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MPSI 1 du 13 au 17 avril

Toutes les définitions /énoncés du cours sont à connaître précisément.

■ Exercice de cours
Exercice 1 Chap 28-I, déf. 1 et th. 1 — Soit f : [a ,b]→K, continue par morceaux.
1. Donner l’expression des sommes de Riemann de f
2. Démontrer le résultat de convergence dans le cas où f est lipschitzienne.

Exercice 2 Chap 28-II, déf. 1 et th. 1 — Enoncer la formule de Taylor à reste intégral
(avec ses hypothèses) et démontrer cette formule.

Exercice 3 Exemple de cours, Chap 28-II — En appliquant l’inégalité de Taylor-

Lagrange à une fonction bien choisie, montrer que pour tout z ∈C :
n∑

k=0

zk

k!
−→

n→+∞
ez.

Exercice 4 Exemple de cours, Chap 28-III — Soit α ∈ ]0 ,1[. A l’aide d’une comparai-

son somme-intégrale, déterminer un équivalent de Sn =
n∑

k=1

1
kα

.

Exercice 5 Résultat de cours, Chap 28-III, — Soit f ∈ C (R+,R), positive décroissante.

Montrer qu’il existe ℓ ∈R tel que :
n∑

k=0

f (k) =
n→+∞

∫ n

0
f (t)dt + ℓ + o(1).

Exercice 6 Chap 28-IV, th. 1 — Enoncer et démontrer le théorème de Heine

APPROXIMATIONS

1 Sommes de Riemann
• Cadre. f est une fonction continue par morceaux de [a ,b] dansK =R ou C.

Pour tout n ∈N∗, les sommes de Riemann de f (à gauche et à droite) sont les deux

sommes : Rn(f ) =
b − a
n

n−1∑
k=0

f
(
a+ k

b − a
n

)
et Sn(f ) =

b − a
n

n∑
k=1

f
(
a+ k

b − a
n

)
Définition

• Remarques:
1. Les points xk = a+ k b−a

n forment une subdivision de [a ,b] dite régulière car
les segments [xk ,xk+1] sont de mêmes longueurs xk+1 − xk = b−a

n .
2. Les quantités sommées dans Rn(f ) et Sn(f ) ont des interprétations en termes

d’aires sur chaque [xk ,xk+1]. Par exemple, dans Rn(f ), chaque terme b−a
n × f (xk)

est l’aire du rectangle de base [xk ,xk+1] et de hauteur f (xk).

Soit f une fonction continue par morceaux sur [a ,b]. Les suites (Rn(f ))n∈N∗ et

(Sn(f ))n∈N∗ convergent et : lim
n→+∞

Rn(f ) = lim
n→+∞

Sn(f ) =
∫ b

a
f (t)dt

Théorème

• Cas particulier très important. Très souvent, on peut choisir [a ,b] = [0 ,1].

1
n

n−1∑
k=0

f
( k
n

)
−→

n→+∞

∫ 1

0
f (t)dt et

1
n

n∑
k=1

f
( k
n

)
−→

n→+∞

∫ 1

0
f (t)dt

• Estimation de l’erreur d’approximation. Si f est M-lipschitzienne pour un cer-

tain M ∈R∗+ :

∣∣∣∣∣∣
∫ b

a
f (t)dt −Rn(f )

∣∣∣∣∣∣ ≤ M

n
.

Autrement dit : Rn(f ) =
n→+∞

∫ b

a
f (t)dt +O

(1
n

)
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2 Formules de Taylor globales
• Cadre. • n ∈ N • I est un intervalle non vide, non réduit à un
point • a,b ∈ I • f : I →K est une fonction

Si f est de classe C n+1 sur I : f (b) =
n∑

k=0

f (k)(a)
k!

(b − a)k +
∫ b

a

(b − t)n

n!
f (n+1)(t)dt

Théorème : Formule de Taylor à reste intégral

Si f est de classe C n+1 sur I et si Mn+1 majore
∣∣∣f (n+1)

∣∣∣ sur [a ,b] (ou [b ,a])∣∣∣∣∣∣∣f (b)−
n∑

k=0

f (k)(a)
k!

(b − a)k
∣∣∣∣∣∣∣ ≤ |b − a|

n+1

(n+ 1)!
Mn+1

Théorème : Inégalité de Taylor-Lagrange

3 Etude de sommes par recours aux intégrales
3.1 La ruse de l’intégrale de tk

• On écrit : 1
k =

∫ 1
0 tk−1 dt • on utilise la linéarité de l’intégrale : «

∑∫
... =

∫ ∑
... »

Mettre une somme sous forme intégrale

3.2 Encadrement d’une somme par une intégrale

• Cadre. On étudie une somme de la forme
n∑

k=0

f (k) où f est une fonction monotone.

Pour encadrer
n∑

k=0

f (k) où f ∈ C (R+,R+) décroît :

• La décroissance de f assure que pour tout k ∈N, f (k + 1) ≤
∫ k+1

k
f (t)dt ≤ f (k)

• La sommation de ces inégalités permet ainsi de majorer ou minorer
n∑

k=0

f (k).

En pratique – retenir les étapes clés :

• Remarque. Si f est croissante, le raisonnement s’adapte.
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3.3 Développement asymptotique somme-intégrale

Pour montrer que
n∑

k=0

f (k) =
n→+∞

∫ n

0
f (t)dt + ℓ + o(1) où f ∈ C (R+,R+) décroît.

En posant ak =
∫ k

k−1
f (t)dt − f (k) et An =

n∑
k=1

ak :

1. A l’aide de la relation de Chasles :
n∑

k=0

f (k) = f (0) +
∫ n

0
f (t)dt −An

2. Avec la décroissance de f , pour tout k ∈N∗ : 0 ≤ ak ≤ f (k − 1)− f (k)
3. On applique le théorème de la limite monotone à la suite (An)

En pratique – retenir les étapes clés :

• Développement asymptotique de la somme harmonique,constante d’Euler.

Appliqué avec t 7→ 1
t

sur [1 ,+∞[ on obtient :
n∑

k=1

1
k

=
n→+∞

lnn+γ + o(1)

4 Approximation d’une fonction continue par mor-
ceaux

4.1 Continuité uniforme

f : I →K est uniformément continue sur I si :
∀ε > 0, ∃α > 0 | ∀x,y ∈ I,

∣∣∣y − x∣∣∣ ≤ α =⇒
∣∣∣f (y)− f (x)

∣∣∣ ≤ ε .

Définition

• Interprétation. α ne dépend que de ε, cette réponse de continuité est ainsi
uniforme par rapport à x.
• Remarques:

1. Si f est uniformément continue sur I alors elle y est continue
2. Si f est lipshitzienne sur I alors elle y est uniformément continue.

Si f est continue sur un segment [a ,b], alors elle y est uniformément continue.

Théorème : (Heine)

4.2 Approximation uniforme par des fonctions en escalier
• Cadre. f : [a ,b]→R est continue par morceaux sur le segment [a ,b]
• Rappel. f est bornée sur [a ,b]. • Notation . ∥f ∥∞ = sup

x∈[a ,b]
|f (x)|

Soit ε ∈R∗+. Il existe une fonction ϕ en escalier sur [a ,b] telle que : ∥f −ϕ ∥∞ ≤ ε
c’est à dire : ∀x ∈ [a ,b], |ϕ(x)− f (x)| ≤ ε.

Théorème

• Conséquence. Il existe une suite (ϕn)n∈N de fonctions en escalier sur [a ,b] telle
que ∥f −ϕn ∥∞ −→n→+∞

0

■ Conséquence (rappel) : intégrale d’une fonction continue par morceaux

La suite des intégrales de fonctions en escalier
(∫

[a ,b]
ϕn

)
n∈N

est convergente. De

plus sa limite ne dépend pas du choix de (ϕn)n∈N. Ceci permet de définir l’intégrale

de f : c’est la limite de
(∫

[a ,b]
ϕn

)
n∈N

pour n’importe quelle suite (ϕn)n∈N de fonctions

en escalier qui converge uniformément vers f .

L’adresse de la page des maths est : https://mathieucathala.fr
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