du 4 au 7 mai

Toutes les définitions /énoncés du cours sont a connaitre précisément.

= Exercice de cours sur 8 points

L'un des exercices de la liste fournie.

MATRICES ET APPLICATIONS LINEAIRES

Tout le chapitre est au programme

MATRICES (NIVEAU 3)

1 Théorie du rang

1.1 Image et noyau d’'une matrice A € .#, ,(K)

En pratique

* I'image de A est le sous-espace vectoriel engendré par ses vecteurs colonnes.
* Le noyau de A est I'ensemble des solutions du systeme AX =0 : les lignes

de A donnent un systeme d’équation du noyau.
—

Théoréme : Critére AX =0
On suppose que A € #,(IK) . Alors A est inversible ssi Ker A = {On} ]
\

* Remarque. A € #,(K) est inversible ssi (Cy,...,C,) est libre

1.2 Rang d’'une matrice

Théoréme : Inversibilité et rang N

On suppose que A € .#,(K) . Alors A est inversible ssi rg(A) = n.
&

Théoréme : Lien avec le rang d’une famille de vecteurs ~\

Soient (E, %) un K-espace vectoriel de dimension finie muni d’une base et

ZF =(uy,...,up) EEP: rg(ﬁ):rg(Matgg(f))

r

J

Théoréme : Lien avec le rang d’une application linéaire \

Soient (E, #) et (F,%) deux K-espaces vectoriels de dimension finie munis de
bases et soit f € Z(E,F): rg(f) = rg(Matgg;g(f))

\ J/

Théoréeme : Rang de la transposée N

Définition
On appelle rang de A le rang, dans K", de la famille de ses vecteurs colonnes.

* Remarque. Autrement dit rgA =dimImA =rgf,.
* (rg(A) <petrg(Ad)<n) « VB € #,,(K) (rg(AB)<rg(A) et rg(AB)<rg(B))
e VP e GL,(K), YQ € GL,(K), rg(PA)=rg(AQ)=rg(A)

*rg(AT)=rg(A) < Lerangde A est aussi le rang de la famille de ses lignes

\ J/

1.3 Rang et matrices extraites

Théoreme

Le rang de A est la taille maximale des matrices carrées inversibles extraites de A
Pour tout r € IN, rg(A) > r ssi A posséde une matrice extraite inversible de taille r.

1.4 Méthode de Gauss pour le calcul du rang

* Remarque. Les opérations élémentaires conservent le rang.
Calcul du rang par opérations élémentaires

Toute matrice est transformable en une matrice échelonnée par opérations élé-
mentaires sur les lignes et les colonnes
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2 Matrices équivalentes, matrices semblables
2.1

Matrices semblables et trace

Définition

Soient A, B € #,(KK). B est semblable a A si il existe une matrice P € GL,(IK) telle
que B= P 1AP.

* Remarque. La similitude des matrices est une relation d’équivalence.
» Traduction en terme d’applications linéaires. Si f € Z(E) est donné et si & et
P’ sont deux bases de E alors les matrices Matg f et Matg f sont semblables

n

La trace de A € #,(IK) est la somme de ses coefficients diagonaux : tr(A) = Z
er.

aj,i

~————

:
1. Pour toutes A, B € 4, (KK), et tous A, y € K, tr(AA + uB) = Atr(A) + utr(B).
2. YA, B e #,(K), tr(AB) = tr(BA).

\ &

Théoréme )

L Deux matrices semblables ont méme trace.

“* Attention “* La réciproque est fausse.

» Conséquence. Si E est un K-espace vectoriel de dimension finie et si f € Z(E),
les matrices qui représentent f dans les diverses bases de E ont toutes la méme trace.
Ceci permet de définir la trace de f comme étant la trace commune de ces matrices.

Théoreme

Si p est un projecteur de E, alors tr(p) = rg(p). ]

2.2 Matrices équivalentes et rang

Définition

A, Be M, ,(K) sont équivalentes s’il existe U € GL,(K),V €GL,(K) t.q. B= UAV

* Remarque. C’est le cas lorsque 'on peut transformer A en B par une série d’opé-
rations élémentaires.

» Traduction en terme d’applications linéaires. Si / € Z(E,F) est donnée et si
P, A’ sont des bases de E et €, ¢ sont des bases de F alors les matrices Mat gz «(f)
et Matg «(f) sont équivalentes.

* Remarque. L'équivalence des matrices est une relation d’équivalence.

Théoréme )

Soit A € 4, ,(K) de rang r. Alors A est équivalente a J, = (Ir O)

0 0

. J

Théoréeme 3

Soient A, B € #,,,(K). A et B sont équivalentes si et seulement si rg(A) = rg(B).

Vs
.
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FORMES LINEAIRES ET HYPERPLANS

» Cadre. E est un K-espace vectoriel

1.1 Généralités

Rappels sur les formes linéaires

* Une forme linéaire de E est une application linéaire de E dans K.
dim(,Sf(E,IK)) —chimn

* On appelle hyperplan de E tout noyau d’une forme linéaire non nulle de E
~—

Rappels sur les formes linéaires coordonnées

On suppose E de dimension finie n. Soit & = (by,...,b,) une base de E
* Pour j €[[1,n] la j¢ forme linéaire coordonnée de E est ¢; : g

* Si E est de dimension finie

— K

R= xibj — x;

i€l

e La famille (¢y,...,p,) est une base de .Z(E, K).

¢ Si H est un hyperplan de E, il existe ay,...,a, € K non tous nuls tels que :
H={x€E | ayx; +---+ayx, =0}

ou (xq,...,x,) désignent les coordonnées de x dans la base #
~—

1.2 Hyperplans : trois définitions équivalentes

Théoréeme 3

Soit H un sous-espace vectoriel de E. Les assertions suivantes sont équivalentes :
i) H est le noyau d’une forme linéaire non nulle de E.
ii) H est supplémentaire d’'une droite: E=H@®D ou: D = Vect(e) avec e = 0.
Si E est de dimension finie 7 elles sont équivalentes a :
1ii) H est de dimension n— 1.

* Remarque. * En dim. 3 : hyperplan = plan® En dim. 2 : hyperplan = droite

Théoréme : « Unicité » de I’équation d’un hyperplan ~

Soit H un hyperplan de E et ¢, i deux formes linéaires non nulles de E telles
que H = Ker ¢ = Ker . Il existe k € K\ {0} tel que ¢ = k.

J

Théoréeme 3

1. Lintersection de p hyperplans de E est un sous-espace vectoriel de E de
dimension au moins n — p.

2. Tout sous-espace de dimension 7 —p est I'intersection de p hyperplans de E

J

.

¢ Interprétation. Chaque hyperplan fournit une équation, et chaque équation est
une contrainte supplémentaire qui enléve potentiellement un degré de liberté.

L'adresse de la page des maths est : https://mathieu.cathala.fr
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