⇔

1A = 1B

• Complémentaire : 1A =

1 − 1A

• Intersection : 1A∩B =

1A1B

• Réunion : 1A∪B =

1A + 1B − 1A1B

Exercice 1
Démontrer les propriétés relatives à l’inclusion et à l’intersection.

Partie de E
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1 Indicatrice d’une partie

Exercice 2

1. Montrer que φ : P(E ) −→ F
(
E , {0, 1}

)
A 7−→ 1A

est bijective.

2. En déduire une nouvelle preuve de : |P(E )| = 2|E |.
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2 Lien avec le cardinal

Théorème 2 : Lien avec le cardinal
Pour toute partie A de E : |A| =

∑
x∈E

1A(x)

Exercice 3
Démontrer le théorème.
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2 Lien avec le cardinal

SF 6 : Utiliser les indicatrices pour calculer des cardinaux

Exercice 4
On cherche à calculer : S =

∑
A∈P(E)

|A|.

1. Calculer S en sommant par paquet selon le recouvrement
disjoint

(
Pk(E )

)
0≤k≤n de P(E ).

2. Calculer S en exprimant |A| à l’aide d’indicatrices.

Recouvrement disjoint d’un ensemble E
= familles de parties de E telles que

•
⋃
i∈I

Ai = E

• Ai ∩ Aj = ∅ si i ̸= j

25
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2 Lien avec le cardinal

Exercice 5
Soient A1, . . . , An des parties de E .
1. Vérifier que :

n∏
i=1

(
1 − 1Ai

)
= 1 +

n∑
k=1

(−1)k ∑
1≤i1<···<ik≤n

1Ai1 ∩···∩Aik

2. En déduire :∣∣∣∣∣
n⋃

i=1
Ai

∣∣∣∣∣ =
n∑

k=1
(−1)k+1 ∑

1≤i1<···<ik≤n
|Ai1 ∩ · · · ∩ Aik |
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