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MPSI 1 du 6 au 10 octobre

Toutes les définitions /énoncés du cours sont à connaître précisément.

■ Exercices de cours
Une note supérieure à 10 ne saurait être attribuée à un élève pris en défaut de connais-
sance sur un des exercices de cours.

Exercice 1 Résultats de cours, chap. 4 IV.1 —
1. Rappeler l’expression de la dérivée de Arcsin sur ]−1 ,1[.
2. Montrer que pour tout x ∈ [−1 ,1] : cos(Arcsinx) =

√
1− x2

3. Démontrer la formule de la question 1.

Exercice 2 Résultat de cours, chap. 4 IV.2 — Montrer que pour tout x ∈R∗ :

Arctanx+ Arctan
1
x

=


π

2
si x > 0

−π
2

si x < 0

Exercice 3 Exemple de cours, Chap 4, IV.2 —
Résoudre l’équation Arctan2x+ Arctan3x =

π

4
d’inconnue x ∈R.

Exercice 4 Exercice de la feuille 3 — Soit n un entier supérieur ou égal à 2.
1. On pose z = e

2iπ
n . Pour tout k ∈ ⟦0 ,n− 1⟧, déterminer le module de zk − 1.

2. On pose S =
n−1∑
k=0

∣∣∣zk − 1
∣∣∣. Montrer que S =

2
tan π

2n
.

Exercice 5 Exercice de cours, chap. 5 (I.2) — Soit n ∈N∗
1. Résoudre l’équation : (z+ i)n = (z − i)n d’inconnue z ∈C.
2. Montrer que les solutions sont réelles et les exprimer simplement à l’aide des

fonctions cosinus et sinus.

FONCTIONS USUELLES

1 Fonction exponentielle, logarithme et puissances

1.1 Rappels sur l’exponentielle et le logarithme

• Rappels des propriétés des fonctions exp et ln :
dérivées, monotonie, valeurs remarquables, limites, variations, graphes.

1.2 Fonctions puissances

Pour tous x ∈R∗+ et α ∈R, on pose xα =
déf.

eα lnx.

Définition

j Attention j Lorsque α ∈R \Z, xα n’est pas « x × x × · · · × x︸         ︷︷         ︸
“α fois”

»

Pour tous α,β ∈R et x,y ∈R∗+ :

• ln(xα) = α lnx • xα+β = xαxβ • xαβ = (xα)β • (xy)α = xαyα • x−α =
1
xα

Théorème

Pour tout α ∈R, la fonction pα : x 7→ xα est dérivable surR∗+ de dérivée x 7→ αxα−1

Théorème : Dérivée

• Remarques:
• Si u est une fonction dérivable et strictement positive, alors (uα)′ = αuα−1.
• j Attention j Eviter de calculer les dérivées de fonctions du type x 7→ xx ou
x 7→ xu(x) en inventant une formule (fausse).

A connaître :
• Les variations et limites des fonctions pα(selon le signe de α).
• Les graphes des fonctions puissances : selon que α < 0, 0 < α < 1 ou α > 1.
• La fonction pα est concave si α ∈ [0 ,1] et convexe sinon.

Théorème : Variations des fonctions puissances

Pour tout α > 0 et β ∈R :

ex

xα
−→

x→+∞
+∞ |x|α ex −→

x→−∞
0

(lnx)β

xα
−→

x→+∞
0 xα |lnx|β −→

x→0+
0

Théorème : croissances comparées
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2 Fonctions hyperboliques

2.1 Cosinus et sinus hyperboliques

Les fonctions cosinus hyperbolique et sinus hyperbolique sont définies sur R par

∀x ∈R, chx =
ex + e−x

2
et shx =

ex − e−x

2

Définition

1. La fonction ch est paire, la fonction sh est impaire.
2. Les fonctions sh et ch sont dérivables sur R et : sh′ = ch et ch′ = sh.
3. chx −→

x→+∞
+∞ et shx −→

x→+∞
+∞.

4. Leurs variations sont à connaître, de même que leurs graphes.

Théorème : Propriétés des fonctions sh et ch

• Remarque. chx ≥ 1 pour tout réel x et chx = 1 ssi x = 0.

Pour tout réel x : ch2x − sh2x = 1

Théorème

2.2 Tangente hyperbolique

La fonction tangente hyperbolique est définie sur R par : th =
sh
ch

.

Pour tout x ∈R : thx =
ex − e−x

ex + e−x
=

e2x − 1
e2x + 1

.

Définition

1. La fonction th est impaire.

2. La fonction th est dérivable et : th′ =
1

ch2 = 1− th2.

3. thx −→
x→+∞

1 et thx −→
x→−∞

−1.

4. Ses variations sont à connaître, ainsi que son graphe.

Théorème : Propriétés de th

3 Fonction réciproque d’une bijection
• Cadre. • I , J sont des intervalles • f : I → J est définie sur I et à valeurs dans J .

3.1 Notions de bijection et de fonction réciproque

On dit que f est bijective de I sur J ou que f est une bijection de I sur J si tout y ∈ J
possède un unique antécédent par f .
Dans ce cas, on note f −1 la fonction qui à y ∈ J associe l’antécédent de y par f .
La fonction f −1 s’appelle la fonction réciproque de f .

Définition

• Graphiquement. Les courbes de f et de f −1 sont symétriques par rapport à la
droite d’équation y = x

3.2 Théorème des valeurs intermédiaires strictement mono-
tone

• Cadre. On suppose ici que I = [a ,b[ avec a < b (et éventuellement b = +∞)

Si : i) f est continue sur l’intervalle I = [a ,b[ (b fini ou non).
ii) f est strictement croissante sur I
iii) Aux bornes : f (a) = α et f (x) −→

x→b
ℓ (finie ou non)

Alors f est bijective de [a ,b[ sur [α ,ℓ[.

Théorème : TVI strictement monotone

• Enoncés analogues avec f strictement décroissante et/ou I =]a ,b], ]a ,b[ ou [a ,b]

3.3 Calcul de f −1

En pratique, on fixe y ∈ J et on résout l’équation : f (x) = y d’inconnue x ∈ I .

3.4 Dérivée d’une réciproque

On suppose que :
• f est bijective de I sur J .
• f est dérivable sur I .
• f ′ ne s’annule pas sur I .

Alors f −1 est dérivable sur J et : (f −1)′ =
1

f ′ ◦ f −1

Théorème : (Admis)
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4 Fonctions circulaires réciproques
4.1 Fonctions Arc sinus et Arc cosinus

Arcsin est la fonction réciproque de la restriction de sin à [−π
2 , π2 ].

Définition

Si x ∈ [−1 ,1], calculer θ = Arcsinx revient à trouver un réel θ tel que :
• θ ∈ [−π

2 , π2 ] • sinθ = x.

En pratique

• Conséquences:
• Pour tout x ∈ [−1 ,1] : sin(Arcsinx) = x.
• Pour tout θ ∈ [−π

2 , π2 ] : Arcsin(sinx) = x. Mais c’est faux si θ < [−π
2 , π2 ].

Arccos est la fonction réciproque de la restriction de cos à [0 ,π].

Définition

Si x ∈ [−1 ,1], calculer θ = Arccosx revient à trouver θ tel que :
• θ ∈ [0 ,π] • cosθ = x.

En pratique

• Conséquence.
• Pour tout x ∈ [−1 ,1] : cos(Arccosx) = x.
• Pour tout θ ∈ [0 ,π] : Arccos(cosx) = x. Mais c’est faux si θ < [0 ,π].

• Arcsin est continue et strictement croissante sur [−1 ,1].
• Arccos est continue et strictement décroissante sur [−1 ,1].
• Leurs variations et graphes sont à connaître.

Théorème : (Admis provisoirement)

• Remarque. La fonction Arcsin est impaire.

Pour tout x ∈ [−1 ,1] : cos(Arcsinx) = sin(Arccosx) =
√

1− x2

Théorème

Les fonctions Arcsin et Arccos sont dérivables sur ]−1 ,1[ et :

∀x ∈ ]−1 ,1[, Arcsin′(x) =
1

√
1− x2

et Arccos′(x) = − 1
√

1− x2

Théorème

4.2 Fonction Arc tangente

Arctan est la fonction réciproque de la restriction de tan à ]−π
2 , π2 [.

Définition

Si x ∈ [−1 ,1], calculer θ = Arctanx revient à trouver un réel θ tel que :
• θ ∈ ]−π

2 , π2 [ • tanθ = x.

En pratique

• Conséquence.
• Pour tout x ∈R : tan(Arctanx) = x.
• Pour tout θ ∈ ]−π/2 ,π/2[ : Arctan(tanx) = x

Mais c’est faux si θ < ]−π/2 ,π/2[.

• Arctan est continue et strictement croissante sur R.
• Arctanx −→

x→−∞
−π

2
Arctan −→

x→+∞
π

2
.

• Ses variations et son graphe sont à connaître.

Théorème : (Admis provisoirement)

Arctan est impaire

Théorème

Arctan est dérivable sur R et :

∀x ∈R, Arctan′(x) =
1

1 + x2

Théorème

Pour tout x ∈R∗+ : Arctanx+ Arctan
1
x

=

π
2 si x > 0
−π

2 si x < 0

Théorème
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NOMBRES COMPLEXES - NIVEAU 2

1 Racines n-ièmes dans C
• Cadre. n est un entier naturel non nul.

Pour tout Z ∈C∗, une racine n-ième de Z est un complexe z tel que zn = Z.

Définition

• Vocabulaire. Les racines n-ièmes de 1 sont appelées racines n-ièmes de l’unité.

1.1 Racines de l’unité

Il existe exactement n racines de l’unité, ce sont les complexes ωk = e
2ikπ
n pour

k ∈ ⟦0 ,n− 1⟧.

Théorème

• Notation. On noteUn l’ensemble des racines n-ièmes de l’unité.

• Pour tout entier k ∈ ⟦0 ,n− 1⟧ : ωk = ωk
1.

• Si n ≥ 2, la somme des racines n-ièmes de l’unité est nulle :
n−1∑
k=0

ωk = 0.

Théorème

•U1 = {1}. •U2 = {1,−1}. •U3 =
{
1, e

2iπ
3 , e

4iπ
3

}
. •U4 = {1,−1, i,−i}.

On note j = e
2iπ

3 . Les racines 3e de l’unité sont 1, j et j2 et :

• j3 = 1 • j2 =
1
j

= j • 1+j+j2 = 0 • Pour tout z ∈C : z2 +z+1 = (z−j)(z−j2).

Définition

1.2 Racines n-ièmes d’un complexe Z ∈C∗

Le complexe non nul Z = reiθ possède exactement n racines n-ièmes, ce sont les

complexes : zk = r
1
n e

i
(
θ
n + 2kπ

n

)
, pour k ∈ ⟦0 ,n− 1⟧.

Théorème

2 Second degré dans C
2.1 Calcul des racines carrées sous forme algébrique
•Objectif. Etant donné Z = a+ ib ∈C∗, on cherche à calculer les racines carrées de Z

La forme algébrique de z2 étant z2 = (x2 − y2) + 2ixy, l’égalité z2 = Z donne
x2 − y2 = a (1) (parties réelles)

x2 + y2 =
√
a2 + b2 (2) (modules)

2xy = b (3) (parties imaginaires)

• On obtient x2 via l’opération (1) + (2).
• On obtient y2 via l’opération (1)− (2).
• (3) permet d’accorder les signes.

Méthode générale pour calculer une racine carrée z = x+ iy de Z

2.2 Equation du second degré (E) az2 + bz + c = 0 à coefficients
complexes

• Cadre. • a ∈C∗, b ∈C et c ∈C • On note ∆ = b2−4ac le discriminant de l’équation

• Si ∆ = 0, alors (E) a une unique solution z0 = − b

2a
.

• Si ∆ , 0, l’équation (E) a deux solutions distinctes : z1 =
−b+ δ

2a
et z2 =

−b − δ
2a

où δ est l’une quelconque des deux racines carrées de ∆.

Théorème

2.3 Somme et produit des racines

• Remarque. Les deux racines de (E) vérifient z1 + z2 = −b
a

et z1z2 =
c

a
.

Soit s,p ∈ C. Les solutions de

z1 + z2 = s

z1z2 = p
sont les racines de l’équation

z2 − sz+ p = 0

Théorème
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2.4 Factorisation des polynômes : deux petits résultats

• Cadre. • a0, . . . , an ∈C • P : z 7→
n∑

k=0

akz
k est une fonction polynomiale

• α ∈C est une racine de P i.e. : P (α) = 0

Il existe une fonction polynomiale Q telle que :
∀z ∈C, P (z) = (z −α)Q(z)

Théorème

Si les ak sont tous réels alors α est aussi une racine de P .

Théorème

3 Interprétation géométrique des complexes
3.1 Orthogonalité, alignement

Soient A,B,M trois points d’affixes a,b,z tels que M , A et M , B∣∣∣∣∣z − bz − a

∣∣∣∣∣ =
MB

MA
et arg

(z − b
z − a

)
≡ (MA
−−−→

,MB
−−−→

) [2π].

i) A, B et M sont alignés ssi
z − b
z − a

∈R.

ii) (MA) et (MB) sont perpendiculaires ssi
z − b
z − a

∈ iR.

Théorème

3.2 Transformations du plan

Soient b,ω ∈C, λ ∈R∗ et θ ∈R.
• La translation de vecteur b est l’application t : z 7→ z+ b.
• L’homothétie de centre ω et de rapport λ est l’application h : z 7→ z′

où : z′ −ω = λ(z −ω) i.e. z′ = ω+λ(z −ω).
• La rotation de centre ω et d’angle θ est l’application r : z 7→ z′

où : z′ −ω = eiθ(z −ω) i.e. z′ = ω+λ(z −ω).

Définition

On appelle similitude directe toute application deC dansC de la forme z 7→ az+b,
où a ∈C∗ et b ∈C.

Définition

Soient a ∈C∗, b ∈C et f : z 7→ az+ b.
• Si a = 1, alors f est la translation de vecteur (d’affixe) b.

• Si a , 1, alors f possède un unique point invariant ω d’affixe ω =
b

1− a
et,

pour tout z ∈C, z′ = f (z) vérifie : z′ −ω = a(z −ω).
On dit que f est la similitude de centre ω, de rapport |a| et d’angle arga.

Théorème

L’adresse de la page des maths est : https://mathieucathala.fr
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