
20
Intégrales Indications

1 a) Utiliser la relation de Chasles pour couper l’intégrale en

ln2. Réponse : I1 = 2ln2 + e − 2

b) Utiliser la relation de Chasles (ou la définition de l’in-
tégrale pour les fonction en escalier) pour couper l’in-
tégrale en une somme d’intégrales entre k et k + 1 pour

k ∈ ⟦0 ,n− 1⟧. Réponse : I2 =
en − 1
e − 1

c) Avec la relation de Chasles, couper l’intégrale en 1
3 .

Réponse : I3 =
5
6

2
a) Effectuer le changement de variable x = a+ b − t.

b) L’intégrale est I =
∫ π

0
tf (t)dt où f : t 7→ sin t

1+cos2 t
.

Appliquer le résultat de la question a).

3 1. Changement de variable t = (sinθ)2.

2. a) Effectuer une intégration par parties dans

I(p,q) =
∫ 1

0
tp(1− t)q pour obtenir I(p+ 1,q − 1)

b) Le 2a donne I(p,q) = q
p+1 I(p+ 1,q − 1)

Réitérer ainsi le résultat :
I(p,q) =

q

p+ 1
I(p+1,q−1) =

q

p+ 1
q − 1
p

I(p+2,q−2) = . . .

Calculer enfin I(p+ q,0) pour obtenir le résultat.

4 Dans la seconde intégrale, effectuer le changement de va-
riable t = f (x).

5 Le changement de variable est x = π
4 − t.

On exprime I en fonction d’elle-même.
Réponse : I = π

8 ln2.

6 1. Pour l’existence de I :

• il suffit de montrer que g : t 7→ f (t)f ′(t)
cosπt
sinπt

est pro-

longeable par continuité en 0 et 1.
• En 0 utiliser : f (t) =

t→0
f ′(0)t + o(t).

• Procéder de même en 1 en posant t = 1 + h avec h→ 0.
L’existence de J se justifie de même en montrant que

h : t 7→
f (t)2

tan2πt
(1 + tan2πt) est prolongeable par conti-

nuité en 0, 1 et en
1
2

.

2. Le résultat s’obtient par intégration par parties mais les
fonctions g et h ne sont pas de classe C 1 sur [0 ,1] (pro-
blèmes en 0 et en 1).

Pour faire les calculs proprement, calculer
∫ 1−ε

ε
g(t)dt

pour ε ∈ ]0 ,1[ par IPP puis faire tendre ε vers 0 dans le
résultat obtenu.

7 Il s’agit de montrer g : t 7→ f (t)− t s’annule. Observer que∫ 1

0
g(t)dt = 0.

Deux méthodes possibles conduisent au résultat voulu :
• Avec le T.V.I : par l’absurde si le résultat demandé n’a pas

lieu, alors la fonction g est de signe constant (par exemple
g > 0), en déduire une contradiction.

• En appliquant le théorème de Rolle à une primitive de g.

8 Appliquer le T.V.I. à la fonction

ϕ : x 7→ f (x)
∫ b

a
g(t)dt −

∫ b

a
f (t)g(t)dt

Il s’agit de trouver une valeur de ϕ négative ainsi qu’une
valeur positive. Pour trouver de telles valeurs on peut ap-
pliquer le théorème des bornes atteintes à f .

9 Par deux I.P.P. successives on obtient :∫ 2π

0
f (t)cos tdt = f ′(2π)− f ′(0)−

∫ 2π

0
f ′′(t)cos tdt

Reste à montrer que
∫ 2π

0
f ′′(t)cos tdt ≤ f ′(2π)− f ′(0).

10 Supposer que f s’annule au plus n fois, noter a1 < · · · < ap
les zéros de f en lesquels f change de signe (avec p ≤ n) et
considérer le polynôme P = (X − a1) . . . (X − ap). La fonction
t 7→ f (t)P (t) est continue, de signe constant et d’intégrale
nulle. Elle devrait donc être nulle ce qui contredit l’hypo-
thèse de départ.

11 1. Remarquer que f 2(y) − f 2(x) =
∫ y

x
2f ′(t)f (t) puis uti-

liser 2ab ≤ a2 + b2 en choisissant judicieusement a et b
pour faire intervenir le paramètre ε.

2. Fixer y tel que f 2(y) = sup
y∈[a ,b]

f 2(y) et intégrer l’inégalité

de la première question par rapport à x.

12 1. Le théorème des bornes atteintes assure l’existence de

m et M dans I tels que
∀t ∈ [0 ,1], m ≤ f (t) ≤M

Conclure en utilisant la croissance de l’intégrale et le
fait que I est un intervalle.

2. L’inégalité des tangentes permet d’écrire :
∀c,x ∈ I, ϕ(x) ≥ ϕ(c) +ϕ′(c)(x − c)

Prendre : c =
∫ 1

0 f et x = f (t) pour écrire une
inégalité valable pour tout t ∈ [0 ,1] puis utiliser la crois-
sance de l’intégrale

13 1. Utiliser l’inégalité des cordes pour majorer f (x).

2. a) Minorer f (x) en utilisant le fait que f est au-dessus
de sa tangente en c.

b) Prendre c = a puis c = b dans l’inégalité précédente et
sommer les inégalités obtenues.

14 Encadrer judicieusement
sin t

n+ t
pour t ∈ [0 ,π] puis utiliser

la croissance de l’intégrale pour montrer que
2

n+π
≤ In ≤

2
n

15 1. Encadrer judicieusement
t2n

1 + t2 pour t ∈ [0 ,1]

2. a) Regrouper les deux intégrales et factoriser par t2n. On

trouve In + In+1 =
1

2n+ 1
.

b) Remplacer
(−1)n

2n+ 1
par (−1)n(In + In+1) puis faire appa-

raître un télescopage, on obtient :



N∑
n=0

(−1)n

2n+ 1
= I0 + (−1)N IN+1.

16 1. Utiliser la relation de Chasles en
π − ε

2
.

2. Revenir à la définition de la limite « avec les ε » en utili-
sant le fait que vn = π−ε

2 (sin π−ε
2 )n −→

n→+∞
0

17 Encadrer « l’intérieur ».

18 1. Pour x,y ∈ [0 ,1],
∣∣∣f (x)− f (y)

∣∣∣ ≤M
∣∣∣x − y∣∣∣

Utiliser ceci pour majorer :

∣∣∣∣∣∣
∫ 1

0
f (tn)dt − f (0)

∣∣∣∣∣∣.
2. Revenir à la définition de la limite.

Etant donné ε > 0, il s’agit de majorer∣∣∣∣∣∣
∫ 1

0
f (t)dt − f (0)

∣∣∣∣∣∣ ≤
∫ 1

0
|f (tn)− f (0)|dt

Traduire la continuité de f en 0 et exploiter le fait que
|f (x)− f (0)| ≤ ε pour x ∈ [0 ,α] en coupant l’intégrale en
α1/n avec la relation de Chasles
• Le premier morceau peut être majoré par α1/n ε
• Le second morceau est majorable par 2 ∥f ∥∞(1−α1/n)

Finalement

∣∣∣∣∣∣
∫ 1

0
f (t)dt − f (0)

∣∣∣∣∣∣ ≤ α1/n ε+2 ∥f ∥∞(1−α1/n),

que l’on peut majorer par 2ε à partir d’un certain rang.

19 1. Utiliser le fait que f est bornée pour majorer l’intégrale.

2. Etant donné ε > 0 traduire la continuité de f en 0 et
exploiter le fait que |f (t)| ≤ ε pour t ∈ [0 ,α] en coupant
l’intégrale en α avec la relation de Chasles

20 1. a) Méthode 1. Par croissance de l’intégrale (i.e. en « enca-

drant l’intérieur »)
Pour x ∈ ]0 , π2 [ fixé, encadrer le quotient

cos t
t

pour

obtenir : cos(2x) ln2 ≤
∫ 2x

x

cos t
t

dt ≤ (cosx) ln2.

Puis faire tendre x vers 0 (th. d’encadrement).

b) Méthode 2. On reproduit la méthode utilisée dans

l’exemple du cours avec H(x) =
∫ x2

x
1

ln t dt

On introduit la fonction u : t 7→ cos t
t
− 1
t

de sorte que :
cos t
t

= u(t) +
1
t

Pour x ∈ ]0 , π2 [ : f (x) =
∫ 2x

x
u(t)dt + ln2.

On montre ensuite que
∫ 2x

x
u(t)dt −→

x→0
0 comme dans

l’exercice du cours en montrant que u est prolon-
geable par continuité en 0.

2. Adapter la méthode 2 ci-dessus :
f (t)
t

=
f (t)− f (0)

t
+ f (0)

1
t

= u(t) + f (0)
1
t

On intègre entre x et 2x et on montre ensuite que∫ 2x

x
u(t)dt −→

x→0
0 en montrant que u : t 7→

f (t)− f (0)
t

est prolongeable par continuité en 0.

21 a) Pour x > 0 fixé, en « encadrant l’intérieur »
Arctan t

t
pour

tout t ∈ [x ,2x] :

Arctan(x) ln2 ≤
∫ 2x

x

Arctan t

t
dt ≤ (Arctan2x) ln2

Conclure par encadrement.

b) En séparant en deux intégrales puis en posant s = t + 1
dans la première on obtient∫ x

0
Arctan(t+1)−Arctan tdt =

∫ x+1

x
Arctan tdt−

∫ 1

0
Arctan tdt

• La limite de
∫ x+1

x
Arctan tdt se calcule en encadrant

l’intérieur (par croissance de Arctan)

• L’intégrale
∫ 1

0
Arctan tdt se calcule par IPP.

Réponse : lim
x→+∞

∫ x

0
Arctan(t+1)−Arctan tdt =

π

4
+

ln2
2

.

22 a) Dériver f (t) = sin t
t :

f ′(t) =
t cos t − sin t

t2 =
N (t)
t2 est du signe de N (t).

Il reste à étudier le signe de N (dériver à nouveau).

b) Pour x ∈ [0 , 1
2 ] fixé, utiliser la décroissance de f sur

[x ,πx] pour encadrer l’intérieur :

Pour t ∈ [x ,πx] : sin t
t2 =

1
t
× f (t)

et lorsque t ∈ [x ,πx] : f (πx) ≤ f (t) ≤ f (x)
Ensuite utiliser la croissance de l’intégrale et faire tendre
x vers 0. Réponse. lnπ.

23 Il est simple, en majorant f (t)n d’obtenir un ≤M(b − a)1/n.
Pour minorer un, utiliser le fait que M est atteint pour un
certain c ∈ [a ,b] : fixer ε > 0, la continuité de f en c assure
que f (t) ≥M − ε pour t ∈ [c −α ,c+α].
En découpant l’intégrale avec la relation de Chasles, on

peut alors montrer que
∫ b

a
f n ≥ 2α(M − ε)n puis que un ≥

(2α)
1
n (M − ε)

On combinant tout ce qui précède, conclure à l’aide de la
définition de la limite en montrant qu’à partir d’un certain
rang M − 2ε ≤ un ≤M + 2ε

24 a) Montrer qu’il existe M ∈R tel que : |In| ≤M
1
n

.

b) Changement de variable x = t
1
n .

c) Avec Chasles : nIn =
∫ e

1

f (t)
t

t
1
n dt −

∫ e

(1+ 1
n )n

f (t)
t

t
1
n dt et :

nIn −
∫ e

1

f (t)
t

=
∫ e

1

f (t)
t

(
t

1
n − 1

)
dt︸                 ︷︷                 ︸

Jn

−
∫ e

(1+ 1
n )n

f (t)
t

t
1
n dt︸              ︷︷              ︸

Kn

Montrer ensuite que Jn→ 0 et que Kn→ 0

25 1. Intégrer par parties dans Wn+2 en dérivant cosn+1 t et
en primitivant cos t.

2. Montrer que (cos t)n+1 ≤ (cos t)n pour t ∈ [0 ,π/2] puis
utiliser la croissance de l’intégrale.

3. Montrer que un+1 = un.
Calculer u0 pour trouver la valeur de la constante : on
trouve que la constante vaut π

2 .

4. Encadrer W 2
n en multipliant l’encadrement Wn−1 ≤Wn ≤

Wn+1 par Wn.
Montrer ensuite que Wn−1Wn et Wn+1Wn sont tous deux



équivalents à π
2n (utiliser la valeur constante de (un))

Réponse : Wn ∼
√

π

2n

26 a) La technique est classique (le cas général est traité à

l’exercice 28) : on intègre par parties pour faire appa-
raître 1

n+1 . Précisément une I.P.P. donne∫ 1

0

tn

1 + t2 dt =
1

2(n+ 1)
+

2
n+ 1

∫ 1

0

tn+2

(1 + t2)2 dt.

Il ne reste qu’à montrer que
∫ 1

0

tn+2

(1 + t2)2 dt = o(1)

b) Faire une nouvelle intégration par parties :∫ 1

0

tn

1 + t2 dt =
1

2(n+ 1)
+

1
2(n+ 1)(n+ 3)

+
8

(n+ 1)(n+ 3)

∫ 1

0

tn+4

(1 + t2)3 dt

Pour conclure :
• Faire un DL 2 en 1

n sur
1

2(n+ 1)
et

1
2(n+ 1)(n+ 3)

• Montrer que
8

(n+ 1)(n+ 3)

∫ 1

0

tn+4

(1 + t2)3 dt = o
( 1
n2

)
27 1. a) u0 = 1

2 , u1 = ln2, u2 = π
4 .

b) Le plus simple est de montrer que 1−un→ 0.

Calculer 1 − un =
∫ 1

0

xn

1 + xn
dx et « encadrer l’inté-

rieur » pour montrer que 0 ≤ 1−un ≤ 1
n+1 .

2. Intégrer par parties.

3. La question 2 assure que 1−un = ln2
n + o

(
1
n

)
pourvu que∫ 1

0 ln(1 + xn)dx −→
n→+∞

0.

Par croissance de l’intégrale (« encadrer l’intérieur »),

montrer : 0 ≤
∫ 1

0
ln(1 + xn)dx ≤ 1

n+ 1
.

Pour majorer ln(1 + xn) se souvenir d’une inégalité clas-
sique sur ln(1 + x).

28 a) La technique est classique (on généralise la technique

de l’exercice 26) : on intègre par parties pour faire appa-
raître 1

n+1 par intégration par parties. Précisément une
I.P.P. donne∫ 1

0
tnf (t)dt =

f (1)
n+ 1

− 1
n+ 1

∫ 1

0
tn+1f ′(t)dt.

Il ne reste qu’à montrer que
∫ 1

0
tn+1f ′(t)dt = o(1) i.e. tend

vers 0 lorsque n→ +∞.

b) Faire une nouvelle intégration par parties :∫ 1

0
tnf (t)dt =

f (1)
n+ 1

−
f ′(1)

(n+ 1)(n+ 2)
+

1
(n+ 1)(n+ 2)

∫ 1

0
tn+2f ′′(t)dt.

Il suffit alors de montrer que :

•
f (1)
n+ 1

=
f (1)
n
−
f (1)
n2 + o

( 1
n2

)
.

•
f ′(1)

(n+ 1)(n+ 2)
=
f ′(1)
n2 + o

( 1
n2

)
•

1
(n+ 1)(n+ 2)

∫ 1

0
tn+2f ′′(t)dt = o

( 1
n2

)
29 Appliquer l’égalité des accroissements finis à une fonction

bien choisie.

30 1. Développer cos(x− t) puis exploiter la dérivabilité en de

x 7→
∫ x

0 f (t)cos tdt et de x 7→
∫ x

0 f (t)sin tdt.

2. Revenir à la définition de la limite « avec les ε » : utiliser
le fait que |f (t)| ≤ ε pour t ≥ A et couper l’intégrale en A
avec la relation de Chasles.

31 Introduire une primitive F de f et exprimer n
∫ 1

0
f
(
x+

1
n

)
−

f (x) en fonction de taux d’accroissements de F.

32 1. Majorer f (t) avec l’inégalité des cordes.

2. Effectuer une I.P.P. sur
∫ 1

0
xf (x)dx en primitivant f en

F : x 7→
∫ x

0
f (t)dt puis minorer F avec la question 1

3. Remarquer que : a− 1
4
≤ a2 pour tout a ∈R.

33 1. Suivre le savoir faire SF 9

a) Introduire une primitive F de t 7→ ln t

1 + t2 sur R∗+ puis

exprimer G(x) en fonction de F(x) et F( 1
x ).

b) Dériver à partir de l’expression obtenue en a). On
trouve que G′ = 0, donc G est constante puis que la
constante est nulle en calculant G en un point bien
choisi.

2. On trouve G(x) = −G(x) en effectuant le changement de
variable proposé.

34 a) Suivre le savoir faire SF 9 : introduire une primitive F

de f et exprimer ϕ(x) en fonction de F(x) et F(−x).

b) En deux temps :
• Prolonger ϕ par continuité en 0 (par exemple à l’aide

d’un DLn 1 de F)
Réponse : ϕ(x) −→

x→0
f (0)

• puis appliquer le théorème de la limite de la dérivée :
pour le calcul de la limite de

ϕ′(x) =
−F(x) +F(−x) + xf (x) + xf (−x)

x2 =
N (x)
x2

on peut calculer un développement limité de N (x) à
l’ordre 2 en 0.
Réponse : ϕ′(x) −→

x→0
0

35 1. Introduire une primitive F de t 7→ 1
√

1 + t4
et exprimer

ϕ(x) en fonction de F.

2. Il suffit de montrer que ϕ possède un développement
limité à l’ordre 1 en 0. Calculer un développement limité
à l’ordre deux en 0 de F par primitivation.

36 Effectuer le changement de variable s = t + x2 pour mettre

ϕ(x) sous la forme
∫ v(x)

u(x)
Arctansds

37 La fonction ϕ est paire et π-périodique donc il suffit de
l’étudier sur [0 , π2 ].
En dérivant, on obtient ϕ′(x) = 0 pour x ∈ [0 , π2 ] et ϕ(π4 ) = π

4
donc ϕ est constante, égale à π

4 .

38 Noter que
∫ 1

0

f (0)
1 + tx

dt =
x→+∞

f (0)
lnx

x
+ o

(1
x

)


