
18
Espaces vectoriels Indications

1 Réponses :
a) Oui b) Non c) Non d) Non

2 Réponses :
a) Non b) Oui c) Oui d) Non

3 Réponses :

a) Oui b) Non c) Oui d) Non

e) Non f) Oui

4 Si F ⊂ G (ou G ⊂ F), le résultat est simple vu que F ∪G = G
(ou F).
Réciproquement, si F ∪G est un sous-espace vectoriel de E,
procéder par l’absurde en supposant :

• qu’il existe un x ∈ F tel que x < G.

• qu’il existe un y ∈ G tel que y < F.

Montrer alors que x+ y < F ∪G.

5 Procéder par l’absurde et considérer l’entier p ∈ ⟦1 ,n−1⟧

maximal tel que
p⋃

i=1
Fi , E.

Fixer alors x ∈
p⋃

i=1
Fi \Fp+1 et y ∈ Fp+1 \

p⋃
i=1

Fi puis montrer :

• que pour tout λ ∈K : x+λy < Fp+1

• que pour tout i ∈ ⟦1 ,p⟧, il existe au plus un λ ∈K tel que
x+λy ∈ Fi .

Obtenir une contradiction en choisissant λ tel que x + λy

n’appartienne pas à
p+1⋃
i=1

Fi

6 Réponses :
a) Non b) Oui c) Oui d) Non

7 La question est :
Existe-t-il α,β ∈R tels que : αu + βv = (1,m,1) ?
Il s’agit de savoir si le système : αu + βv = (1,m,1) est
compatible.
Il suffit d’échelonner le système (méthode du pivot), on
trouve une dernière ligne qui vaut : 0 = (1−m)(2 +m).
Réponse : la CNS est m ∈ {1,−2}

8 Procéder par double inclusion.

• Pour montrer : Vect(f0, . . . , fn) ⊂ Vect(g0, . . . , gn) : il s’agit
de montrer que chaque fk est CL de g0, . . . gn.
Il suffit de linéariser :

cosk x =
1
2k

(
eix + e−ix

)k
Puis développer à l’aide de la formule du binôme et
prendre la partie réelle de la somme.

• Pour montrer : Vect(g0, . . . , gn) ⊂ Vect(f0, . . . , fn) : il s’agit
de montrer que chaque gk est CL de f0, . . . fn.
Dit autrement, il s’agit d’exprimer cos(kx) comme un po-
lynôme en cosx.
Il suffit de délinéariser :

cos(kx) = Re
(
(cosx+ i sinx)k

)
Développer (cosx + i sinx)k à l’aide de la formule du bi-
nôme.
Ensuite prendre la partie réelle de la somme : il s’agit des
termes donnant des puissances paires de i. Remplacer
enfin tous les sin2 par (1− cos2).

9 Réponses :
1. F1 est libre.

2. Fa est libre ssi a < {−2,1}.

10 Réponses :
1. (P1, P2, P3) est liée.

2. (P1, P2, P3) est libre (évaluer).

11 Soient α,βγ ∈R tels que :
α × (1)n∈N + β × (n)n∈N +γ × (n2)n∈N = 0︸︷︷︸

suite nulle

Cela signifie : ∀n ∈N , α + βn+γn2 = 0
On dispose d’une infinité de contraintes imposées sur α,β,γ
(une pour chaque n ∈N), il suffit de sélectionner trois va-
leurs de n (par ex. n = 0, n = 1 et n = 2) pour obtenir un
système de trois équations qui imposent α = β = γ = 0

12 Soient α,βγ ∈R tels que : αf1 + βf2 +γf3 = 0︸︷︷︸
fonction nulle

Cela signifie : (⋆) ∀x ∈R , αex + βe2x +γex
2

= 0
Plusieurs méthodes sont possibles pour montrer que ce qui
précède impose α = β = γ = 0

• Méthode 1 : par évaluations. On évalue (⋆) en 0, 1 et 2 pour
obtenir trois équations qui imposent α = β = γ = 0.

• Méthode 2 : limites en +∞. On divise (⋆) par ex
2

puis on
fait tendre x vers +∞ : il reste γ = 0.
On divise ensuite (⋆) par e2x puis on fait tendre x vers
+∞ : il reste β = 0.
Dès lors, α est nécessairement nul.

• Méthode 3 :à l’aide d’un DL2. On fait un DL2 de la fonction
g : x 7→ αex + βe2x +γex

2
. On obtient

g(x) = (α + β +γ) + (α + 2β)x+
(α

2
+ 2β +γ

)
x2 + o(x2)

Par ailleurs g est nulle (donc on connait son DL2 qui est
g(x) = 0+0x+0x2 +o(x2)) et l’unicité des coefficients d’un

DL impose


α + β +γ = 0

α + 2β = 0
α
2 + 2β +γ = 0

d’où l’on tire α = β = γ = 0.

13 1. Soient α0, . . . ,αn ∈R tels que :

α0f0 +α1f1 + · · ·+αnfn = 0︸︷︷︸
fonction nulle

Cela signifie : (⋆) ∀x ∈R, α0 +α1e
x + · · ·+αne

nx = 0
Plusieurs méthodes sont possibles pour montrer que ce
qui précède impose α0 = · · · = αn = 0, par exemple :

• Méthode 1 : limites en +∞. On fait tendre x vers +∞ : il
reste α0 = 0.
On multiplie ensuite (⋆) par e−x puis on fait tendre x
vers +∞ : il reste α1 = 0.
Puis, successivement, α2 = α3 = · · · = αn = 0.

• Méthode 2 : à l’aide d’un polynôme. Si on note P le poly-

nôme P =
n∑

k=0

αkX
k , alors la relation (⋆) s’écrit

∀x ∈R, P (ex) = 0
cela permet d’exhiber une infinité de racines pour P .



2. Il suffit de montrer la liberté de toute sous-famille finie.
Soit donc n ∈ N∗ et λ1 < · · · < λn dans R. Montrer que
(fλ1

, . . . , fλn
) est libre. Soient α0, . . . ,αn ∈R tels que :

n∑
i=1

αifλi
= 0︸︷︷︸

fonction nulle

Cela signifie : (⋆) ∀x ∈R,
n∑
i=1

αie
λix = 0

Plusieurs méthodes sont encore possibles pour mon-
trer que ce qui précède impose α0 = · · · = αn = 0, par
exemple :

• Méthode 1 : limites en +∞. On peut adapter la méthode
1 de la question 1.

• Méthode 2 : à l’aide des polynômes de Lagrange. En déri-
vant k fois la relation (⋆) puis en évaluant en x = 0 :

∀k ∈N,
n∑
i=1

αiλ
k
i = 0

En combinant ces relations on obtient
n∑
i=1

αiP (λi) = 0

pour tout polynôme P ∈R[X].
En choisissant P = Lj où Lj est le je polynôme de La-
grange associé aux points (λ1, . . . ,λn) la somme se réduit
à λj = 0.

14 On montre que pour tout n ∈ N, la famille (f0, . . . , fn) est
libre (on se ramène à une famille finie).
Soient α0, . . . ,αn ∈R tels que :

α0f0 +α1f1 + · · ·+αnfn = 0︸︷︷︸
fonction nulle

Cela signifie :
(⋆) ∀x ∈R , α0 sinx+α1 sin(2x) + · · ·+αn sin(2nx) = 0

Evaluer successivement en x = π
2 , x = π

4 , . . ., x = π
2k+1 , . . .,

x = π
2n+1 , pour montrer successivement que α0 = 0, α1 = 0,

. . ., αn = 0.

15 Par l’absurde, former une combinaison linéaire nulle à co-
efficients non-tous nuls, puis dériver et considérer un équi-
valent en 0.

16 Former une combinaison linéaire nulle puis utiliser la mé-
thode du cache pour montrer que tous les coefficients sont
nuls.

17 Il est possible d’adapter la démonstration du cours qui permet
de montrer que si (u1, . . . ,un) est libre et si un+1 n’est pas CL de
(u1, . . . ,un) alors (u1, . . . ,un+1) est libre.

Soient α1, . . . ,αn tels que
n∑

k=1

αk(uk + a) = 0.

On peut écrire :
n∑

k=1

αkuk = −
( n∑
k=1

αk

)
︸  ︷︷  ︸

S

a.

Utiliser les hypothèses de l’exercice pour justifier :

• D’abord que S = 0 (procéder par l’absurde)

• Ensuite que α1, . . . ,αn = 0.

18 Procéder par récurrence sur n.

19 1. Si (u1, . . . ,un) est libre.

Il s’agit de montrer que (v1, . . . , vn) est libre.
Soient α1, . . . ,αn tels que

α1v1 + · · ·+αnvn = 0
En remplaçant les vi par u1 + · · ·+ui , on obtient une CL
nulle des ui

(α1+· · ·+αn)u1+(α2+· · ·+αn)u2+· · ·+(αn−1+αn)un−1+αnun = 0
La liberté de (u1, . . .un) impose

α1 + . . . + αn = 0

α2 + . . . + αn = 0
. . .

αn = 0
d’où α1 = · · · = αn = 0.
Réciproquement, si (v1, . . . , vn) est libre.
Il s’agit de montrer que (u1, . . . ,un) est libre.
Soient α1, . . . ,αn tels que

α1u1 + · · ·+αnun = 0
En remarquant que u1 = v1 puis que ui = vi − vi−1 pour
i ≥ 1, on peut procéder de même que dans le cas précé-
dent en remplaçant les ui puis en formant une CL nulle
des vi .

2. Si (v1, . . . , vn) est génératrice, alors Vect(v1, . . . , vn) = E.
Or les vi sont des CL de (u1, . . . ,un) donc v1, . . . , vn ∈
Vect(u1, . . . ,un) donc Vect(v1, . . . , vn) ⊂ Vect(u1, . . . ,un).
La réciproque se traite de même vu que les ui sont des
CL de (v1, . . . , vn).

20 1. On écrit E sous la forme d’un Vect, ce qui donne une

famille génératrice de E.
On justifie ensuite la liberté de la famille obtenue.

2. On écrit E sous la forme d’un Vect, ce qui donne une
famille génératrice de E.
On justifie ensuite la liberté de la famille obtenue.

3. Ici E = Vect(u1,u2,u3,u4).
La famille (u1,u2,u3,u4) génératrice de E mais cette fa-
mille n’est pas libre.
Il suffit de « chasser » du Vect les vecteurs qui sont CL
des autres (par ex. u3 et u4 sont CL de u1 et u2)

21 1. Ici E = Vect(P1, P2, P3).

La famille ((P1, P2, P3) génératrice de E mais cette famille
n’est pas libre.
Il suffit de « chasser » du Vect les polynômes qui sont CL
des autres.

2. On écrit E sous la forme d’un Vect (fixer P = aX3 +bX2 +
cX +d ∈R3[X] puis traduire les conditions par des équa-
tions sur a,b,c,d).
On justifie ensuite la liberté de la famille obtenue.

3. On écrit E sous la forme d’un Vect (fixer P = aX3 +bX2 +
cX +d ∈R3[X] puis traduire les conditions par des équa-
tions sur a,b,c,d).
On justifie ensuite la liberté de la famille obtenue.

22 a) Vérifier que :

• I2 commute avec A

• C est stable par combinaison linéaires i.e. que si M,N ∈
C et si λ,µ ∈R, alors (λM +µN )A = A(λM +µN ).

• C est stable par produit i.e. que si M,N ∈ C et alors
(MN )A = A(MN ).

b) Ecrire C sous forme de Vect.

2



Fixer M =
(
a b
c d

)
∈M2(R) et résoudre le système(

3 −1
7 1

)(
a b
c d

)
=

(
a b
c d

)(
3 −1
7 1

)
Réponse Une base est (B,I2) où B =

(
−2 1
−7 0

)
.

23 En écrivant P et Q en fonction de leurs coefficients on ob-
tient directement F = Vect(f0, . . . , fn, g0, . . . , gn) où fk : x 7→
xk sinx et gk : x 7→ xk cosx.
A ce stade on sait donc que F est un sev de F (R,R) et on
dispose d’une famille génératrice.
Pour la liberté, si α0, . . . ,αn,β0, . . . ,βn sont tels que

α0f0 + · · ·+αnfn + β0g0 + · · ·+ βngn = 0
refaire intervenir les polynômes en posant

P =
n∑

k=0

αkXk et Q =
n∑

k=0

βkX
k

Il s’agit de montrer que P et Q sont nuls.
Or on sait que

∀x ∈R, P (x)sinx+Q(x)cosx = 0
En évaluant en des points bien choisis , on trouve une in-
finité de racines pour P et une infinité de racines pour Q
(annuler cos ou annuler sin).

24 Montrer qu’une base de F est la famille (fi)0≤i≤n de F où
pour tout i ∈ ⟦0 ,n⟧, la fonction fi est la fonction affine par
morceau telle que : fi(xi) = 1 et fi(xj ) = 0 si j , i.
Etant fixée f ∈ F, on peut montrer que f est, de manière
unique, combinaison linéaire des fi . Précisément, on montre
par analyse synthèse que l’unique décomposition de f

comme combinaison linéaire des fi est : f =
n∑
i=1

f (xi)fi .
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