Applications linéaires

1

o | Etant donnés a, 3,y tels que
() ax+Bf(0)+yfi(x) =
» appliquer d’abord f? pour montrer que a = 0

 appliquer ensuite f pour montrer que g =0

3 | Appliquer le savoir faire pour le noyau et 'option 1

ou 2 du savoir faire
a) Kerf = Vect(( 5,
b) f estinjective,
Imf:Vect((2,3,1, 0)(-1,1,1,1),(1,-1,1,-2))
c) e Sia:Z:Kerf:Vect((—l,—l,1,0),(—1,0,0,1))
Im f = Vect((1,1,0),(1,0,1))
* Sia=#2:Kerf=Vect((-1,0,0,1))
1mf=Vect((1,1,0),(1,o,1),(a,1,1))

pour I'image. Réponses :

4 | Attention : P(X +1) désigne le polyndme composé P appliqué a
(X +1), ne pas confondre avec le produit de P par (X +1).
1. Il y a deux points a montrer :

* f estavaleurs dans R3[X].

* f est linéaire.

2. Appliquer le savoir faire pour le noyau
On écrit Ker f sous forme de Vect.
On commence par : « Soit P = aX3 +bX? +cX +d ».
Ensuite par équivalence, on résout :

f(P)=0 e X(P'(X+1)-P(1))=0 = ..

Réponse : Ker f = Vect(1,X) =R [X]
3. Utiliser par exemple l'option 1 du savoir faire pour
I'image.
Une base de R*[X] est (1, X, X?,X3).
Par théoréme : Im f = Vect(f ), f(X), f(X?), f(X )

Calculer ensuite f(1), f(X),f(XZ) F(X3).
Réponse : ITm f = Vect(2X?, 3X3 + 6X?).

. Garder les lettres A et M (ne pas écrire les matrices avec
les coefficients).

2. Appliquer le savoir faire pour le noyau
On écrit Ker f sous forme de Vect.

On commence par : « Soit M = (Z d) € M5 (R) ».
Ensuite par équivalence, on résout :

FIM)=0 = AM:(S 8):
Réponse : Ker f = Vect(B,C)
-2 0 0 -2
(1 O)etC_(O 1).

Le calcul de Ker f vous assure que f n’est pas injective.

ou B=

Pour la surjectivité : utilisez alors le théoréme « miracle »,

aucun calcul n’est nécessaire! (voir le IV du cours).

3. Utiliser par exemple l'option 1 du savoir faire
I'image.

pour

Par théoreme : Im f = Vect(f(EM),f(Ellz),f(Ez,l),f(Ez,z)).

Calculer ensuite f(Ey 1), f(E12), f(E2,1), f(Ez2)-

L 1))etImf = Veet((1,1,2),(1,-1,0/6 | -

Réponse : Im f = Vect(U, V) ou
1 0 01
o[y o)erv=(o 3]
4. Vérifier les deux conditions du cours :
( ) dimKerf+dimImf =dim .#,(R).
b) Im fNKer f = {0} (la rédaction doit commencer par:
«Soit M € Imf ﬁ Ker f », ensuite on traduit sépa-

rément les deux conditions M € Ker f et M € Im f
pour arriver a montrer que M = 0)

Montrer par double inclusion que Ker A = Ry[X].Pour
montrer que KerA C Ry[X], étant donné P tel que
A(P) = 0, montrer que R(X) = P(X) - P(0) posséde une
infinité de racines.

2. Utiliser l'option 3 du savoir faire
inclusion-dimension et montrer que ImA, =

: raisonner par
1Rn—l [X]
3. On peut « choisir » le n pour appliquer A,,.
Plus rigoureusement, si P € R[X] est fixé et si on fixe un
entier n > 1+degP, alors PeImA, CImA.

7 | * Linéarité. Elle repose sur la propriété d’unicité du couple
(Q,R) fourni par la division euclidienne. Précisément,
étant donnés P, P, € IK[X] leurs images f(P) et f(P,) vé-
rifient :

AP =BQi+f(P) et AP, =BQy+f(P)
Combiner ces deux égalités pour former la division eucli-
dienne de A(AP, + uP,) par B et identifier le reste obtenu
avec f (AP, + ubP,).

* Noyau. Traduire la nullité de f(P) comme une condition
de divisibilité. Réponse :  Ker f = BK[X]

e Image. Montrer que Im f = K,,_;[X] ou n = degB en pro-
cédant par double inclusion. Pour montrer que K,,_;[X] C
Im f, utiliser une relation de Bézout entre A et B.

8 | Résoudre I'équation f(x,v) = (a,b).
-1 _a+b a-b
On trouve f~(a,b) = (—2 S )

9 | dimR,[X]=dimR"! donc I'injectivité suffit (th miracle).
Pour l'injectivité comparer la multiplicité de 0 comme ra-
cine de P au degré de P

10| 1. * Premiére méthode On montre que f est injective et on
conclut par le théoréme miracle.

* Deuxieme méthode On montre que f transforme la base
canonique de R,[X] en une base de R, [X].

* Troisieme méthode On trouve g tel que gof =Idg [x]en
remarquant que f =Idg (x}—D ou D : P+ P’ vérifie
D! =0 (penser & la factorisation géométrique).

2. Dériver successivement la relation P— P’ =Q, P'—P” =

Q’,...,P"= P! = Q" puis penser a un télescopage.

3. Considérer la fonction A : t > P(t)e~" et calculer A’

11! @) On peut par exemple utiliser le théoréme miracle et mon-
trer I'injectivité en exploitant le fait que deg ¢ (P) = deg P
pour tout P € R, [X].

b) L'injectivité se prouve comme dans la question a) mais
ici elle ne suffit pas. Pour montrer que ¢ est surjectif, on
peut exploiter le résultat de a) : une fois P € R[X] fixé, si
on fixe un entier n > deg P, alors P € R, [X].



12| 1. Il s’agit de vérifier que :

* K[A] possede I,
* KK[A] est stable par combinaison linéaire.
* K[A] est stable par produit.
2. Il s’agit de montrer que I, possede un antécédent par T.

11 suffit pour cela de montrer que T est surjective. Mon-
trer que T est injective puis utiliser le théoréme miracle.

13
a) Penser a l'inclusion classique Keru c Kervou

b) Combiner le théoreme du rang et aux inégalités sur les
rangs: rg(vou)<rgv

14| @) Raisonner en termes d’inclusion sur les images en justi-
fiant d’abord que Im(f +g) CIm f +Img.
Utiliser ensuite la formule de Grassmann.

rgf <rg(f -g)+rgg

rgg <rgf +rg(f -g)
Les deux inégalités s’obtiennent en appliquant le résultat
de a) a des applications judicieusement choisies.

b) Il s’agit de montrer deux inégalités :

15/ @) Combiner deux idée :
* Le théoréme du rang appliqué a f.
* Le fait que 0 = f o f? qui assure que Im f? C Ker f.
b) Plus difficile, il s’agit d’appliquer le théoréme du rang a
une application ¢ judicieusement construite.
Vérifier que l'application ¢ : Imf — E convient
x = f(x)

16 Combiner deux idée :
* Le théoreme du rang appliqué a f.
* Le faitque 0= f o f équivaut a Im f C Ker f.

17! Appliquer le théoréme du rang a

¢:Imf— E
x> glx)
Et montrer que: KerpcKerg et ImepcClmgof

18| Procéder en deux temps :

* Montrer d’abord que rgf +rgg < n.
Pour cela utiliser go f =0 et le th du rang.

* Montrer ensuite que rgf +rgg > n.
Pour cela utiliser rg(f + g) = n (surjectivité) et montrer
que Im(f + ¢) CIm f +Img (attention !)

19 Sirg(g) <rg(f), construire u et v par interpolation linéaire.

20! 1. On peut faire une preuve «circulaire » en montrant
i) = ii) = iii)
* Pour montrer i) = ii). Par double inclusion :
 Im f? CIm f est toujours vraie.

* Pour montrer que Im f C Im f?, revenir aux élé-
ments. Le début doit étre :
«Soit y eIm f, il existe x € E tel que v = f(x). »
utiliser E =Im f ®Ker f pour décomposer x.

* Pour montrer i) = 1ii). Par inclusion-dimension avec
le théoréme du rang.
» Pour montrer ii) = iii). Utiliser le critere pratique
en dimension finie i.e. vérifier que
* dimIm f +dimKer f = dim E (facile)
e Imf NnKerf = {0} (revenir aux élements, « Soit
y € Im fNKer f » ensuite traduire le fait que y € Im f
puis que y € Ker f).

2.a) L'implication « < » a été montré dans la 1..

Pour « = », procéder par double inclusion :

s Ker f C Ker f2 est toujours vraie.

* Pour montrer que Ker f? C Ker f, revenir aux é1é-
ments : étant donné x € Ker f2, remarquer que
f(x)eKerfNImf.

L'implication « = » a été montré dans la 1.

Pour « < », étant donné x € E, il s’agit de trouver

v,zeEtelsqueyelmf,zeKerfetx=v+z.

Puisque f(x) € Imf = Im f?, il existe a € E tel que

f(x) = f?(a).

Vérifier que y = f(a) et z=x— f(a) conviennent.

b)

21| Sesouvenir ici que x € Ker(f — Aldg) signifie f(x) = Ax.
1. E n’est pas supposé de dimension finie : fixer x € E et
montrer par analyse-synthese qu’il existe un unique
couple (y,z) d’éléments de E tels que

* x=p+z
* fw)=-v
* f(z) =2z

Pour l'analyse il s’agit de trouver v et z en fonction de x.
Appliquer f aI’égalité v+ z = x puis résoudre le systéme
V+z=X
—y+2z=f(x)
Pour la synthese il s’agit essentiellement de calculer f(v)
et f(z). Dans le calcul penser a utiliser f2(x) = f(x)+x
(car f2—f—1dg =0)
2.

09| a) Ultiliser le critére pratique en dimension finie i.e. vérifier
que
e dimIm f + dimKer f = dim E (facile)
* Imf NKerf = {0} (revenir aux élements, « Soit y €
Im f NKer f » ensuite traduire le fait que y € Im f puis
que v € Ker f et utiliser f>+ f2+ f = 0).
b) La double inclusion est tres simple

o3l a) fixer x € E et montrer par analyse-syntheése qu’il existe

un unique couple (v,z) d’éléments de E tels que :

cx=v+z °*f(y)=0 e¢zelmg.

Pour I'analyse il s’agit de trouver v et z en fonction de x.

z s’écrit sous la forme z = g(x;) pour un certain x; € E.

Appliquer f al’égalité v+ g(x1)=x: fog(xy)=f(x).

Appliquer alors g et utiliser gofog=g: z=go f(x).

Ensuite y =x—z. La synthése ne pose pas de probleme.
b) Procéder par double inclusion.

* f(Img) cImf est facile.

* Pour montrer : Im f C f(Img), utiliser la question a)

1. Il est important de comprendre la différence entre Im(f + g) et Im f +Img :
* Imf+g=1Imhou hest'application i = f + g (somme d’applications), concretement : Im(f + g) = {h(x); x € E} = {f (x) + g(x); x € E}
e Imf)+(Img)=F+GouF=Imf={f(x1);x] €E}et G=Img ={g(x2); x € E} (somme de sous-espaces) donc Im f +Img = {f(x1)+g(x2); x1,x2 € E}
Intuitivement, Im f + Im g est plus gros que Im(f + g) vu que dans Im(f + g) « il faut prendre le méme x »



24

Procéder par double implication.

* Pour i) = ii) fixer x € E et montrer par analyse-synthése

qu’il existe un unique couple (v,z) d’éléments de E tels
que: ex=p+z epelmf <g(z)=0.

Pour l'analyse il s’agit de trouver p et z en fonction de x.

p s’écrit sous la forme y = f(x1) pour un certain x; € E.

En appliquant g a I’égalité f(x;)+z = x cela donne gof (x;) =
8(x).

La bijectivité de ¢ = go f assure que x| = (p‘l(g(x)).

Une fois x; connu il n'est pas difficile d’exprimer p et z.
La synthése ne pose pas de probléeme.

* Pour ii) = i) Montrer 'injectivité et la surjectivité de go f
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Pour définir ¢ dans I'implication i) = ii), on peut consi-
dérer un supplémentaire S de F = Ker f = Im f puis définir
8|s et gr. Pour définir g, on peut utiliser la forme géomé-
trique du théoreme du rang.

Ecrire P = XQ pour un certain polyndme Q tel que Q(0) = 0.
L'hypothése s’écrit:  Q(f)o f =0.

Procéder par analyse synthese.

Dans l'analyse, si x = y+z pour certains y e Ker f et ze Im f,

remarquer que Q(f)(z) =0 et que Q(f)(v) =apy ol a¢ est le
coefficient constant de Q.
1. Procéder par récurrence sur n € IN*.
Pour I’hérédité, appliquer f a gof—fog=nf""et
utiliser fog=go f —Idg.
2. Procéder par récurrence sur n.

Pour ’hérédité si, ay,..., a,, vérifient :
n+1

Zakfk =0
k=0

Composer par g par la gauche et par la droite :
n+l n+l

Zakgoszo et Zakfkogzo
k=0 k=0

faire la différence des deux puis utiliser la question 1.

1. Considérer un x; tel que fP~(xg) # 0 et montrer que

x = fP~!(xg) est un élément de Ker f.
p—1
2. Considérer g = ka
k=0

1. Montrer que:  Ker f¥ ¢ Ker f¥+1,

2.a) Appliquer le théoréme duranga ¢ : ImfK — E et
x o f(x)

montrer que : Ker¢p = Ker f NKer ff et Ime¢ =
Imfk+1
b) Montrer que: Im f**! ¢ Im f*.
Posant Fy = Im(ug o--- o uy) montrer que :
* Fro1 CH
* si Fy #{0g} alors 'inclusion est stricte :  Fp,q # Fy

ce qui assure que F, = {0g}.

1. Montrer que deg(cp(P)) < (deg P) - 1.

2. Ecrire ¢ = f -1dR, | [xjou f : P> P(X+1) et développer
(f —1d)" a l'aide de la formule du binéme.

32

33

34

35

36

37

Exploiter :

2n
f2p+1 +g2p+1 :f2p+1 _(_g)2p+1 _ (f+g)ka szn—k
k=0

Il s’agit de montrer que

e 1d; e FNGL(E)

* Sif,ge FNGL(E), alors f o ge FNGL(E)
 Si f e FNGL(E), alors f~! € FNGL(E)

Les deux premiers points sont vrais par hypotheses. Pour le
dernier point :

* Premiére méthode. Noter p = dimF et utiliser le fait que
la famille (Idg, f,..., fP) est liée pour écrire une égalité de
la formeldg = fohouhekF.

* Deuxiéme méthode Considérer 'application
T: F— F
ur—fou
Il s’agit de montrer que Idg posséde un antécédent.
On peut en fait montrer que T est injective puis utiliser
le théoreme miracle.

1. Fixer x; tel que f"!(xy) # 0 et montrer que 4 est libre.

2. La question 1 assure que g(xg) s’écrit sous la forme :
g(xg) = agxg + ay f(xg) + -+ ap1 f77 (x0)

p-1
oul'on anoté h = ka
k=0

Pour montrer que g = h (égalité entre les deux applica-
tions), il suffit (th d’interpolation linéaire) de montrer
que g et h coincident sur tous les éléments de la base &
i.e. de montrer que g(f*(xq)) = h(f*(x,)) pour tout k € N.

1. Considérer une base & = (by,...,b,) de E. Il suffit (théo-

réme « d’'interpolation linéaire ») de trouver un entier
p tel que fP(by) = --- = fP(b,) = 0 pour assurer que
fP(x) =0 pour tout x € E.

2. Dans E = K[X], pour tout polynome P il existe n tel
que P = 0. Formaliser ce constat pour construire un
contre-exemple.

Définir f par «interpolation linéaire » : considérer une base
B = (by,...,by,) de E et définir f(by),..., f(by,) de fagcon a
ce que Ker f =Im f = Vect(by,...,b,).

Il est nécessaire que dim F +dim G = n (utiliser le théoréme
du rang).

Prouver que cette condition est aussi suffisante en définis-
sant f par interpolation linéaire. Posant p = dim F (donc
dim G = n —p), compléter une base (bl,...,bp) de F en une
base # = (by,...,b,) de E et définir les f(b;) pour que :

* by,...,b, appartiennent au noyau de f

* fenvoie (byy1, ..., b,) sur une base de G.

Prouver ensuite soigneusement que l'application f ainsi
définie vérifie Ker f = Fet Im f = G.



38| 1. Il est nécessaire que dimG < dimF (la dimension

décroit). Si f(F) = G, considérer pour cela une base
(b],...,bp) de F et utiliser

f(Vect(by,..., b)) = Vect(f (b),..., f (b))
pour prouver que dim G < p.
Prouver que cette condition est aussi suffisante en défi-
nissant f par «interpolation linéaire ».
Posant p = dimF (donc g = dim G < p), compléter une
base (bl,...,bp) de F en une base # = (by,...,b,) de E et
définir les f(b;) pour que :
* f envoie (by, ..., bq) sur une base (C],...,Cq) de G
* byi1,--., by appartiennent au noyau de f

Prouver ensuite soigneusement que 'application f ainsi
définie vérifie f(F) = G.

. Il est nécessaire que dim G = dimF (deux espaces iso-

morphes ont méme dimension)

Prouver que cette condition est aussi suffisante en dé-
finissant f par «interpolation linéaire » comme dans
la question précédente mais en s’assurant cette fois-ci
que f transforme (by, ..., b,) en une base de E (pour la
bijectivité).

39 a) Lalinéarité repose sur la linéarité de ¢.

b)

Pour calculer rg(¢ ® a) montrer que Im ¢ = Vect(a).

Par hypothese, Im v est une droite vectorielle ce qui per-
met de définir avia: Imv = Vecta.

Pour définit ¢ utiliser ’hypothese selon laquelle E est de
dimension finie qui permet de raisonner par «interpo-
lation linéaire » i.e. de définir ¢ en donnant ses valeurs
sur une base de E. Considérer une base 4 = (by,...,b,)
et définir les valeurs @(by), ..., @(b,) pour assurer les
égalités (p®a)(by) =v(by), ..., (p®a)(b,) =v(b,)

40! Considérer une base # = (a,b,,...,b,) de E et montrer que :

Pour tout 7 € [[2,n], u(e;) = aje; + Aja pour certains
a;,A; € K

0(2 T — 0(77
u(a) € Vect(a).

Définir ensuite ¢ par interpolation linéaire sur %.



