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MPSI 1 du 4 au 7 mai

Toutes les définitions /énoncés du cours sont à connaître précisément.

■ Exercice de cours sur 8 points
L’un des exercices de la liste fournie.

MATRICES ET APPLICATIONS LINEAIRES

Tout le chapitre est au programme

MATRICES (NIVEAU 3)

1 Théorie du rang

1.1 Image et noyau d’une matrice A ∈Mn,p(K)

• L’image de A est le sous-espace vectoriel engendré par ses vecteurs colonnes.
• Le noyau de A est l’ensemble des solutions du système AX = 0 : les lignes

de A donnent un système d’équation du noyau.

En pratique

On suppose que A ∈Mn(K) . Alors A est inversible ssi KerA = {0
K
n }

Théorème : Critère AX = 0

• Remarque. A ∈Mn(K) est inversible ssi (C1, . . . ,Cn) est libre

1.2 Rang d’une matrice

On appelle rang de A le rang, dansKn, de la famille de ses vecteurs colonnes.

Définition

• Remarque. Autrement dit rgA = dimImA = rgfA.
• rg(A) ≤ p et rg(A) ≤ n . • ∀B ∈ Mp,q(K) rg(AB) ≤ rg(A) et rg(AB) ≤ rg(B)
• ∀P ∈ GLn(K), ∀Q ∈ GLp(K), rg(PA) = rg(AQ) = rg(A)

On suppose que A ∈Mn(K) . Alors A est inversible ssi rg(A) = n.

Théorème : Inversibilité et rang

Soient (E,B) un K-espace vectoriel de dimension finie muni d’une base et
F = (u1, . . . ,up) ∈ Ep : rg(F ) = rg

(
MatB(F )

)
Théorème : Lien avec le rang d’une famille de vecteurs

Soient (E,B) et (F,C ) deux K-espaces vectoriels de dimension finie munis de
bases et soit f ∈L (E,F) : rg(f ) = rg

(
MatB,C (f )

)
Théorème : Lien avec le rang d’une application linéaire

• rg(A⊤) = rg(A) • Le rang de A est aussi le rang de la famille de ses lignes

Théorème : Rang de la transposée

1.3 Rang et matrices extraites

Le rang de A est la taille maximale des matrices carrées inversibles extraites de A
Pour tout r ∈N, rg(A) ≥ r ssi A possède une matrice extraite inversible de taille r.

Théorème

1.4 Méthode de Gauss pour le calcul du rang
• Remarque. Les opérations élémentaires conservent le rang.

Toute matrice est transformable en une matrice échelonnée par opérations élé-
mentaires sur les lignes et les colonnes

Calcul du rang par opérations élémentaires
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2 Matrices équivalentes, matrices semblables
2.1 Matrices semblables et trace

Soient A,B ∈Mn(K). B est semblable à A si il existe une matrice P ∈ GLn(K) telle
que B = P −1AP .

Définition

• Remarque. La similitude des matrices est une relation d’équivalence.
• Traduction en terme d’applications linéaires. Si f ∈L (E) est donné et si B et
B′ sont deux bases de E alors les matrices MatBf et MatB′ f sont semblables

La trace de A ∈Mn(K) est la somme de ses coefficients diagonaux : tr(A) =
déf.

n∑
i=1

ai,i

Définition

1. Pour toutes A,B ∈Mn(K), et tous λ,µ ∈K, tr(λA+µB) = λtr(A) +µtr(B).
2. ∀A,B ∈Mn(K), tr(AB) = tr(BA).

Théorème

Deux matrices semblables ont même trace.

Théorème

j Attention j La réciproque est fausse.

• Conséquence. Si E est unK-espace vectoriel de dimension finie et si f ∈L (E),
les matrices qui représentent f dans les diverses bases de E ont toutes la même trace.
Ceci permet de définir la trace de f comme étant la trace commune de ces matrices.

Si p est un projecteur de E, alors tr(p) = rg(p).

Théorème

2.2 Matrices équivalentes et rang

A,B∈Mn,p(K) sont équivalentes s’il existe U ∈GLn(K),V ∈GLp(K) t.q. B =UAV

Définition

• Remarque. C’est le cas lorsque l’on peut transformer A en B par une série d’opé-
rations élémentaires.
• Traduction en terme d’applications linéaires. Si f ∈ L (E,F) est donnée et si
B,B′ sont des bases de E et C ,C ′ sont des bases de F alors les matrices MatB,C (f )
et MatB′ ,C ′ (f ) sont équivalentes.
• Remarque. L’équivalence des matrices est une relation d’équivalence.

Soit A ∈Mn,p(K) de rang r. Alors A est équivalente à Jr =
(
Ir 0
0 0

)Théorème

Soient A,B ∈Mn,p(K). A et B sont équivalentes si et seulement si rg(A) = rg(B).

Théorème
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FORMES LINEAIRES ET HYPERPLANS

• Cadre. E est unK-espace vectoriel

1.1 Généralités

• Une forme linéaire de E est une application linéaire de E dansK.

• Si E est de dimension finie dim
(
L (E,K)

)
= dimE

• On appelle hyperplan de E tout noyau d’une forme linéaire non nulle de E

Rappels sur les formes linéaires

On suppose E de dimension finie n. Soit B = (b1, . . . , bn) une base de E
• Pour j ∈ ⟦1 ,n⟧ la je forme linéaire coordonnée de E est ϕj : E −→K

x =
∑
i∈I

xibi 7−→ xj

• La famille (ϕ1, . . . ,ϕn) est une base de L (E,K).
• Si H est un hyperplan de E, il existe a1, . . . , an ∈K non tous nuls tels que :

H = {x ∈ E | a1x1 + · · ·+ anxn = 0}
où (x1, . . . ,xn) désignent les coordonnées de x dans la base B

Rappels sur les formes linéaires coordonnées

1.2 Hyperplans : trois définitions équivalentes

Soit H un sous-espace vectoriel de E. Les assertions suivantes sont équivalentes :
i) H est le noyau d’une forme linéaire non nulle de E.
ii) H est supplémentaire d’une droite : E =H ⊕D où : D = Vect(e) avec e , 0.

Si E est de dimension finie n elles sont équivalentes à :
iii) H est de dimension n− 1.

Théorème

• Remarque. • En dim. 3 : hyperplan = plan• En dim. 2 : hyperplan = droite

Soit H un hyperplan de E et ϕ, ψ deux formes linéaires non nulles de E telles
que H = Kerϕ = Kerψ. Il existe k ∈K \ {0} tel que ψ = kφ.

Théorème : « Unicité » de l’équation d’un hyperplan

1. L’intersection de p hyperplans de E est un sous-espace vectoriel de E de
dimension au moins n− p.

2. Tout sous-espace de dimension n−p est l’intersection de p hyperplans de E

Théorème

• Interprétation. Chaque hyperplan fournit une équation, et chaque équation est
une contrainte supplémentaire qui enlève potentiellement un degré de liberté.

L’adresse de la page des maths est : https://mathieu.cathala.fr
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