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I Vocabulaire de base

I Vocabulaire de base

II Suites particulières

III Existence et/ou calcul de limites

IV Suites récurrentes du type un+1 = f (un)
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1 Généralités

Définition 1
Une suite réelle est :

une application u de N dans R.

l’application u : N → R la suite (un)n∈N

l’image de n par u

un

la suite u

(un)n∈N

l’ensemble des suites réelles

RN

Généralisation
Famille (ui)i∈I d’éléments d’un ensemble E indexée par I.

= application u de I dans E
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2 Définitions liées à l’ordre

Définition 2
Une suite réelle u est dite :
• majorée si :

∃M ∈ R | ∀n ∈ N, un ≤ M.

• minorée si :

∃m ∈ R | ∀n ∈ N, un ≥ m.

• bornée si :

elle est majorée et minorée
c’est équivalent à : ∃K ∈ R+ | ∀n ∈ N, |un| ≤ K .
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2 Définitions liées à l’ordre

Définition 2
Une suite réelle u est dite :
• majorée si : ∃M ∈ R | ∀n ∈ N, un ≤ M.
• minorée si : ∃m ∈ R | ∀n ∈ N, un ≥ m.
• bornée si : elle est majorée et minorée

c’est équivalent à : ∃K ∈ R+ | ∀n ∈ N, |un| ≤ K .

Exemple 1

Montrer que la suite u =
( sin n

3 − cos n

)
n∈N

est bornée.
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2 Définitions liées à l’ordre

Définition 2
Une suite réelle u est dite :
• majorée si : ∃M ∈ R | ∀n ∈ N, un ≤ M.
• minorée si : ∃m ∈ R | ∀n ∈ N, un ≥ m.
• bornée si : elle est majorée et minorée

c’est équivalent à : ∃K ∈ R+ | ∀n ∈ N, |un| ≤ K .

SF 3 : Majorer une somme

Exemple 2

Soit q ∈ ]0 , 1[. Pour tout n ∈ N, on pose un =
n∑

k=0
ln(1 + qk).

Montrer que u est majorée.
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2 Définitions liées à l’ordre

Théorème 1
Soient u, v ∈ RN.
Si u est bornée et si v converge vers 0, alors :

unvn −→
n→+∞

0.

Exemple 3

La suite
(sin n

n
)

converge vers 0 car :


(sin n)n∈N est bornée

1
n −→

n→+∞
0

.
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2 Définitions liées à l’ordre

Définition 3
Une suite réelle u est dite :

• croissante si :

∀n ∈ N, un ≤ un+1 .

• strictement croissante si

∀n ∈ N, un < un+1 .

• décroissante si :

∀n ∈ N, un ≥ un+1 .

• strictement décroissante si :

∀n ∈ N, un > un+1 .

monotone =
croissante ou décroissante

SF 4 : Deux méthodes pour établir la monotonie

Exemple 4 : Etudier la monotonie

a) un =
n∑

k=1

1
k b) vn =

n∏
k=1

(
1 − 1

2k2

)
c) wn = en

n! e) yn =
np∑

k=n+1

1
k
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3 Suites arithmétiques, suites géométriques

Définition 4

• u est arithmétique de raison r si :

∀n ∈ N, un+1 = un + r
Le terme général est alors donné par : ∀n ∈ N, un = u0 + nr

• u est géométrique de raison q si :

∀n ∈ N, un+1 = qun
Le terme général est alors donné par : ∀n ∈ N, un = qnu0

Théorème 2

q > 1 q = 1 |q| < 1 q ≤ −1

lim
n→+∞

qn

+∞ 1 0 Pas de li-
mite
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1 Suites arithmético-géométriques

Définition 1
u ∈ KN est arithmético-géométrique s’il existe a, b ∈ K tels que :

∀n ∈ N, un+1 = aun + b

Théorème 1 : Terme général
Soient a, b ∈ K avec a ̸= 1 et u ∈ KN telle que un+1 = aun + b
pour tout n ∈ N.

• Il existe un unique α ∈ K tel que : α = aα + b.
• La suite v =

(
un − α

)
n∈N

est géométrique de raison a.

Exercice 1
Démontrer le théorème précédent.

Si a = 1
u est arithmétique

8
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1 Suites arithmético-géométriques
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1 Suites arithmético-géométriques

SF 1 : Terme général d’une suite arithmético-géométrique

1. On introduit l’unique α ∈ K tel que α = aα + b.

2. La suite v =
(
un − α

)
n∈N

est géométrique de raison a

3. En calculant α, on en déduit une expression de un = vn + α.
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)
n∈N

est géométrique de raison a

3. En calculant α, on en déduit une expression de un = vn + α.

Exemple 1
Déterminer le terme général de la suite u définie par u0 = 1 et

∀n ∈ N, un+1 = 2 − 1
2un
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1 Suites arithmético-géométriques

SF 1 : Terme général d’une suite arithmético-géométrique

1. On introduit l’unique α ∈ K tel que α = aα + b.
2. La suite v =

(
un − α

)
n∈N

est géométrique de raison a

3. En calculant α, on en déduit une expression de un = vn + α.

Exemple 2
Déterminer le terme général de la suite u définie par u1 = 0 et

∀n ∈ N∗, un+1 = 2un + 1
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2 Suites récurrentes linéaires homogènes d’ordre deux

On étudie les suites u ∈ KN vérifiant :
(⋆) ∀n ∈ N, un+2 = aun+1 + bun

Exercice 2
Pour quels λ ∈ K∗ la suite géométrique u = (λn)n∈N vérifie (⋆) ?

Exercice 3
On suppose que (C ) possède une racine double λ0 .
Vérifier que u = (nλn

0)n∈N satisfait aussi (⋆).

Exercice 4
On pose : E =

{
u ∈ KN | ∀n ∈ N, un+2 = aun+1 + bun

}
.

Montrer que : Φ : E −→ K2

u 7−→ (u0, u1)
est bijective.

Equation caractéristique
λ2 − aλ − b = 0

λ0 = a
2

E est de
« dimension 2 »
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2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = C

Discriminant Racines Il existe A, B ∈ C telles que pour tout n ∈ N :

∆ ̸= 0 λ1 et λ2

un = Aλn
1 + Bλn

2

∆ = 0 λ0

un = (A + nB)λn
0

•K = R
Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2

un = Aλn
1 + Bλn

2

∆ = 0 λ0

un = (A + nB)λn
0

∆ < 0 re±iθ

un = rn(
A cos nθ + B sin nθ

)

11



2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = C

Discriminant Racines Il existe A, B ∈ C telles que pour tout n ∈ N :

∆ ̸= 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0

un = (A + nB)λn
0

•K = R
Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2

un = Aλn
1 + Bλn

2

∆ = 0 λ0

un = (A + nB)λn
0

∆ < 0 re±iθ

un = rn(
A cos nθ + B sin nθ

)

11



2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = C

Discriminant Racines Il existe A, B ∈ C telles que pour tout n ∈ N :

∆ ̸= 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

•K = R
Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2

un = Aλn
1 + Bλn

2

∆ = 0 λ0

un = (A + nB)λn
0

∆ < 0 re±iθ

un = rn(
A cos nθ + B sin nθ

)

11



2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = C

Discriminant Racines Il existe A, B ∈ C telles que pour tout n ∈ N :

∆ ̸= 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

•K = R
Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0

un = (A + nB)λn
0

∆ < 0 re±iθ

un = rn(
A cos nθ + B sin nθ

)

11



2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = C

Discriminant Racines Il existe A, B ∈ C telles que pour tout n ∈ N :

∆ ̸= 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

•K = R
Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

∆ < 0 re±iθ

un = rn(
A cos nθ + B sin nθ

)

11



2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = C

Discriminant Racines Il existe A, B ∈ C telles que pour tout n ∈ N :

∆ ̸= 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

•K = R
Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

∆ < 0 re±iθ un = rn(
A cos nθ + B sin nθ

)
11



2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = R

Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

∆ < 0 re±iθ un = rn(
A cos nθ + B sin nθ

)

Exemple 3 : Exprimer un en fonction de n
u0 = 1, u1 = 1 et pour tout n ∈ N : un+2 = 5un+1 − 6un.
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2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = R

Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

∆ < 0 re±iθ un = rn(
A cos nθ + B sin nθ

)

Exemple 4
u0 = 2, u1 = 0 et et pour tout n ∈ N : un+2 = 2un+1 − 2un.
Trouver r et θ tels que pour tout n ∈ N : un = rn+3 cos

(
(n + 1)θ

)
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2 Suites récurrentes linéaires homogènes d’ordre deux

Théorème 2 : Expression du terme général un en fonction de n
•K = R

Discriminant Racines Il existe A, B ∈ R telles que pour tout n ∈ N :

∆ > 0 λ1 et λ2 un = Aλn
1 + Bλn

2

∆ = 0 λ0 un = (A + nB)λn
0

∆ < 0 re±iθ un = rn(
A cos nθ + B sin nθ

)

Exemple 5
On suppose que pour tout n ∈ N : un+2 =

√
3un+1 − un.

Montrer que u est périodique
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III Existence et/ou calcul de limites

I Vocabulaire de base

II Suites particulières

III Existence et/ou calcul de limites

IV Suites récurrentes du type un+1 = f (un)
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1 Opérations sur les limites

Exemple 0
Etudier la limite de

( n
n + √

n
)

n≥1

13



2 Limites et inégalités larges

Théorème 1 : Passages aux limites dans les inégalités larges
Soient ℓ1, ℓ2 ∈ R et u, v ∈ RN.
Si :

i) un −→
n→+∞

ℓ1 et vn −→
n→+∞

ℓ2.

ii) un ≤ vn à partir d’un certain rang
Alors : ℓ1 ≤ ℓ2.

Exemple 1
Prouver que l’implication : (∀n ∈ N, un < vn ) =⇒ (ℓ1 < ℓ2)
est fausse

Il existe n0 ∈ N tel que :
∀n ≥ n0, un ≤ vn
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3 Les théorèmes de comparaison

Théorème 2 : Théorème d’encadrement
Soient ℓ ∈ R et u, v , w ∈ RN. Si :

i) A.P.C.R. : un ≤ vn ≤ wn

ii) u et w convergent vers une même limite ℓ

Alors : vn −→
n→+∞

ℓ v converge
et lim vn = ℓ.

Théorème 3 : Théorème de majoration /minoration

Soient u, v ∈ RN telles que un ≤ vn à partir d’un certain rang.

• Si un −→
n→+∞

+∞, alors : vn −→
n→+∞

+∞

• Si vn −→
n→+∞

−∞, alors un −→
n→+∞

−∞.
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+∞, alors : vn −→

n→+∞
+∞

• Si vn −→
n→+∞

−∞, alors un −→
n→+∞

−∞.
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+∞, alors : vn −→

n→+∞
+∞

• Si vn −→
n→+∞

−∞, alors un −→
n→+∞

−∞.

Exemple 2
Etudier la limite de la suite de terme général :
a) un = ⌊2nx⌋

2n (x ∈ R) b) un = qn où q > 1
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3 Les théorèmes de comparaison

Théorème 2 : Théorème de majoration /minoration

Soient u, v ∈ RN telles que un ≤ vn à partir d’un certain rang.
• Si un −→

n→+∞
+∞, alors : vn −→

n→+∞
+∞

• Si vn −→
n→+∞

−∞, alors un −→
n→+∞

−∞.

Exemple 3
Etudier la convergence et la limite de la suite (Sn) définie pour tout

n ∈ N∗ par : Sn =
n∑

k=1

1
n +

√
k

.
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4 Suites monotones

Théorème 3 : Théorème de la limite monotone
Soit u ∈ RN. Si u est croissante alors u possède une limite.
•

Si u est majorée, alors u converge.

•

Sinon : un −→
n→+∞

+∞.

j Attention j

Eviter :

« u est croissante, majorée par M, donc ».

Exemple 4

On pose u0 = 1 puis : un+1 = un + 1
un

pour tout n ∈ N.
Montrer que un −→

n→+∞
+∞.
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5 Suites adjacentes

Définition 1
Deux suites u, v ∈ RN, sont dites adjacentes si :

i) L’une est croissante, l’autre décroissante.
ii) vn − un → 0.

Théorème 4
Soient u, v ∈ RN. Si u et v sont adjacentes, alors :

elles convergent
vers une même limite
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i) L’une est croissante, l’autre décroissante.
ii) vn − un → 0.

Théorème 4
Soient u, v ∈ RN. Si u et v sont adjacentes, alors : elles convergent
vers une même limite

Si u croît et v décroît vers ℓ
∀m, n ∈ N, um ≤ ℓ ≤ vn
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5 Suites adjacentes

Définition 1
Deux suites u, v ∈ RN, sont dites adjacentes si :
i) L’une est croissante, l’autre décroissante.
ii) vn − un → 0.

Théorème 4
Soient u, v ∈ RN. Si u et v sont adjacentes, alors : elles convergent
vers une même limite

Exercice 1
Démontrer le théorème

Si u croît et v décroît vers ℓ
∀m, n ∈ N, um ≤ ℓ ≤ vn
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5 Suites adjacentes

Définition 1
Deux suites u, v ∈ RN, sont dites adjacentes si :
i) L’une est croissante, l’autre décroissante.
ii) vn − un → 0.

Théorème 4
Soient u, v ∈ RN. Si u et v sont adjacentes, alors : elles convergent
vers une même limite

Exemple 5

Pour tout n ≥ 1, on pose : un =
n∑

k=0

1
k! et vn = un + 1

nn! .

Montrer que u et v ont même limite

Si u croît et v décroît vers ℓ
∀m, n ∈ N, um ≤ ℓ ≤ vn

17



IV Suites récurrentes du type
un+1 = f (un)

I Vocabulaire de base

II Suites particulières

III Existence et/ou calcul de limites

IV Suites récurrentes du type un+1 = f (un)
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1 Rappels sur les suites du type un+1 = f (un)

Intervalle stable par f
Intervalle I ⊂ D pour lequel f (I) ⊂ I

En pratique
Si u0 ∈ I, alors (un)n∈N est bien définie et à termes dans I.

Théorème 1 : Critère « f (ℓ) = ℓ »

Si (un) converge vers ℓ ∈ D et si f est continue en ℓ , alors ℓ est un
point fixe de f : f (ℓ) = ℓ

Objectif
Etudier la convergence de la suite.

f : D → R

19
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2 Cas où f est croissante

Théorème 2
Soit I un intervalle stable par f et u0 ∈ I.
Si f croissante sur I alors :

(un) est monotone

Exercice 1
On suppose f croissante sur I. Montrer que (un)n∈N est monotone.

j Hors programme :
à savoir redémontrer j
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Soit I un intervalle stable par f et u0 ∈ I.
Si f croissante sur I alors : (un) est monotone

Exercice 1
On suppose f croissante sur I. Montrer que (un)n∈N est monotone.

SF 11 : Etudier la limite de (un) lorsque f est croissante

Exemple 1
Etudier la limite de la suite (un)n∈N définie par : u0 = 0 puis

∀n ∈ N, un+1 = eun − 2

j Hors programme :
à savoir redémontrer j
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2 Cas où f est croissante

Théorème 2
Soit I un intervalle stable par f et u0 ∈ I.
Si f croissante sur I alors : (un) est monotone

Exercice 1
On suppose f croissante sur I. Montrer que (un)n∈N est monotone.

SF 11 : Etudier la limite de (un) lorsque f est croissante

Exemple 2
1. Soit u0 ≥ 0. Etudier la limite de la suite (un)n∈N définie par :

un+1 = u2
n + 2un + 3

6 pour tout n ∈ N

2. Même question lorsque u0 < 0.

j Hors programme :
à savoir redémontrer j
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1 3

•

•

u0 u1

>3

Exemple 2 : Etudier la limite de u

2. u0 < 0 et pour tout n ∈ N : un+1 = u2
n + 2un + 3

6
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1

•

•

u0 u1<3u0 u1>33?

Exemple 2 : Etudier la limite de u

2. u0 < 0 et pour tout n ∈ N : un+1 = u2
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1

•

•

u0 u1<3u0 u1>33−5

Exemple 2 : Etudier la limite de u

2. u0 < 0 et pour tout n ∈ N : un+1 = u2
n + 2un + 3

6
21



3 Cas où f est décroissante

Théorème 3
Soit I un intervalle stable par f et u0 ∈ I. Si f décroissante sur I
alors :

(u2n) et (u2n+1) sont monotones de sens contraire.

Exemple 3 : Un cas où f décroît
Etudier la limite de la suite (un) définie par u0 = 1 puis

∀n ∈ N, un+1 = 1 + 1
un
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Exercice 2
Montrer le théorème.
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