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Applications linéaires Indications

1

2 Etant donnés α,β,γ tels que
(⋆) αx+ βf (x) +γf 2(x) = 0

• appliquer d’abord f 2 pour montrer que α = 0

• appliquer ensuite f pour montrer que β = 0

3 Appliquer le savoir faire SF 2 pour le noyau et l’option 1

ou 2 du savoir faire SF 4 pour l’image. Réponses :
a) Kerf = Vect

(
(−1

2 , −
1
2 , 1)

)
et Imf = Vect

(
(1 , 1 , 2), (1 , −1 , 0)

)
b) f est injective,

Imf = Vect
(
(2 , 3 , 1, 0), (−1 , 1 , 1, 1), (1 , −1 , 1, −2)

)
c) • Si α = 2 : Kerf = Vect

(
(−1 , −1 , 1 ,0), (−1 , 0 , 0 ,1)

)
Imf = Vect

(
(1 , 1 , 0), (1 , 0 , 1)

)
• Si α , 2 : Kerf = Vect

(
(−1 , 0 , 0 ,1)

)
Imf = Vect

(
(1 , 1 , 0), (1 , 0 , 1), (α , 1 , 1)

)
4 Attention : P (X + 1) désigne le polynôme composé P appliqué à

(X + 1), ne pas confondre avec le produit de P par (X + 1).
1. Il y a deux points à montrer :

• f est à valeurs dans R3[X].
• f est linéaire.

2. Appliquer le savoir faire SF 2 pour le noyau
On écrit Kerf sous forme de Vect.
On commence par : « Soit P = aX3 + bX2 + cX + d ».
Ensuite par équivalence, on résout :

f (P ) = 0 ⇐⇒ X
(
P ′(X + 1)− P ′(1)

)
= 0 ⇐⇒ ...

Réponse : Kerf = Vect(1,X) =R1[X]

3. Utiliser par exemple l’option 1 du savoir faire SF 4 pour
l’image.
Une base de R3[X] est (1,X,X2,X3).
Par théorème : Imf = Vect

(
f (1), f (X), f (X2), f (X3)

)
.

Calculer ensuite f (1), f (X), f (X2), f (X3).
Réponse : Imf = Vect(2X2 , 3X3 + 6X2).

5 1. Garder les lettres A et M (ne pas écrire les matrices avec

les coefficients).

2. Appliquer le savoir faire SF 2 pour le noyau
On écrit Kerf sous forme de Vect.

On commence par : « Soit M =
(
a c
b d

)
∈M2(R) ».

Ensuite par équivalence, on résout :

f (M) = 0 ⇐⇒ AM =
(
0 0
0 0

)
= ...

Réponse : Kerf = Vect(B,C)

où B =
(
−2 0
1 0

)
et C =

(
0 −2
0 1

)
.

Le calcul de Kerf vous assure que f n’est pas injective.
Pour la surjectivité : utilisez alors le théorème « miracle »,
aucun calcul n’est nécessaire ! (voir le IV du cours).

3. Utiliser par exemple l’option 1 du savoir faire SF 4 pour
l’image.
Par théorème : Imf = Vect

(
f (E1,1), f (E1,2), f (E2,1), f (E2,2)

)
.

Calculer ensuite f (E1,1), f (E1,2), f (E2,1), f (E2,2).

Réponse : Imf = Vect(U,V ) où

U =
(
1 0
2 0

)
et V =

(
0 1
0 2

)
4. Vérifier les deux conditions du cours :

(a) dimKerf + dimImf = dimM2(R).
(b) Imf ∩Kerf = {0} (la rédaction doit commencer par :

« Soit M ∈ Imf ∩Kerf », ensuite on traduit sépa-
rément les deux conditions M ∈ Kerf et M ∈ Imf
pour arriver à montrer que M = 0)

6 1. Montrer par double inclusion que Ker∆ = R0[X].Pour

montrer que Ker∆ ⊂ R0[X], étant donné P tel que
∆(P ) = 0, montrer que R(X) = P (X) − P (0) possède une
infinité de racines.

2. Utiliser l’option 3 du savoir faire SF 4 : raisonner par
inclusion-dimension et montrer que Im∆n =Rn−1[X]

3. On peut « choisir » le n pour appliquer ∆n.
Plus rigoureusement, si P ∈R[X] est fixé et si on fixe un
entier n ≥ 1 + degP , alors P ∈ Im∆n ⊂ Im∆.

7 • Linéarité. Elle repose sur la propriété d’unicité du couple

(Q,R) fourni par la division euclidienne. Précisément,
étant donnés P1, P2 ∈K[X] leurs images f (P1) et f (P2) vé-
rifient :

AP1 = BQ1 + f (P1) et AP2 = BQ2 + f (P2)
Combiner ces deux égalités pour former la division eucli-
dienne de A(λP1 +µP2) par B et identifier le reste obtenu
avec f (λP1 +µP2).

• Noyau. Traduire la nullité de f (P ) comme une condition
de divisibilité. Réponse : Kerf = BK[X]

• Image. Montrer que Imf =Kn−1[X] où n = degB en pro-
cédant par double inclusion. Pour montrer queKn−1[X] ⊂
Imf , utiliser une relation de Bézout entre A et B.

8 Résoudre l’équation f (x,y) = (a,b).

On trouve f −1(a,b) =
(a+ b

2
,
a− b

2

)
9 dimRn[X] = dimRn+1 donc l’injectivité suffit (th miracle).

Pour l’injectivité comparer la multiplicité de 0 comme ra-
cine de P au degré de P

10 1. • Première méthode On montre que f est injective et on

conclut par le théorème miracle.
• Deuxième méthode On montre que f transforme la base

canonique de Rn[X] en une base de Rn[X].
• Troisième méthode On trouve g tel que g◦f = Id

Rn[X] en
remarquant que f = Id

Rn[X] −D où D : P 7→ P ′ vérifie
Dn+1 = 0 (penser à la factorisation géométrique).

2. Dériver successivement la relation P − P ′ = Q, P ′ − P ′′ =
Q′ , . . .,P n − P n+1 = Q(n) puis penser à un télescopage.

3. Considérer la fonction λ : t 7→ P (t)e−t et calculer λ′

11 a) On peut par exemple utiliser le théorème miracle et mon-

trer l’injectivité en exploitant le fait que degϕ(P ) = degP
pour tout P ∈Rn[X].

b) L’injectivité se prouve comme dans la question a) mais
ici elle ne suffit pas. Pour montrer que ϕ est surjectif, on
peut exploiter le résultat de a) : une fois P ∈R[X] fixé, si
on fixe un entier n ≥ degP , alors P ∈Rn[X].



12 1. Il s’agit de vérifier que :

• K[A] possède In
• K[A] est stable par combinaison linéaire.
• K[A] est stable par produit.

2. Il s’agit de montrer que In possède un antécédent par T .
Il suffit pour cela de montrer que T est surjective. Mon-
trer que T est injective puis utiliser le théorème miracle.

13
a) Penser à l’inclusion classique Keru ⊂ Kerv ◦u
b) Combiner le théorème du rang et aux inégalités sur les

rangs : rg(v ◦u) ≤ rgv

14 a) Raisonner en termes d’inclusion sur les images en justi-

fiant d’abord que Im(f + g) ⊂ Imf + Img.
Utiliser ensuite la formule de Grassmann.

b) Il s’agit de montrer deux inégalités :

 rgf ≤ rg(f − g) + rgg
rgg ≤ rgf + rg(f − g)

.

Les deux inégalités s’obtiennent en appliquant le résultat
de a) à des applications judicieusement choisies.

15 a) Combiner deux idée :

• Le théorème du rang appliqué à f .
• Le fait que 0 = f ◦ f 2 qui assure que Imf 2 ⊂ Kerf .

b) Plus difficile, il s’agit d’appliquer le théorème du rang à
une application ϕ judicieusement construite.
Vérifier que l’application ϕ : Imf −→ E

x 7−→ f (x)
convient

16 Combiner deux idée :

• Le théorème du rang appliqué à f .

• Le fait que 0 = f ◦ f équivaut à Imf ⊂ Kerf .

17 Appliquer le théorème du rang à
ϕ : Imf −→ E

x 7−→ g(x)
Et montrer que : Kerϕ ⊂ Kerg et Imϕ ⊂ Img ◦ f

18 Procéder en deux temps :

• Montrer d’abord que rgf + rgg ≤ n.
Pour cela utiliser g ◦ f = 0 et le th du rang.

• Montrer ensuite que rgf + rgg ≥ n.
Pour cela utiliser rg(f + g) = n (surjectivité) et montrer
que Im(f + g) ⊂ Imf + Img (attention 1)

19 Si rg(g) ≤ rg(f ), construire u et v par interpolation linéaire.

20 1. On peut faire une preuve « circulaire » en montrant

i) =⇒ ii) =⇒ iii)

• Pour montrer i) =⇒ ii). Par double inclusion :

• Imf 2 ⊂ Imf est toujours vraie.
• Pour montrer que Imf ⊂ Imf 2, revenir aux élé-

ments. Le début doit être :
« Soit y ∈ Imf , il existe x ∈ E tel que y = f (x). »
utiliser E = Imf ⊕Kerf pour décomposer x.

• Pour montrer i) =⇒ ii). Par inclusion-dimension avec
le théorème du rang.

• Pour montrer ii) =⇒ iii). Utiliser le critère pratique
en dimension finie i.e. vérifier que
• dimImf + dimKerf = dimE (facile)
• Imf ∩ Kerf = {0} (revenir aux élements, « Soit
y ∈ Imf ∩Kerf » ensuite traduire le fait que y ∈ Imf
puis que y ∈ Kerf ).

2. a) L’implication «⇐ » a été montré dans la 1..
Pour « =⇒ », procéder par double inclusion :
• Kerf ⊂ Kerf 2 est toujours vraie.
• Pour montrer que Kerf 2 ⊂ Kerf , revenir aux élé-

ments : étant donné x ∈ Kerf 2, remarquer que
f (x) ∈ Kerf ∩ Imf .

b) L’implication « =⇒ » a été montré dans la 1.
Pour «⇐ », étant donné x ∈ E, il s’agit de trouver
y,z ∈ E tels que y ∈ Imf , z ∈ Kerf et x = y + z.
Puisque f (x) ∈ Imf = Imf 2, il existe a ∈ E tel que
f (x) = f 2(a).
Vérifier que y = f (a) et z = x − f (a) conviennent.

21 Se souvenir ici que x ∈ Ker(f −λIdE) signifie f (x) = λx.
1. E n’est pas supposé de dimension finie : fixer x ∈ E et

montrer par analyse-synthèse qu’il existe un unique
couple (y,z) d’éléments de E tels que
• x = y + z
• f (y) = −y
• f (z) = 2z.
Pour l’analyse il s’agit de trouver y et z en fonction de x.
Appliquer f à l’égalité y + z = x puis résoudre le systèmey + z = x

−y + 2z = f (x)
Pour la synthèse il s’agit essentiellement de calculer f (y)
et f (z). Dans le calcul penser à utiliser f 2(x) = f (x) + x
(car f 2 − f − IdE = 0)

2.

22 a) Utiliser le critère pratique en dimension finie i.e. vérifier
que
• dimImf + dimKerf = dimE (facile)
• Imf ∩ Kerf = {0} (revenir aux élements, « Soit y ∈

Imf ∩Kerf » ensuite traduire le fait que y ∈ Imf puis
que y ∈ Kerf et utiliser f 3 + f 2 + f = 0).

b) La double inclusion est très simple

23 a) fixer x ∈ E et montrer par analyse-synthèse qu’il existe

un unique couple (y,z) d’éléments de E tels que :
• x = y + z • f (y) = 0 • z ∈ Img.
Pour l’analyse il s’agit de trouver y et z en fonction de x.
z s’écrit sous la forme z = g(x1) pour un certain x1 ∈ E.
Appliquer f à l’égalité y + g(x1) = x : f ◦ g(x1) = f (x).
Appliquer alors g et utiliser g ◦ f ◦ g = g : z = g ◦ f (x).
Ensuite y = x − z. La synthèse ne pose pas de problème.

b) Procéder par double inclusion.
• f (Img) ⊂ Imf est facile.
• Pour montrer : Imf ⊂ f (Img), utiliser la question a)

1. Il est important de comprendre la différence entre Im(f + g) et Imf + Img :

• Imf + g = Imh où h est l’application h = f + g (somme d’applications), concrètement : Im(f + g) = {h(x) ; x ∈ E} = {f (x) + g(x) ; x ∈ E}
• (Imf ) + (Img) = F +G où F = Imf = {f (x1) ; x1 ∈ E} et G = Img = {g(x2) ; x2 ∈ E} (somme de sous-espaces) donc Imf + Img = {f (x1) + g(x2) ; x1,x2 ∈ E}
Intuitivement, Imf + Img est plus gros que Im(f + g) vu que dans Im(f + g) « il faut prendre le même x »

2



24 Procéder par double implication.

• Pour i) =⇒ ii) fixer x ∈ E et montrer par analyse-synthèse
qu’il existe un unique couple (y,z) d’éléments de E tels
que : • x = y + z • y ∈ Imf • g(z) = 0.
Pour l’analyse il s’agit de trouver y et z en fonction de x.
y s’écrit sous la forme y = f (x1) pour un certain x1 ∈ E.
En appliquant g à l’égalité f (x1)+z = x cela donne g◦f (x1) =
g(x).
La bijectivité de ϕ = g ◦ f assure que x1 = ϕ−1

(
g(x)

)
.

Une fois x1 connu il n’est pas difficile d’exprimer y et z.
La synthèse ne pose pas de problème.

• Pour ii)⇒ i) Montrer l’injectivité et la surjectivité de g ◦ f

25 Pour définir g dans l’implication i) =⇒ ii), on peut consi-
dérer un supplémentaire S de F = Kerf = Imf puis définir
g|S et g|F . Pour définir g|F , on peut utiliser la forme géomé-
trique du théorème du rang.

26 Ecrire P = XQ pour un certain polynôme Q tel que Q(0) , 0.
L’hypothèse s’écrit : Q(f ) ◦ f = 0.
Procéder par analyse synthèse.
Dans l’analyse, si x = y+z pour certains y ∈ Kerf et z ∈ Imf ,
remarquer que Q(f )(z) = 0 et que Q(f )(y) = a0y où a0 est le
coefficient constant de Q.

27 1. Procéder par récurrence sur n ∈N∗.
Pour l’hérédité, appliquer f à g ◦ f − f ◦ g = nf n−1 et
utiliser f ◦ g = g ◦ f − IdE .

2. Procéder par récurrence sur n.
Pour l’hérédité si, α0, . . . ,αn+1 vérifient :

n+1∑
k=0

αkf
k = 0

Composer par g par la gauche et par la droite :
n+1∑
k=0

αkg ◦ f k = 0 et
n+1∑
k=0

αk f
k ◦ g = 0

faire la différence des deux puis utiliser la question 1.

28 1. Considérer un x0 tel que f p−1(x0) , 0 et montrer que

x = f p−1(x0) est un élément de Kerf .

2. Considérer g =
p−1∑
k=0

f k .

29 1. Montrer que : Kerf k ⊂ Kerf k+1.

2. a) Appliquer le théorème du rang à ϕ : Imf k −→ E
x 7−→ f (x)

et

montrer que : Kerϕ = Kerf ∩Kerf k et Imϕ =
Imf k+1

b) Montrer que : Imf k+1 ⊂ Imf k .

30 Posant Fk = Im(uk ◦ · · · ◦u1) montrer que :

• Fk+1 ⊂ Fk

• si Fk , {0E} alors l’inclusion est stricte : Fk+1 , Fk

ce qui assure que Fn = {0E}.

31 1. Montrer que deg
(
ϕ(P )

)
≤

(
degP

)
− 1.

2. Ecrire ϕ = f −Id
Rn−1[X] où f : P 7→ P (X+1) et développer

(f − Id)n à l’aide de la formule du binôme.

32 Exploiter :

f 2p+1 + g2p+1 = f 2p+1 − (−g)2p+1 = (f + g)
2n∑
k=0

f k ◦ f 2n−k

33 Il s’agit de montrer que

• IdE ∈ F ∩GL(E)

• Si f ,g ∈ F ∩GL(E), alors f ◦ g ∈ F ∩GL(E)

• Si f ∈ F ∩GL(E), alors f −1 ∈ F ∩GL(E)

Les deux premiers points sont vrais par hypothèses. Pour le
dernier point :

• Première méthode. Noter p = dimF et utiliser le fait que
la famille (IdE , f , . . . , f

p) est liée pour écrire une égalité de
la forme IdE = f ◦ h où h ∈ F.

• Deuxième méthode Considérer l’application
T : F −→ F

u 7−→ f ◦u
Il s’agit de montrer que IdE possède un antécédent.
On peut en fait montrer que T est injective puis utiliser
le théorème miracle.

34 1. Fixer x0 tel que f n−1(x0) , 0 et montrer que B est libre.

2. La question 1 assure que g(x0) s’écrit sous la forme :
g(x0) = α0x0 +α1f (x0) + · · ·+αp−1f

p−1(x0)

où l’on a noté h =
p−1∑
k=0

f k .

Pour montrer que g = h (égalité entre les deux applica-
tions), il suffit (th d’interpolation linéaire) de montrer
que g et h coïncident sur tous les éléments de la base B
i.e. de montrer que g(f k(x0)) = h(f k(x0)) pour tout k ∈N.

35 1. Considérer une base B = (b1, . . . , bn) de E. Il suffit (théo-

rème « d’interpolation linéaire ») de trouver un entier
p tel que f p(b1) = · · · = f p(bn) = 0 pour assurer que
f p(x) = 0 pour tout x ∈ E.

2. Dans E = K[X], pour tout polynôme P il existe n tel
que P (n) = 0. Formaliser ce constat pour construire un
contre-exemple.

36 Définir f par « interpolation linéaire » : considérer une base
B = (b1, . . . , b2n) de E et définir f (b1), . . . , f (b2n) de façon à
ce que Kerf = Imf = Vect(b1, . . . , bn).

37 Il est nécessaire que dimF + dimG = n (utiliser le théorème
du rang).
Prouver que cette condition est aussi suffisante en définis-
sant f par interpolation linéaire. Posant p = dimF (donc
dimG = n− p), compléter une base (b1, . . . , bp) de F en une
base B = (b1, . . . ,bn) de E et définir les f (bi) pour que :

• b1, . . . , bp appartiennent au noyau de f

• f envoie (bp+1, . . ., bn) sur une base de G.

Prouver ensuite soigneusement que l’application f ainsi
définie vérifie Kerf = F et Imf = G.
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38 1. Il est nécessaire que dimG ≤ dimF (la dimension

décroît). Si f (F) = G, considérer pour cela une base
(b1, . . . , bp) de F et utiliser

f
(
Vect(b1, . . . , bp)

)
= Vect

(
f (b1), . . . , f (bp)

)
pour prouver que dimG ≤ p.
Prouver que cette condition est aussi suffisante en défi-
nissant f par « interpolation linéaire ».
Posant p = dimF (donc q = dimG ≤ p), compléter une
base (b1, . . . , bp) de F en une base B = (b1, . . . , bn) de E et
définir les f (bi) pour que :

• f envoie (b1, . . ., bq) sur une base (c1, . . . , cq) de G

• bq+1, . . . , bn appartiennent au noyau de f

Prouver ensuite soigneusement que l’application f ainsi
définie vérifie f (F) = G.

2. Il est nécessaire que dimG = dimF (deux espaces iso-
morphes ont même dimension)
Prouver que cette condition est aussi suffisante en dé-
finissant f par « interpolation linéaire » comme dans
la question précédente mais en s’assurant cette fois-ci
que f transforme (b1, . . ., bn) en une base de E (pour la
bijectivité).

39 a) La linéarité repose sur la linéarité de ϕ.

Pour calculer rg(ϕ ⊗ a) montrer que Imϕ = Vect(a).
b) Par hypothèse, Imv est une droite vectorielle ce qui per-

met de définir a via : Imv = Vecta.
Pour définit ϕ utiliser l’hypothèse selon laquelle E est de
dimension finie qui permet de raisonner par « interpo-
lation linéaire » i.e. de définir ϕ en donnant ses valeurs
sur une base de E. Considérer une base B = (b1, . . . , bn)
et définir les valeurs ϕ(b1), . . ., ϕ(bn) pour assurer les
égalités (ϕ ⊗ a)(b1) = v(b1), . . ., (ϕ ⊗ a)(bn) = v(bn)

40 Considérer une base B = (a,b2, . . . , bn) de E et montrer que :

• Pour tout i ∈ ⟦2 ,n⟧, u(ei) = αiei + λia pour certains
αi ,λi ∈K

• α2 = · · · = αn

• u(a) ∈ Vect(a).

Définir ensuite ϕ par interpolation linéaire sur B.
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