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MPSI 1 du 8 au 12 juin

Toutes les définitions /énoncés du cours sont à connaître précisément.

■ Exercice de cours

Exercice 1 Résultat et exemple de cours —
1. Enoncer et démontrer l’inégalité de Cauchy-Schwarz.

2. Soit f : [a ,b]→R∗+, continue. Montrer que
∫ b

a
f (t)dt ×

∫ b

a

1
f (t)

dt ≥ (b − a)2

Exercice 2 Exemple de cours : III exercice 4 — On cherche les réels a,b minimisant

l’intégrale I(a,b) =
∫ 1

0
(t2 − at − b)2 dt.

1. Exprimer I(a,b) comme une distance (Préciser l’espace préhilbertien E, le produit
scalaire choisi sur E, le sous-e.v. F et faire un dessin pour illustrer la situation)

2. En déduire que I(a,b) est minimale pour (a,b) = (1,−1
6 ).

Exercice 3 Exercice feuille 28 —
On munit Mn(R) de son produit scalaire canonique. On admet que les sous-espaces
Sn (matrices symétriques) et An (matrices antisymétriques) sont suppléméntaires.
1. Rappeler la décomposition de M ∈Mn(R) selon Sn ⊕An

2. Montrer que An =
(
Sn

)⊥
.

3. Soit A ∈Mn(R). On pose As = 1
2

(
A+A⊤

)
. Montrer : ∀S ∈Sn, ∥A− S ∥ ≥ ∥A−As∥

Exercice 4 Résultat de cours, II — Soient E un espace préhilbertien et (u1, . . . ,up)
une famille orthogonale de E.

1. Montrer que ∥
p∑

i=1

ui ∥2 =
p∑

i=1

∥ui ∥2

2. Montrer que si u1, . . . ,up sont non nuls alors (u1, . . . ,up) est libre.

1 Produit scalaire
Dans tout le chapitre E est un espace vectoriel réel.

1.1 Définitions

Un produit scalaire sur E est une forme bilinéaire symétrique définie positive i.e. une
application : E ×E −→ R

(x, y) 7−→ (x | y)
• Bilinéaire. Pour tous x,x′ , y,y′ ∈ E et tous λ,µ ∈ R :

• (λx+µx′ | y) = λ (x | y) +µ (x′ | y) • (x | λy +µy′) = λ (x | y) +µ (x | y′)
• Symétrique. Pour tous x,y ∈ E : (x | y) = (y | x).
• Positive. Pour tout x ∈ E : (x | x) ≥ 0.
• Définie. Pour tout x ∈ E : si (x | x) = 0 alors x = 0.

Définition

1.2 Exemples de références
• Produit scalaire canonique sur Rn.
• Produit scalaire intégral sur C ([a ,b],R).
• Produit scalaire canonique sur Mn,p(R).

Le tableau du formulaire est à connaître.

1.3 Inégalité de Cauchy-Schwarz
Dans toute la suite E est un espace préhilbertien.

Pour tous x,y ∈ E : (x | y)2 ≤ (x | x) (y | y) avec égalité ssi x et y sont colinéaires

Théorème

On peut utiliser l’inégalité de Cauchy-Schwarz pour majorer/minorer des sommes
ou des intégrales.

En pratique : un nouvel outil pour établir des inégalités

1.4 Norme associée à un produit scalaire

Soient x,y ∈ E. La norme de x est : ∥x ∥ =
déf.

√
(x | x).

La quantité ∥x − y ∥ est appelée distance de x à y

Définition
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Soient x,y ∈ E et λ ∈R :
1. ∥x ∥2 = (x | x)
2. ∥λx ∥ = |λ| ∥x ∥
3. Inégalité de Cauchy-Schwarz.

∣∣∣(x | y)
∣∣∣ ≤ ∥x ∥ ∥y ∥

4. Identités remarquables.
• ∥x+ y ∥2 = ∥x ∥2 + ∥y ∥2 + 2(x | y) • ∥x − y ∥2 = ∥x ∥2 + ∥y ∥2 − 2(x | y)

• ∥x ∥2 − ∥y ∥2 = (x+ y | x − y)

5. Formule de polarisation. (x | y) =
1
2

(
∥x+ y ∥2 − ∥x ∥2 − ∥y ∥2

)
6. Inégalité triangulaire. ∥x+ y ∥ ≤ ∥x ∥+ ∥y ∥ avec égalité si et seulement si x et

y sont colinéaires de même sens.

Théorème : Formules à connaître

2 Orthogonalité
2.1 Vecteurs orthogonaux

Deux vecteurs x,y ∈ E sont dits orthogonaux lorsque (x | y) = 0.

Définition

Deux vecteurs x,y ∈ E sont orthogonaux ssi : ∥x+ y ∥2 = ∥x ∥2 + ∥y ∥2

Théorème : Théorème de Pythagore

Une famille (ui)i∈I de vecteurs de E est dite :
• Orthogonale si

(
ui | uj

)
= 0 pour i , j.

• Orthonormale si, de plus, ∥ui ∥ = 1 pour tout i ∈ I

Définition

Si (u1, . . . ,up) est une famille orthogonale, alors : ∥
p∑

i=1

ui ∥2 =
p∑

i=1

∥ui ∥2

Théorème : Pythagore étendu

Toute famille orthogonale de vecteurs non-nuls est libre.
En particulier toute famille orthonormale est libre

Théorème

2.2 Coordonnées dans une base orthonormale
• Soit E est un espace euclidien muni d’une base orthnormée B = (e1, . . . , en)

• Soient x,y ∈ E écrits sous la forme x =
n∑
i=1

xiei et y =
n∑
i=1

yiei

• ∀i ∈ ⟦1 ,n⟧, xi = (x | ei) ; • (x | y) =
n∑
i=1

xiyi ; • ∥x ∥2 =
n∑
i=1

x2
i .

Théorème

• Remarque. Si X et Y sont les colonnes des coordonnées de x et y :
(x | y) = X⊤Y et ∥x ∥2 = X⊤X

2.3 Supplémentaire orthogonal d’un sous-espace

Soit A une partie de E. L’orthogonal de A est l’ensemble des vecteurs de E ortho-
gonaux à tous les vecteurs de A : A⊥ =

déf.
{x ∈ E | ∀a ∈ A, (x | a) = 0}.

A⊥ est un sous-espace vectoriel de E (même si A n’en est pas un).

Définition

Exemple 1 -r- E⊥ = {0} {0}⊥ = E A⊥ =
(
VectA

)⊥

Si F = Vect(u1, . . . ,up) alors, pour tout x ∈ E : x ∈ F⊥⇔


(x | u1) = 0
. . .(
x | up

)
= 0

Déterminer F⊥ si F est donné sous forme de « Vect »

Soit F un sous-espace de dimension finie de E : • E = F ⊕F⊥ • (F⊥)⊥ = F

Théorème

• Conséquence. Si E est de dimension finie n alors dimF⊥ = n−dimF.
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3 Projection orthogonale sur un sous-espace de di-
mension finie

Ici F est un sous-espace de dimension finie de E. On sait que F ⊕F⊥ = E.

3.1 Projecteurs orthogonaux, symétries orthogonales

• Le projecteur orthogonal sur F, noté pF est le projecteur sur F parallèlement à F⊥

• La symétrie orthogonale par rapport à F, notée sF , est la symétrie par rapport à
F parallèlement à F⊥.

Définition

• Retenir. Le projeté de x est l’unique vecteur de E tel que :
pF(x) ∈ F et x − pF(x) ∈ F⊥

Soit (e1, . . . , ep) une base orthonormée de F. Pour tout x ∈ E : pF(x) =
p∑

i=1

(x | ei)ei

Théorème : calculer le projeté

Il faut connaître les trois méthodes (voir savoir-faire) :
• Méthode 1 : calcul « à vue »
• Méthode 2 : avec une base quelconque de F.
• Méthode 3 : en base orthonormée

En pratique : pour calculer le projeté orthogonal

3.2 Distance à un sous-espace

Pour tout x ∈ E, on appelle distance de x à F le réel d(x,F) =
déf.

inf
y∈F
∥x − y ∥

Définition

Soit x ∈ E et y ∈ F. Si y , pF(x) : ∥x − y ∥ > ∥x − pF(x)∥

En particulier : ∥x − pF(x)∥ = d(x,F)

Théorème : Théorème d’approximation

• Interprétation. pF(x) est le vecteur de F le plus proche de x au sens de la norme
∥· ∥

3.3 Cas d’un hyperplan

Soit x ∈ E et H est un hyperplan d’un espace euclidien E.

Si a est un vecteur normal à H : • pH (x) = x − (x | a)

∥a∥2
a • d(x,H) =

|(x | a)|
∥a∥

Théorème

4 Algorithme d’orthonormalisation de Gram-
Schmidt

• Objectif. « Transformer » une famille libre (u1, . . . ,un) en une famille orthonormée
(e1, . . . , en).

• Pour k = 1 : e1 =
u1

∥u1 ∥
• Pour k = 2 : e2 =

u2 − (u2 | e1)e1

∥u2 − (u2 | e1)e1 ∥
Plus généralement, pour tout k ∈ ⟦2 ,n⟧ :

• on pose ẽk = uk −
k−1∑
i=1

(uk | ei)ei • on normalise : ek =
ẽk
∥ẽk ∥

.

Construction de proche en proche des ek

(e1, . . . , en) orthonormée et : ∀k ∈ ⟦1 ,n⟧, Vect(u1, . . . ,uk) = Vect(e1, . . . , ek).

Théorème

On suppose que E est un espace euclidien. Alors :
1. L’espace E possède des bases orthonormées.
2. Toute famille orthonormale de E est complétable en une base orthonormée.

Théorème : Base orthonormées en dimension finie

L’adresse de la page des maths est : https://mathieucathala.fr
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