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Dimension Indications

1 Après avoir vérifié la liberté, compléter la famille en ajou-
tant deux polynômes de la base canonique choisis de telle fa-
çon que la famille obtenue soit encore libre (on peut prendre
par exemple X3 et X4). Il s’agit alors de vérifier que la fa-
mille ainsi complétée est encore libre

2 a) Mettre F sous forme de Vect puis vérifier la liberté de la

famille génératrice obtenue.
Une réponse possible est (1,X2 − 2X). Dans tous les cas
on obtient une base formée de deux polynômes.

b) Compléter la base de F en ajoutant deux polynômes de
la base canonique choisis de telle façon que la famille
obtenue soit encore libre.

3 On peut la compléter en ajoutant le vecteur ε3 = e1 ou
ε3 = e3 (mais pas e1).
Pour vérifier la liberté de

(
ε1, ε2, ε3

)
, en partant de αε1 +

βε2 +γε3 = 0 puis en remplaçant, on obtiens une CL nulle
de

(
e1, e2, e3

)
. La liberté de cette famille fournit un système

de trois équations sur α,β,γ permettant de prouver qu’ils
sont tous nuls.

4 B est de cardinal 3 = dimR2[X] donc la liberté suffit.
Pour ce qui est des coordonnées, en notant α,β,γ les réels
tels que

1 +X +X2 = α(X − 1)2 + βX2 +γ(X + 1)2

on peut trouver α,β,γ :

• Ou bien en développant les polynômes (X+1)2 et (X −1)2

puis en identifiant les coefficients.

• Ou bien en évaluant en 1, 0 et −1.

5 Posant F = Vect(cos,sin) il suffit de montrer que f1, f2 et f3
appartiennent à F. En effet, F est de dimension 2 donc toute
famille de cardinal 3 est liée.

6 (P0, . . . , Pn) est de cardinal n+ 1 = dimRn[X] donc la liberté
suffit. Ici la famille est étagée.

7 (P0, . . . , Pn) est de cardinal n+ 1 = dimRn[X] donc il suffit
de vérifier que la famille est libre.

8 La famille (u1, . . . ,u2p+1) est de cardinal 2p+ 1 = dimR2p+1

donc il suffit de vérifier que la famille est libre.

9 1. Etant fixés n ∈N et p1, . . . ,pn ∈ P tels que p1 < · · · < pn. Il

s’agit de montrer que la famille (lnp1, . . . , lnpn) est libre
dans le Q-espace vetoriel R. En écrivant une combinai-
son linéaire nulle de cette famille puis en multipliant par
un dénominateur commun des coefficients (rationnels)
de cette combinaison, on obtient

a1 ln(p1) + · · ·+ an ln(pn) = 0
pour certains entiers a1, . . . , an et il s’agit de montrer que
a1 = · · · = an = 0.

L’égalité ci-dessus donne
n∏
i=1

p
ai
i = 1 et, dans le cas parti-

culier (plus simple) où les ai sont tous positifs, l’unicité
de la décomposition en facteurs premiers assure que
a1 = · · · = an = 0.
Dans le cas général, en notant I = {i ∈ ⟦1 ,n⟧ | ai ≥ 0} et
J = {i ∈ ⟦1 ,n⟧ | ai < 0} on obtient

∏
i∈I

p
ai
i =

∏
i∈J

p
ai
i et on

conclut de même.
2. La question 1 assure l’existence d’une famille libre infi-

nie.

10 1. Montrer que F est génératrice mais aussi liée (grâce à

la stricte positivité des coefficients).
Pour la construction d’une famille de cardinal n + 1,
considérer par exemple une base B = (b1, . . . , bn) de E
prendre a = −b1 − · · · −bn et vérifier que F = (b1, . . . , bn, a)
convient.

2. Extraire une base de F . Quitte à renuméroter les vec-
teurs, on peut supposer que (u1, . . . ,un) est une base de
E. Posant a = −u1 · · · −un, il suffit en fait de montrer que
a est combinaison linéaires à coefficients positifs ou nuls
des (ui)i∈I où ⟦n+ 1 ,p⟧ 1 I .
Pour cela noter que :
• a est une CL à coefficients strictement positifs de F .
• la famille (un+1, . . . ,u2p) est liée
En écrivant une relation de liaison entre (un+1, . . . ,u2p,
on peut écrire, pour tout t ∈R :

a =
n∑
i=1

αiui +
2p∑

i=n+1

(αi + tλi)

pour certains α1, . . . ,α2p > 0 et certains réels λn+1, . . . ,λ2p
qui peuvent être des signe quelconque. Choisir judicieu-
sement la valeur de t pour annuler un des coefficients
de la seconde somme et obtenir des coefficients positifs
ou nuls pour les autres.
Concernant le contre-exemple demandé, considérer la
famille (b1, . . . , bn,−b1, . . . ,−bn) où B = (b1, . . . , bn) est une
base de E.

11 En deux étapes :

• Etape 1 : Déterminer la dimension de C (D).
En écrivant C (D) sous forme de Vect on constate qu’il
s’agit de l’ensemble des matrices diagonales donc que
C (D) est de dimension n.

• Etape 2 : Prouver la liberté de (In,D, . . . ,Dn−1).
La famille étant de cardinal n = dimC (D), la liberté suffit.
Etant donnés α0, . . . ,αn−1 tels que

α0In +α1D + · · ·+αn−1D
n−1 = 0

Observer les coefficients diagonaux de la CL ci-dessus et

considérer le polynôme P =
n−1∑
k=0

αkX
k .

12 Poser
F = Vect(X3 +X2−X−1,X3−X2 +1,X3−X2 +X,X3 +2X+1)
et procéder par inclusion dimension.

13 La famille (u,v,w) n’est pas libre donc ce n’est pas une base
de F, c’en est seulement une famille génératrice.
Constater que u = 4v−3w donc F = Vect(u,v,w) = Vect(v,w),
et (v,w) est libre.

14 1. Plusieurs méthodes :

• Méthode 1. Par inclusion-dimension.
• Méthode 2. Par double-inclusion.
• Méthode 3. Par équivalence. Etant donné P ∈ Rn[X]

écrire P =
n∑
i=0

αiLi et montrer que P ∈ F ssi α0 = 0.



2. Montrer que :

• dimF + dimG = n+ 1. Il reste à montrer que G est de
dimension 1. Ici encore on peut mettre G simplement
sous forme de vect en se rappelant que P ∈ G signifie
(X − x1)n | P .

• F∩G = {0}. Si P ∈ F∩G, compter le nombre de racines
de P .

3. H = Vect(L1) convient (par exemple).

15 Il s’agit d’écrire F comme un vect, ce que les formules don-
nat l’expression de un en fonction de n permettent de faire.
La résolution de l’équation caractéristique permet d’écrire
les suites de F comme combinaisons linéaires de deux suites.
Ici les suites sont à termes dans C donc distinguer deux cas
selon que le discriminant est nul ou non :

• Si a , −2i. L’équation caractéristique a deux racines dis-
tinctes, on obtient F = Vect(p,q) où p et q sont les suites
géométriques p =

(
2n(a+ i)n

)
n∈N

et q =
(
(−2i)n

)
.

• Si a = −2i. L’équation caractéristique a une racine double,
on obtient F = Vect(q,r) où r =

(
n(−2i)n

)
n∈N

.

16 Poser F = Vect(u1, . . . ,un,v1, . . . , vn) et noter que :

• rg(u1, . . . ,un,v1, . . . ,vn) = dimF

• (u1 + v1, . . . ,un + vn) est une famille libre de F.

17 Par l’absurde, si rg(f ′1 , . . . , f
′
n) ≤ n− 2 alors deux des f ′i sont

CL des autres, par exemple f ′n−1 et f ′n sont CL de f ′1 , . . . , f
′
n−2 :

• f ′n−2 = α1f
′

1 + · · ·+αn−2f
′
n−2 ;

• f ′n−1 = β1f
′

1 + · · ·+ βn−2f
′
n−2 ;

Ceci permet d’écrire

• fn−2 +C = α1f1 + · · ·+αn−2fn−2 ;

• fn−1 +D = β1f1 + · · ·+ βn−2fn−2 ;

En combinant les deux égalités, on forme une combinaison
linéaire nulle des fi dont certains coefficients sont non nuls.

18 1. Considérer une base (f1, f2) de F et décomposer τxf dans

cette base pour tout x ∈R. Ceci permet d’écrire :
∀t,x ∈R, f (x+ t) = α(x)f1(t) + β(x)f2(t) (⋆)

pour certaines fonctions α et β.
Sous réserve de dérivabilité des fonctions α et β, le ré-
sultat demandé s’obtient en dérivant (⋆) par rapport à x
puis en évaluant en x = 0.
Pour justifier la dérivabilité de α et β, il suffit d’exprimer
explicitement α et β en fonction de f . Pour cela, écrire
par exemple (⋆) en t = 0 ce qui permet de voir α(x) et
β(x) comme solution du système :α(x)f1(t) + β(x)f2(t) = f (x+ t)

α(x)f1(0) + β(x)f2(0) = f (t)
Il suffit de justifier que le déterminant de ce système
est non-nul pour au moins une valeur de t (utiliser la
liberté de (f1, f2)) pour ensuite exprimer α et β comme
des combinaisons linéaires des fonctions f et τx(f ).

2. Constater que la famille (f , f ′ , f ′′) est liée.

19 1. Montrer c’est une sous-algèbre de C.

2. Si z est annulé par un polynôme P de degré d, mon-
trer que Q[z] ⊂ Vect(zk)0≤k≤d−1 à l’aide d’une division
euclidienne.

20 Utiliser la formule de Grassmann.

21 Il suffit de montrer que G ⊂ F.
Fixer x ∈ G. Vu que G ⊂ G +H et que G +H = F +H , il en
résulte que x ∈ F +H .
Ecrire ainsi x = y + z avec y ∈ F et z ∈H .
Pour montrer que x ∈ F, il reste à montrer que z ∈ F.
Pour cela, montrer que z ∈ H ∩ G et utiliser l’hypothèse
H ∩G = F ∩H .

22 a) Vérifier que (x,y) et (u,v,w) sont des familles libres ce

qui assurera que dimF = 2 et dimG = 3.
Pour F +G on peut écrire F +G = Vect(u,v,w,x,y) mais la
famille (u,v,w,x,y) n’est pas libre (cinq vecteurs dans R4

qui est de dimension 4).
Par contre on sait que dimF + G ≤ 4 et on vérifie que
(u,v,w,x) est libre donc dimF +G ≥ 4.

b) Grassmann assure que dim(F ∩G) = 1.
Il suffit d’en trouver un vecteur non nul.
D’après la question a) on peut exprimer y en fonction de
(u,v,w,x) : on trouve 2u + 2v −w+ x = y.
Cela donne 2u + 2v −w︸        ︷︷        ︸

∈F

= y − x︸︷︷︸
∈G

= (1,1,−1,−1) ∈ F ∩G

23 a) Vérifier que

• dimF + dimG = 3
• F ∩G = {(0,0,0)}.

b) Il suffit de trouver une base de F et d’y adjoindre (1,0,0).

24 a) Pour tout u = (x,y,z) ∈R3 :

u ∈ F ∩G ⇐⇒
{
x − y − z = 0

x − y + z = 0

On trouve F ∩G = Vect
(
(1,1,0)

)
b) Procéder par inclusion-dimension pour montrer que

F +G =R3.

25 a) Ecrire F comme un vect (fixer P = aX3 + bX2 + cX + d ∈
R3[X] puis calculer P (X2) et X2P (X) et identifier les coef-
ficients pour former un système) on trouve F = Vect(X2).

b) On trouve que dimG = 3.
c) Vérifier que

• dimF + dimG = 4
• F ∩G = {0} (fixer P ∈ F ∩G puis traduire chaque condi-

tion : P ∈ F donc P est de la forme λX2 et P ∈ G donc
P (−1) = P (2)).

26 Déterminer un base de F, on trouve que F est de dimension
2. Ensuite on peut construire G comme le sous-esapce en-
gendré par les polynômes de la base canonique choisis pour
compléter le base de F : ici G = Vect(1,X) convient.

27 Fixer M ∈ Mn(K) puis montrer par analyse-synthèse
qu’il existe un unique couple (S,A) de matrices tel que :
• S +A = M • S ∈Sn • A ∈An

28 Fixer ϕ ∈ E puis montrer par analyse-synthèse
qu’il existe un unique couple (f ,C) tel que :
• f +C = ϕ • f ∈ E • C ∈ G

29 L’ensemble G des fonctions polynomiales de degré inférieur
ou égal à n− 1 convient. Le vérifier par analyse-synthèse.
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