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Une suite réelle est : une application u de N dans R.

I'application v : N — R la suite (un)neN
I'image de n par u Up
la suite u (Un)neN
I'ensemble des suites réelles RN

Généralisation

Famille (Ui)i@ents d'un ensemble E indexée par /.

[: application u de / dans E)




Définition 2

Une suite réelle u est dite :
= majorée si :
= minorée si :

= bornée si :
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2 Définitions liées a I'ordre

Définition 2
Une suite réelle u est dite :
» majoréesi: IMeR | VneN, u, <M.

= minoréesi: dmeR | VneN, u,>m.

= bornée si : elle est majorée et minorée
c'est équivalenta: JKeRy | VneN, |uy <K.

Exemple 1

. sinn
Montrer que la suite u= (3

> est bornée.
—cosn/ cn



2 Définitions liées a I'ordre

Définition 2

Une suite réelle u est dite :

» majoréesi: IMeR | VneN, u, <M.
= minoréesi: dmeR | VneN, u,>m.

= bornée si : elle est majorée et minorée
c'est équivalenta: JKeRy | VneN, |uy <K.

SF 3 : Majorer une somme
Exemple 2
n
Soit g € ]0,1[. Pour tout n € N, on pose u, = Z In(1 + g~).

k=0
Montrer que u est majorée.
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2 Définitions liées a I'ordre

Soient u, v € RY.

Si u est bornée et si v converge vers 0, alors :  u,v, —+> 0.
n——+00

Exemple 3

. sinn (sinn)peny  est bornée
La suite (—) converge vers 0 car :
n
- — 0
n n—-+4oco
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"1
a) Uup = E ;
k=1
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Exemple 4 : Etudier la monotonie

) vo = T[ (1 - 5x5)
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Définition 1
u € KN est arithmético-géométrique s'il existe a, b € K tels que :

VneN, upy1=au,+b

Sia=1
Théoréme 1 : Terme général SRTRE T ) il

Soient a,b € K avec a # T'et u € KN telle que Upy1 = aup+ b
pour tout n € N.

= || existe un unique o € K tel que : « = aa + b.

= |La suite v = (u,, — a) est géométrique de raison a.
neN
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Définition 1

u € KN est arithmético-géométrique s'il existe a, b € K tels que :
VneN, upy1=au,+b

Sia=1
Théoréme 1 : Terme général SRTRE T ) et

Soient a,b € K avec a # T'et u € KN telle que Upy1 = aup+ b
pour tout n € N.

= || existe un unique o € K tel que : « = aa + b.

= La suite v = (u,, — oz) est géométrique de raison a.
neN

Exercice 1

Démontrer le théoréme précédent.
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SF 1 : Terme général d’une suite arithmético-géométrique

1. On introduit I'unique o € K tel que a@ = aax + b.
2. La suite v = (u,, — a) N est géométrique de raison a
ne
3. En calculant «, on en déduit une expression de u, = v, + a.

Exemple 1

Déterminer le terme général de la suite u définie par up =1 et

1
VneN, upp1=2-— Eu,,



1 Suites arithmético-géométriques

SF 1 : Terme général d’une suite arithmético-géométrique

1. On introduit I'unique o € K tel que a@ = aax + b.
2. La suite v = (u,, — a) N est géométrique de raison a
ne
3. En calculant «, on en déduit une expression de u, = v, + a.

Exemple 2

Déterminer le terme général de la suite u définie par u; = 0 et

VneN*) upy1 =2u,+1
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2 Suites récurrentes linéaires homogeénes d’ordre deux

On étudie les suites u € KN vérifiant :

(x) VneN, upio = aupt1 + bup

Equation caractéristique
N —a\—b=0

Exercice 2

Pour quels A € K* la/Aiite géométrique u = (A")pen Vérifie (x) 7

Exercice 3

On suppose que (%) possede une racine double A .
Vérifier que u = (n\§)nen satisfait aussi (x).

Exercice 4
On pose : E :{UGKN | VneN, u,,+2:au,,+1—|—bu,,}.

®: E— K? est bijective.
u+— (UOa Ul)

E est de
« dimension 2 »

10



2 Suites récurrentes linéaires homogeénes d’ordre deux

Théoreme 2 : Expression du terme général u, en fonction de n

‘K=C
Discriminant| Racines | |l existe A, B € C telles que pour tout n € N :
A#0 A1 et A
A=0 Ao
K=R
Discriminant| Racines | Il existe A, B € R telles que pour tout n € N :

A>0 A1 et Ao

A=0 Ao

A <O re*i®
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2 Suites récurrentes linéaires homogeénes d’ordre deux

Théoreme 2 : Expression du terme général u, en fonction de n

‘K=R
Discriminant| Racines | Il existe A, B € R telles que pour tout n € N :
A>0 A1 et A un:A)\i’+B/\5
A=0 Ao up = (A+ nB)A\§
A <0 re*i® up = r"(Acos nf + Bsin nf)

Exemple 3 : Exprimer u, en fonction de n

up=1 up =1etpourtout neN: wupio=>5uy41— 6up,.

11



2 Suites récurrentes linéaires homogeénes d’ordre deux

Théoreme 2 : Expression du terme général u, en fonction de n

‘K=R
Discriminant| Racines | Il existe A, B € R telles que pour tout n € N :
A>0 A1 et A un:A)\i’+B/\5
A=0 Ao up = (A+ nB)A\§
A <0 re*i® up = r"(Acos nf + Bsin nf)

Exemple 4

up =2, up =0etetpourtout n € N:  upyo =2up41 —2up.
Trouver r et 6 tels que pour tout n € N :  u, = r"3cos((n + 1))

11



2 Suites récurrentes linéaires homogeénes d’ordre deux

Théoreme 2 : Expression du terme général u, en fonction de n

‘K=R
Discriminant| Racines | Il existe A, B € R telles que pour tout n € N :
A>0 A1 et A un:A)\i’+B/\5
A=0 Ao up = (A+ nB)A\§
A <0 re*i® up = r"(Acos nf + Bsin nf)

Exemple 5

On suppose que pour tout n € N : ty10 = V/3upi1 — Up.
Montrer que u est périodique

11



Il Existence et/ou calcul de limites

I Existence et/ou calcul de limites
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1 Opérations sur les limites

Exemple 0
Etudier la limite de ( n ) -

n++/n

13



2 Limites et inégalités larges

Théoreme 1 : Passages aux limites dans les inégalités larges

Soient /1,¢> € R et u,v € RY.
Si :
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Théoreme 1 : Passages aux limites dans les inégalités larges

Soient /1,¢> € R et u,v € RY.
Si :

i) up — lretv, — Lo
n——+00 n——+00
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Alors : {1 < 4s.
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2 Limites et inégalités larges

Théoreme 1 : Passages aux limites dans les inégalités larges

Soient /1,¢> € R et u,v € RY. Il existe ng € N tel que :
Si: Vn> ng, u,<v,
i) up — lretv, — Lo

n——+00 n——+00

i) u, < v, a partir d'un certain rang
Alors : {1 < 4s.

14



2 Limites et inégalités larges

Théoreme 1 : Passages aux limites dans les inégalités larges

Soient /1,¢> € R et u,v € RY. [
Si :

Il existe ng € N tel que :
Vn>ng, up< vy,

i) up — lretv, — Lo
n——+00 n——+00

i) u, < v, a partir d'un certain rang

Alors : {1 < 4s.

Exemple 1

Prouver que I'implication : (VneN, u,<vy,) = (L1 <br)
est fausse

14



3 Les théoréemes de comparaison

Théoréme 2 : Théoreme d’encadrement
Soient £ € Ret u,v,w € RN, Sj :
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3 Les théoréemes de comparaison

Théoréme 2 : Théoreme d’encadrement

Soient £ € Ret u,v,w € RN, Sj :
i) APCR. :u,<v,<w,

ii) u et w convergent vers une méme limite ¢

v converge
Alors: v, — / _ &
n—+-o00 et limv, = /.

Théoréme 3 : Théoreme de majoration /minoration

Soient u, v € RN telles que u, < v, a partir d'un certain rang.

= Siu, — oo, alors: v, — 4o
n——4-00 n——-00

= Siv, — —oo, alorsu, — —o0.
n——4o00

n——+00
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3 Les théoréemes de comparaison

Théoréeme 2 : Théoreme de majoration /minoration

Soient u, v € RN telles que u, < v, a partir d'un certain rang.
= Siu, — +oo, alors: v, — 4o
n——+00 n——+00

= Siv, — —o0, alorsu, — —o0.
n——+00 n——+00

Exemple 2

Etudier la limite de la suite de terme général :
[27x]
a) u, = o

(x € R) b) up=¢q" otg>1
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3 Les théoréemes de comparaison

Théoréeme 2 : Théoreme de majoration /minoration

Soient u, v € RN telles que u, < v, a partir d'un certain rang.

= Siu, — +oo, alors: v, — 4o
n——+00 n——+00

= Siv, — —o0, alorsu, — —o0.
n—-+4o0 n—-+-00

Exemple 3

Etudier la convergence et la limite de la suite (S,) définie pour tout
n
1
neN"par: §,= e
! kz::ln +Vk

15}



4 Suites monotones

Théoréme 3 : Théoréme de la limite monotone

Soit u € RN, Si u est croissante alors u posséde une limite.
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= Si u est majorée, alors u converge. = Sinon : u, — +o00.
n—-+00

“* Attention 4%
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4 Suites monotones

Théoréeme 3 : Théoréme de la limite monotone

Soit u € RN Si u est croissante alors u possede une limite.

= Si u est majorée, alors u converge. = Sinon : u, — +o00.
n—-+00

“* Attention 4%

Eviter : « u est croissante, majorée par M, donc up ».
Exemple 4 [u” S s M}
On pose ug =1 puis :  upp1 = u, + —  pour tout n € N.

Un

Montrer que u, —> —o0.
n—-+oo

16
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5 Suites adjacentes

Définition 1

Deux suites u, v € RY, sont dites adjacentes si :

i) L'une est croissante, |'autre décroissante.
i) vop —up — 0.
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5 Suites adjacentes

Deux suites u, v € RY, sont dites adjacentes si :

i) L'une est croissante, |'autre décroissante.
i) vop —up — 0.

Soient u, v € RN, Si u et v sont adjacentes, alors : elles convergent
vers une méme limit

Si u croit et v décroit vers ¢
Vm,neN, un</{<y,

Démontrer le théoreme
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5 Suites adjacentes

Définition 1

Deux suites u, v € RY, sont dites adjacentes si :
i) L'une est croissante, |'autre décroissante.

i) vop —up — 0.

Théoréme 4

Soient u, v € RN, Si u et v sont adjacentes, alors : elles convergent
vers une méme limit

Si u croit et v décroit vers ¢

Vm,neN, un</{t<y,
Exemple 5

n
1 1
Pour tout n > 1, on pose : un:Z— et vp,=u,+ —.
k—ok! nn!
Montrer que u et v ont méme limite



Suites récurrentes du type
Upy1 = f(un)

Suites récurrentes du type up1 = f(up)

18



1 Rappels sur les suites du type v, 1 = f(u,)
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1 Rappels sur les suites du type v, 1 = f(u,)

f:D—R
Intervalle stablépar f

Intervalle I € D pour lequel f(I) C I

En pratique

Si ug € 1, alors (un)nen est bien définie et a termes dans /.

Théoreme 1 : Critére « f(¢) ={»

Si (up) converge vers ¢ € D et si f est continue en ¢, alors ¢ est un
point fixede f . f({) =1/

Objectif

Etudier la convergence de la suite.

19
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2 Cas ou f est croissante

Soit / un intervalle stable par f et up € /.
Si f croissante sur [ alors : (u,) est monotone

Exercice 1

On suppose f croissante sur /. Montrer que (u,)nen €st monotone.

SF 11 : Etudier la limite de (u,) lorsque f est croissante

Exemple 2
1. Soit up > 0. Etudier la limite de la suite (up)nen définie par :
RNy 3
Upy1 = % pour tout n € N

2. Méme question lorsque ug < 0.



Exemple 2 : Etudier la limite de u

2. up < 0 et pour tout n € N :

Upt1 =

u? +2u, +3

6
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1
1
1
A
1
1
1
I

Uo 1 u>0 3

Exemple 2 : Etudier la limite de u
u,2, +2u, + 3

2. up <0Qetpourtout ne N: wuyyq = 5
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1 u <3 3
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3 Cas ou f est décroissante

Soit / un intervalle stable par f et up € . Si f décroissante sur /
alors : (u2n) et (u2n4+1) sont monotones de sens contraire.

Exercice 2

Montrer le théoreme.




3 Cas ou f est décroissante

Théoréme 3

Soit / un intervalle stable par f et up € . Si f décroissante sur /
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3 Cas ou f est décroissante

Théoréme 3

Soit / un intervalle stable par f et up € . Si f décroissante sur /
alors :  (u2p) et (u2n+1) sont monotones de sens contraire.

Théoreme 4 : Admis provisoirement

Soit £ € R.
Si: wy, — £ et wpyy1 —> ¢ alors: u, — L
n

n—+00 —+00 n—400

Exemple 3 : Un cas ou f décroit

Etudier la limite de la suite (up) définie par up = 1 puis

1
VHEN, Un+1:1+f

Un

22
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