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Projecteurs et symétries Indications

1 1. Une base de F est
(
(1, −1, 1)

)
. On vérifie ensuite que

dimF + dimG = 3 et F ∩G = {(0, 0, 0)}.

2. On cherche λ,a,b,c tels que :

 λ(1,−1,1) + (a,b,c) = (x,y,z)
(a,b,c) ∈ G

.

On résout le système, puis p(u) = λ(1,−1,1) (composante
de u selon F).

2 1. Deux possibilités

• On vérifie que dimF + dimG = dimR2[X] et que
F ∩G = {0}.

• On utilise le théorème de division euclidienne.

2. On cherche α,β,λ tels que :
(αX + β) +λ(X2 +X + 1) = aX2 + bX + c

On trouve α,β,λ en identifiant les coefficients ou en po-
sant la division euclidienne de P par X2 +X + 1.
Ensuite par définition de f en tant que symétrie :

f (P ) = (αX + β)−λ(X2 +X + 1)
Réponse : f (P ) = −aX2 + (b − 2a)X + (c − 2a).

3 1. Distinguer 2 cas :

• Pour m = 1. G1 et F ne sont pas en somme directe.
• Pour m , 1. On vérifie que :

dimF + dimGm = dimR2[X] et que F ∩Gm = {0}.
2. Par définition, f (P ) = λ(X −m) où λ est le coefficient de

la décmposition
(⋆)P (X) = Q(X) +λ(X −m) et Q ∈ F

• Première méthode. On calcule explicitement Q = αX2 +
βX +γ en résolvant le systèmeαX2 + βX +γ +λ(X −m) = aX2 + bX + c

α + β +γ = 0

• Deuxième méthode BEAUCOUP plus efficace. On évalue
(⋆) en 1 sachant que Q(1) = 0.

Réponse : f (P ) = P (1)
X −m
1−m

.

4 1. Vérifier que :

• f est un endomorphisme deK4[X]

• f
(
f (P )

)
= P pour tout P ∈K4[X].

2. Fixer P = aX4 + bX3 + cX2 + dX + e et :

• Pour trouver une base de F résoudre f (P ) = P .
On trouve F = Vect

(
X4 + 1 , X3 +X , X2

)
• Pour trouver une base de G résoudre f (P ) = −P
On trouve G = Vect

(
X4 − 1 , X3 −X

)
5 1. • Linéarité. Elle repose sur la propriété d’unicité du

couple (Q,R) fourni par la division euclidienne. Préci-
sément, étant donnés A1,A2 ∈K[X] leurs images f (A1)
et f (A2) vérifient :

A1 = BQ1 + f (A1) et A = BQ2 + f (A2)
Combiner ces deux égalités pour former la division
euclidienne de (λA1 +µA2) par B et identifier le reste
obtenu avec f (λA1 +µA2).

• f ◦ f = f Etant donné A ∈ K[X], il s’agit de montrer
que R = f (A) vérifie R = f (R).
Pour cela, noter que degR < degB donc la division
euclidienne de R par B est « simple »

2. • Noyau. Kerf = BK[X]
• Image. Montrer que Imf = Kn−1[X] où n = degB en

procédant par double inclusion.

6 a) Montrer que (p ◦ q)2 = p ◦ q.

b) Procéder par double inclusion.

• Les inclusions Imp ◦ q ⊂ Imp et Imq ◦ p ⊂ Imq sont
toujours vraies et ici q ◦ p = p ◦ q.

• Pour l’inclusion réciproque, fixer un y ∈ Imp ◦ Imq et
se souvenir que puisque p et q sont des projecteurs,
cela signifie que p(y) = y et que q(y) = y.

c) Procéder par double inclusion.

• Les inclusions Kerp ⊂ Kerq ◦ p et Kerq ⊂ Kerp ◦ q sont
toujours vraies et ici q ◦ p = p ◦ q.

• Pour l’inclusion réciproque, fixer un x ∈ Ker(p◦q) et se
souvenir que la décomposition de x selon Kerp⊕ Imp
est x = x − p(x) + p(x).
Vérifier que cette décomposition convient i.e. que
x − p(x) ∈ Kerp et que p(x) ∈ Kerq

7 1. Calculer r ◦ r en utilisant : p ◦ p = p, q ◦ q = q et p ◦ q = 0

2. a) Procéder par double inclusion :

• Kerp∩Kerq ⊂ Kerr est simple.
• Pour montrer Kerr ⊂ Kerp∩Kerq.

Si x ∈ Kerr on a
p(x) = q(x)− q ◦ p(x)

Cette égalité permet de prouver que x ∈ Kerp :

• Ou bien à partir de p(x) ∈ Imq ⊂ Kerp.

• Ou bien en appliquant p à l’égalité.

Sachant que x ∈ Kerp, l’égalité p(x) = q(x)− q ◦ p(x)
assure que q(x) = 0.

b) Procéder par double inclusion :

• Imr ⊂ Imp+ Imq est simple via la définition de r.
• Pour montrer Imp+ Imq ⊂ Imr.

Si x = y + z ∈ Imp+ Imq utiliser le fait que p(y) = y,
q(z) = z (et Imq ⊂ Kerp) pour montrer que r(y) = y
et r(z) = z.

c) Imp∩ Imq ⊂ Imp∩Kerp.

8 a) Calculer q◦u : remplacer q par sa définition, réindexer la

somme (ℓ = k −1) et sortir le premier terme en n’oubliant
pas que IdE = un.

b) Vu la définition de q il suffit de montrer que pour tout
k ∈ ⟦0 ,n⟧ et tout x ∈ V , uk ◦ p ◦ un−k(x) ∈ V : il suffit
d’utiliser les hypothèses faites sur u et p.

c) Pour x ∈ E, il s’agit de montrer que le vecteur y = q(x)
est invariant par p. Noter que V = Imp et que p est un
projecteur.

d) Calculer q ◦ q en remplaçant le facteur de gauche par la

somme : q ◦ q =
1
n

n∑
k=1

uk ◦ p ◦un−k ◦ q

puis utiliser les résultats de a) et c)

9 • i) =⇒ ii) Montrer que p ◦ p = p en composant par la

droite l’égalité p = p ◦ q par p .
Pour l’égalité des noyaux, procéder par double inclusion.



• ii) =⇒ i) Pour montrer que p = p ◦ q. Fixer x ∈ E et écrire
x = y + z avec y ∈ Imq et z ∈ Kerq = Kerp et montrer que
p(x) = p ◦ q(x).

10 1. Si p ◦ q = q ◦ p = 0, on obtient directement :

(p+ q)2 = p+ q
Réciproquement, si p+ q est un projeteur, alors l’égalité
(p + q)2 = p + q assure que : (⋆) p ◦ q = −q ◦ p. Deux
possibilités ensuite :

• On peut composer (⋆) par p (à droite et à gauche) et
en utilisant le fait que p2 = p, q2 = q et qp = −pq, on
obtient p ◦ q = −p ◦ q.

• On peut aussi utiliser (⋆) pour montrer : Imq ⊂ Kerp

2. Procéder par double inclusion pour chaque égalité. Pour
chacune, utiliser le fait que Imp ⊂ Kerq et Imq ⊂ Kerp
(qui découlent de ce que p ◦ q = q ◦ p = 0).

11 Pour le sens i) =⇒ ii) on peut par exemple considérer un
supplémentaire S de Kerf dans E et définir les restrictions
de p et q sur Kerf et sur S.

12 Notant p le projecteur sur G et parallèlement à F, montrer
que ϕ : H −→ G

x 7−→ p(x)
est un isomorphisme.

13 Pour montrer la bijectivité de f = IdE +λp on peut :

• Option 1. Montrer que f est injectif et surjectif :

• Injectivité. On peut remarquer que si x ∈ Kerf alors
x ∈ Imp puis utiliser ensuite le fait que p(x) = x.

• Surjectivité. On peut montrer que Kerp ⊂ Imf puis que
Imp ⊂ Imf (dès lors Imf contient Imp+ Kerp = E).

• Option 2. Trouver g tel que f ◦ g = g ◦ f = 0.

Traiter à part le cas λ = 0 et si λ , 0, remplacer p =
f − IdE

λ
dans l’égalité p2 = p.

14 1.

2. Poser ci = gi,1(bi) pour tout i ∈ ⟦1 ,n⟧ et montrer que
(c1, . . . , cn) est une base de E.
La question 1. permet de savoir comment définir u à
partir des bases (b1, . . . , bn) et (c1, . . . , cn).
Montrer alors que : Φ et Φu coïncident en les fi,j .
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