Complément sur les ensembles

Chapitre 9.0

(complément préparatoire au chapitre 9 qui viendra plus tard)
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1 Vocabulaire lié aux ensembles

Définition 1
Un ensemble E est inclus dans un ensemble F,noté E C F, si tout
élément de E appartienta Fie: Vxe E, xeF

Pour montre que E C F

« Soit x € E »

«donc x € F.»

Exemple 1
Montrer que : Ug C Ugys.
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1 Vocabulaire lié aux ensembles

Définition 2

Soient A, E deux ensembles. Lorsque A C E, on dit que : A est un
sous-ensemble de E ou une partie de E.

= L’ensemble des parties de E est noté : Z(E).
= Ac P(E) signifie: AC E.

Remarque

P (E) possede toujours :  E et O

Exemple 2
Lister tous les éléments de Z(E) lorsque : E = {1,2,3}.



1 Vocabulaire lié aux ensembles

= Le produit cartésien de deux ensembles E et F, noté E x F, est
['ensemble des :



1 Vocabulaire lié aux ensembles

= Le produit cartésien de deux ensembles E et F, noté E x F, est
I'ensemble des : couples (x, y) pour certains x € E ety € F



1 Vocabulaire lié aux ensembles

= Le produit cartésien de deux ensembles E et F, noté E x F, est
I'ensemble des : couples (x, y) pour certains x € E ety € F

= Plus généralement E; X E» X ... E, est I'ensemble des n-uplets
(x1,%2,...,Xn) pour certains x1 € Ej, xo € Ep, ..., x, € Ep.



1 Vocabulaire lié aux ensembles

Définition 3

= Le produit cartésien de deux ensembles E et F, noté E x F, est
I'ensemble des : couples (x, y) pour certains x € E ety € F

= Plus généralement E; X E» X ... E, est I'ensemble des n-uplets
(x1,%2,...,Xn) pour certains x1 € Ej, xo € Ep, ..., x, € Ep.

Notation
E"=ExEx---xE.



1 Vocabulaire lié aux ensembles

= Le produit cartésien de deux ensembles E et F, noté E x F, est
I'ensemble des : couples (x, y) pour certains x € E ety € F

= Plus généralement E; X E» X ... E, est I'ensemble des n-uplets
(x1,%2,...,Xn) pour certains x1 € Ej, xo € Ep, ..., x, € Ep.

Notation
E"=ExEx---xE.

Exemple 3
Décrire E x F lorsque : E ={a,b} et F={1,2 3}



1 Vocabulaire lié aux ensembles

= Le produit cartésien de deux ensembles E et F, noté E x F, est
I'ensemble des : couples (x, y) pour certains x € E ety € F

= Plus généralement E; X E» X ... E, est I'ensemble des n-uplets
(x1,%2,...,Xn) pour certains x1 € Ej, xo € Ep, ..., x, € Ep.

Notation
E"=ExEx---xE.

Exemple 3
Décrire E x F lorsque : E ={a,b} et F={1,2 3}

‘¢ Attention %* Ne pas confondre {x1,...,x,} et (x1,...,Xn).
Par exemple :



1 Vocabulaire lié aux ensembles

Définition 3
= Le produit cartésien de deux ensembles E et F, noté E X F, est
I'ensemble des : couples (x, y) pour certains x € E ety € F

= Plus généralement E; X E» X ... E, est I'ensemble des n-uplets
(x1,%2,...,Xn) pour certains x1 € Ej, xo € Ep, ..., x, € Ep.

Notation
E"=ExEx---xE.

Exemple 3
Décrire E x F lorsque : E ={a,b} et F={1,2 3}

‘¢ Attention %* Ne pas confondre {x1,...,x,} et (x1,...,Xn).
Par exemple : {1,2,3} = {2,3,1} mais (1,2,3) # (2,3,1)
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A et B sont disjoints lorsque
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Théoreme 1 : Propriétés de l'intersection

s ANA=A s ANO =0 s ANE=A

s Ordre a connaitre: = ANBCA = ANBCB
s Commutativit¢ : ANB=BNA

» Associativité¢ : (ANB)NC=AnNn(BNC)

= SSIACB,alors: ANnB=A
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X€Z<:>X¢A
NA= A A=E

Théoreme 3 : Regles de calculs

)> )>H

= (AUB)NC=(ANC)U(BNC) = ANB=AUB
» (ANB)UC=(AUuC)Nn(BUC) « AUB=ANB
Exercice 1

Démontrer que : (ANB)UC=(AUC)N(BUC)
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Généralisation : Si (A;);c/ est une famille de parties de E :
» NA={x€E |Viel, xecA}
iel

» JAi={xeE | Jiel, xecA}
icl
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Relation binaire

[ Propriété qui s'applique ]

aux couple d'éléments de E

Définition 1

Une relation binaire % sur E est une partie de E X E.

Interprétation
On écrit xZy plutét que (x,y) € Z.
N\

(« x est en relation avec y »)

10
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Définition 2

On dit que Z est une relation d'ordre si Z est :

» Réflexive : Vx € E, xZx.

» Antisymétrique : Vx,y € E, (xZy et yZ#x) — x=y
» Transitive : Vx,y,z € E, (xZy et yRHz) — xRz

Exemple 1 : Exemples de relations d’ordre

a) Sur R : la relation « < » b) Sur Z(E) : I'inclusion « C »

b|a — EIkeN|a:kb_

a) Montrer que la divisibilité est une relation d’'ordre sur N

b) Montrer que la divisibilité n'est pas une relation d'ordre sur Z
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1 Relations d’ordre

Une relation d'ordre <1 sur E est dite :

= Totale si deux éléments quelconques de E sont toujours
comparables i.e. :  V(x,y) € E?, x<y ou y<x

= Partielle si elle n'est pas totale i.e. si :
Ax,y)€E? | xAy et ydAx

Exemple 2

a) La relation < sur R est totale.
b) La relation de divisibilité sur N est partielle.

c) La relation d'inclusion sur Z(E) est partielle dés que E contient
au moins deux éléments.
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1 Relations d’ordre

Soit <1 une relation d’'ordre sur E et A € Z(E).

= On dit que A est majorée (pour <) si :
IMeE |VxeA x<IM

= On appelle plus grand élément de A tout : majorant de A qui
appartient a A

Exemple 3 : Sur N pour la relation de divisibilité |

Déterminer si A est majorée et possede un plus grand élément
a) A=1{6,10,15}
by A=N



1 Relations d’ordre

Définition 4
Soit <1 une relation d’'ordre sur E et A € Z(E).

= On dit que A est majorée (pour <) si :
IMeE | VxeA x<M

= On appelle plus grand élément de A tout : majorant de A qui
appartient a A

Exercice 2

Montrer que si A possede un plus grand élément pour une relation
d'ordre <, alors il est unique.
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On dit que Z est une relation d'équivalence si & est
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2 Relations d’équivalence

Définition 5

On dit que Z est une relation d'équivalence si & est

» Réflexive : Vx € E, xZx.

» Symétrique : Vx,y € E, XAy —> yHEx
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2 Relations d’équivalence

Définition 5

On dit que Z est une relation d'équivalence si & est

» Réflexive : Vx € E, xZx.

s Symétrique : Vx,y € E, XKy —> yHEx

» Transitive : Vx,y,z € E, (xZy et yRz) — xRz

Exemple 4 : Exemples de relations d’équivalence
a) Sur E : I'égalité
b) Sur I'ensemble des droites du plan : le parallélisme

a=b[n < Jke€Z | a=b+kn

Montrer que la relation de congruence modulo n est une relation
d'équivalence sur Z
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2 Relations d’équivalence

Soit Z une relation d'équivalence sur E.

= Pour x € E, la classe d'équivalence de x est I'ensemble des
éléments en relation avec x :  cl(x) = {y € E | xZy}
el
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= Aucune n'est vide

= Leur réunion est E

Théorem & Deux classes distinctes sont disjointes

Soit Z une relation d'équivalence su

= Pour x € E, la classe d'équivalence deXx est I'ensemble des
éléments en relation avec x :  cl(x) =\y € E | xZy}

= Les classes d'équivalence forment une partition de E.
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2 Relations d’éauivalence
= Aucune n'est vide

= Leur réunion est E

Théorem & Deux classes distinctes sont disjointes

Soit Z une relation d'équivalence su

= Pour x € E, la classe d'équivalence d

éléments en relation avec x :  cl(x) b
&

est |'ensemble des
€ E | xZy}

= Les classes d'équivalence forment une partition de E.

Exercice 4

1. Montrer que pour tous x,y € E:  cl(x) =cl(y) < xZy.

2. Montrer que les classes d’'équivalences pour % forment une
partition de E
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2 Relations d’équivalence

Soit Z une relation d'équivalence sur E.
= Pour x € E, la classe d'équivalence de x est I'ensemble des
éléments en relation avec x :  cl(x) = {y € E | xZy}
el

= Les classes d'équivalence forment une partition de E.

Exercice 5

Déterminer les classes d'équivalence de Z :
a) Pour la congruence modulo 2

b) Pour la congruence modulo n € N*
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