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Applications linéaires Exercices
■ Exercices de base autour de la linéarité

1 Dans chacun des cas suivant, montrer que l’application f
n’est pas linéaire :

a) f : R2 −→ R
2

(x,y) 7−→ (x,x − y + 2)

b) f : R2 −→ R
2

(x,y) 7−→ (x,xy)

c) f : R[X] −→ R[X]

P 7−→ P ′ − P 2

d) f : F (R,R) −→F (R,R)

u 7−→ exp◦u

2 Soit E unK-espace vectoriel et f ∈L (E) tel que f 3 = 0 et

f 2 , 0. Montrer qu’il existe x ∈ E tel que
(
x,f (x), f 2(x)

)
est

une famille libre.

■ Déterminer l’image et le noyau

3 SF 2 SF 4 Déterminer une base du noyau et de l’image des
applications linéaires suivantes (où α ∈R) :

a) f : R3 −→ R
3

(x,y,z) 7−→ (x+y+z, x−y, 2x+z)

b) f : R3 −→ R
4

(x,y,z) 7−→ (2x−y+z, 3x+y−z, x+y+z, y−2z)

c) fα : R4 −→ R
3

(x,y,z, t) 7−→ (x+y+αz+t, x+z+t, y+z)

4 SF 1 SF 2 SF 4 Soit f l’application définie sur R3[X] par :
∀P ∈R3[X], f (P ) = X(P ′(X + 1)− P ′(1)).
1. Montrer que f est un endomorphisme de R3[X].
2. Déterminer le noyau de f .
3. Déterminer une base de l’image de f .

5 SF 1 SF 2 SF 4 SF 5 Ex. 60, banque INP Soit A =
(
1 2
2 4

)
et

f : M 7→ AM l’application de M2(R) dans M2(R).
1. Montrer que f est linéaire.
2. Trouver une base de Kerf . f est-elle surjective ?
3. Trouver une base de Imf .
4. Montrer : M2(R) = Kerf ⊕ Imf

6 SF 2 SF 4 SF 5 On considère l’endomorphisme de R[X]
∆ : P 7→ P (X + 1)− P (X)

Pour tout n ∈N∗ on pose ∆n = ∆|Rn[X].
1. Déterminer Ker∆.
2. Déterminer Im∆n pour tout n ∈N∗.
3. En déduire que ∆ est surjectif.

7 SF 1 SF 2 Soient A,B ∈ K[X], premiers entre eux avec B
non constant. On considère l’application f qui, à P ∈K[X],
associe le reste de la division euclidienne de AP par B.
Montrer que f est linéaire et déterminer Imf et Kerf .

■ Bijectivité

8 SF 1 SF 7 Soit f :R2→R2 définie par :
∀(x,y) ∈R2, f (x,y) = (x+ y , x − y)

Montrer que f est un automorphisme de R2 et déterminer
son automorphisme réciproque.

9 SF 1 SF 6 On considère l’application f :Rn[X]→Rn+1 défi-

nie pour tout P ∈Rn[X] par f (P ) =
(
P (0) , P ′(0) , . . . , P (n)(0)

)
.

Montrer que f est un isomorphisme de Rn[X] sur Rn+1.

10 SF 6 Ex. 59, banque INP. Soit f l’endomorphisme de Rn[X]
défini par : ∀ P ∈Rn[X], f (P ) = P − P ′ .
1. Démontrer que f est bijectif.
2. Soit Q ∈ Rn[X]. Exprimer, en fonction de Q, le poly-

nôme P ∈Rn[X] tel que f (P ) = Q . Indication : Exprimer
P − P (n+1) en fonction de Q, Q′ , . . ., Q(n).

3. Montrer que si Q ≥ 0 alors P ≥ 0.

11 SF 6 Soient a,b deux réels distincts. Montrer que l’applica-
tion ϕ : P 7→ P (X + a) + P (X + b) est un automorphisme :
a) de Rn[X] pour tout n ∈N. b) de R[X].

12 SF 5 Soient A ∈GLn(K). On noteK[A] l’ensemble des poly-

nômes en A : K[A] =
{
P (A) ; P ∈K[X]

}
1. Montrer queK[A] est une sous-algèbre de Mn(K).
2. Montrer que A−1 est un polynôme en A.

Indication : Considérer l’application T : M 7→ AM surK[A].

■ Autour du rang

13 SF 8 Soient E un K-e.v. de dimension finie et f ,g ∈L (E)
tels que : f ◦ g ◦ f = g et g ◦ f ◦ g = f .
a) Montrer que : Kerf = Kerg
b) Montrer que : rg(f ) = rg(g) = rg(g ◦ f ) = rg(f ◦ g)

14 SF 8 Soient E unK-espace vectoriel de dimension finie et
f ,g ∈L (E). Montrer que :
a) rg(f +g) ≤ rg(f )+rg(g). b) |rg(f )− rg(g)| ≤ rg(f −g).

15 SF 8 Soit E unK-espace vectoriel de dimension finie n et f
un endomorphisme de E vérifiant f 3 = 0.
a) ★ Montrer que : rg(f ) + rg(f 2) ≤ n.

b) ★★★ Montrer que : 2rg(f 2) ≤ rg(f ).

16 SF 8 Soient E un K-espace vectoriel de dimension finie n
et f un endomorphisme de E. Etablir l’équivalence :

Kerf = Imf ⇐⇒ f 2 = 0 et n = 2rg(f )

17 SF 8 Soient E unK-espace vectoriel de dimension finie et
f ,g ∈L (E). Montrer que :

dim(Ker(g ◦ f )) ≤ dim(Kerg) + dim(Kerf )
Indication : Considérer la restriction : ϕ = g|Imf

18 Soient E un K-espace vectoriel de dimension finie n et
f ,g ∈L (E) tels que : f + g ∈GL(E) et g ◦ f = 0.
Montrer que : rg(f ) + rg(g) = n.

19 SF 9 Soient E et F deuxK-espaces vectoriels de dimension
finie non nulle et f ,g ∈L (E,F). Montrer que rg(g) ≤ rg(f )
si et seulement si il existe u ∈ GL(F) et v ∈ L (E) tels que
u ◦ g = f ◦ v.

■ Applications linéaires et supplémentaires

20 Adapté de Ex. 64, banque INP
Soit E unK-espace vectoriel et f ∈L (E).
1. On suppose dans cette question E de dimension finie.

Montrer l’équivalence entre les assertions suivantes :
i) E = Imf ⊕Kerf ii) Imf 2 = Imf iii) Kerf 2 = Kerf

2. Dans le cas général, montrer que :
a) Kerf ∩ Imf = {0E} ⇐⇒ Kerf 2 = Kerf .
b) E = Kerf + Imf ⇐⇒ Imf 2 = Imf .



21 Ex. 62, banque INP.
Soit E unK-espace vectoriel et f ∈L (E).
On suppose que : f 2 − f − 2IdE = 0.
1. Montrer que E = Ker(f + IdE)⊕Ker(f − 2IdE).
2. On suppose ici E de dimension finie.

Montrer : Im(f + IdE) = Ker(f − 2IdE).
3. Montrer que f ∈GL(E) et exprimer f −1 en fonction de f

22 Adapté de Ex. 93, banque INP
Soit E unK-espace vectoriel de dimension finie et f ∈L (E).
On suppose que : f 3 + f 2 + f = 0.
a) Montrer que : E = Kerf ⊕ Imf

b) Montrer que : Imf = Ker(f 2 + f + IdE)

23 Soient E unK-espace vectoriel et f ,g ∈L (E) tels que :
f ◦ g ◦ f = f et g ◦ f ◦ g = g

Montrer que : a) E = Kerf ⊕ Img b) f (Img) = Imf

24 Soit E unK-espace vectoriel et soient f ,g ∈L (E).
On suppose f injectif et g surjectif.
Démontrer l’équivalence entre les assertions suivantes :
i) g ◦ f est un automorphisme ii) E = Imf ⊕Kerg

25 Soit E unK-espace vectoriel de dimension finie et f ∈L (E).
Montrer l’équivalence entre les assertions :

i) Kerf = Imf

ii) f 2 = 0 et ∃g ∈L (E) | f ◦ g + g ◦ f = IdE

26 Soit E un R-espace vectoriel et f ∈L (E). On suppose qu’il
existe un polynôme P ∈ R[X] vérifiant P (f ) = 0 et pour
lequel P (0) = 0 et P ′(0) , 0. Montrer que E = Imf ⊕Kerf .

■ Puissances d’endomorphismes

27 Soient E unK-espace vectoriel et f ,g ∈L (E).
On suppose que : g ◦ f − f ◦ g = IdE .
1. Montrer : ∀n ∈N∗, g ◦ f n − f n ◦ g = nf n−1.
2. Montrer que la famille (f k)k∈N est libre.

28 SF 7 Soient E unK-espace vectoriel et f ∈L (E).
On suppose qu’il existe n ≥ 2 tel que f n = 0 et f n−1 , 0.
1. Montrer que f n’est pas injectif.
2. Montrer que IdE − f est un automorphisme.

29 SF 8 Soit E un K-espace vectoriel de dimension finie et
f ∈L (E). On pose : nk = dimKerf k et dk = nk+1 −nk
pour tout k ∈N
1. Montrer que la suite (nk)k∈N est croissante.

2. a) Montrer : ∀k ∈N, dk = dim
(
Kerf ∩ Imf k

)
.

b) En déduire que la suite (dk)k∈N est décroissante.

30 SF 5 Soit E un K-espace vectoriel de dimension finie n
et u1, . . . ,un des endomorphismes nilpotents de E qui com-
mutent deux à deux. Que vaut un ◦ · · · ◦u1 ?

31 Soit n ∈N∗. On note ϕ l’endomorphisme de Rn−1[X] défini
pour tout P ∈Rn−1[X] par : ϕ(P ) = P (X + 1)− P (X) .
a) Montrer que ϕn = 0.

b) En déduire : ∀P ∈Rn−1[X],
n∑

k=0

(−1)n−k
(
n

k

)
P (X+k) = 0.

32 Soit E un K-espace vectoriel et f ∈ L (E) tel que f n = 0
pour un certain n ∈N∗. Montrer que si g ∈L (E) est bijectif
et commute avec f , alors f + g est bijectif. Indication : Ecrire
une égalité de la forme f 2n+1 + g2n+1 = (f + g) ◦ h = h ◦ (f + g) avec
h ∈L (E).

33 SF 5 Soient E unK-espace vectoriel de dimension finie et
F une sous-algèbre de L (E). Montrer que F ∩GL(E) est
un sous-groupe de (GL(E),◦)

■ Théorème d’« interpolation linéaire »

34 SF 9 Soit E un K-espace vectoriel de dimension finie n et
f ∈L (E) tel que : f n = 0 et f n−1 , 0.
1. ★ Montrer l’existence d’un élément x0 ∈ E tel que

B = (x0, f (x0), . . . , f n−1(x0)) soit une base de E.
2. ★★★ Soit g un endomorphisme de E commutant avec f .

Montrer que g appartient à Vect(IdE , f , · · · , f n−1).
On pourra d’abord écrire g(x0) en fonction des éléments
de la base B.

35 SF 9 Soit E unK-espace vectoriel de dimension finie et soit
f ∈L (E) vérifiant : ∀x ∈ E, ∃px ∈N | f px (x) = 0.
1. Montrer que f est nilpotent.
2. Trouver un contre-exemple à 1. dans le cas où E n’est pas

de dimension finie.

36 SF 9 Soit n ∈N∗ et E unK-espace vectoriel de dimension
2n. Montrer qu’il existe f ∈L (E) tel que : Kerf = Imf .

37 SF 9 Soient E unK-espace vectoriel de dimension finie et F,
G deux sous-espaces vectoriels de E. Trouver une condition
nécessaire et suffisante simple sur F et G pour qu’il existe
f ∈L (E) tel que F = Kerf et G = Imf .

38 SF 9 Soient E unK-espace vectoriel de dimension finie et
F, G deux sous-espaces vectoriels de E.
1. Trouver une condition nécessaire et suffisante simple sur

F et G pour qu’il existe f ∈L (E) tel que f (F) = G.
2. Trouver une condition nécessaire et suffisante simple

sur F et G pour qu’il existe f ∈GL(E) tel que f (F) = G.

■ Formes linéaires

39 Soit E unK-espace vectoriel de dimension n.
Pour toute forme linéaire ϕ ∈L (E,K) et tout vecteur a ∈ E
on note ϕ ⊗ a l’application x 7→ ϕ(x)a de E dans E.
a) Montrer que si ϕ et a sont non nuls, alors ϕ ⊗ a est un

endomorphisme de E et : rg(ϕ ⊗ a) = 1.
b) Soit v ∈ L (E) tel que rg(v) = 1. Montrer qu’il existe

ϕ ∈L (E,K) et a ∈ E non nuls tels que : v = ϕ ⊗ a.

40 SF 9 Soit E unK-espace vectoriel de dimension finie n ≥ 3,
a ∈ E \ {0E} et u ∈ L (E). On suppose que pour tout x ∈ E,
la famille (a,x,u(x)) est liée. Montrer qu’il existe α ∈K et
ϕ ∈L (E,K) tels que pour tout x ∈ E : u(x) = αx+ϕ(x)a .
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