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MPSI 1 du 23 au 27 mars

Toutes les définitions /énoncés du cours sont à connaître précisément.

■ Exercice de cours
Exercice 1 Exercice, feuille 21 — Soient E unK-espace vectoriel de dimension finie
n et f un endomorphisme de E. Etablir : Kerf = Imf ⇐⇒ f 2 = 0 et n = 2rg(f ).

Exercice 2 Exercice, feuille 21 — Soient E unK-espace vectoriel de dimension finie
et f ,g ∈L (E). Montrer que : dim(Ker(g ◦ f )) ≤ dim(Kerg) + dim(Kerf )

Exercice 3 Résultats de cours, Chap 24 I —
Soit f ∈L (E) tel que f ◦ f = f . Montrer que f est un projecteur.

Exercice 4 Exemple 1 du cours, Chap 24 I — On considère les sous-espaces vectoriels
de R3 : F =

{
(a,b,c) ∈R3 | a+ b+ c = 0

}
et G = Vect

(
(1,1,1)

)
1. Vérifier que F et G sont supplémentaires (Vous pouvez au choix opter pour une

preuve à base de dimensions ou pour une preuve qui fournit la décomposition)
2. Soit u = (x,y,z) ∈R3 et p le projecteur sur F parallèlement à G. Calculer p(u)

1 Généralités
Sauf mention du contraire, E et F sont des espaces vectoriels surK (=R ou C).

1.1 Montrer qu’une application est linéaire

Une application f : E→ F est dite linéaire si :
∀(x,y) ∈ E2, ∀λ,µ ∈K, f (λx+µy) = λf (x) +µf (y)

Définition

• Vocabulaire. Endomorphisme, isomorphisme, automorphisme, forme linéaire.
• Remarque. f ∈L (E,F) est un morphisme de groupes additifs donc f (0E) = 0F

1.2 Opérations sur les applications linéaires

L (E,F) est un espace vectoriel (pour les lois usuelles).

Théorème

Soient E, F et G troisK-espaces vectoriels et soient f ∈L (E,F) et g ∈L (F,G).
g ◦ f est une application linéaire : g ◦ f ∈L (E,G).

Théorème

• Remarque. (L (E),+,◦) est un anneau .

• Conséquence. Pour f ∈L (E) et n ∈N, f 0 = IdE et f n = f ◦ f ◦ . . . f si n ≥ 1.

Si f et g commutent (f + g)n =
n∑

k=0

(
n

k

)
f k ◦ gn−k f n − gn = (f − g) ◦

n−1∑
k=0

f k ◦ gn−1−k

Si f est un isomorphisme de E sur F, alors f −1 est linéaire.

Théorème

• Remarque. (GL(E),◦) est un groupe (groupe des inversibles de l’anneau L (E)).

2 Noyau et image d’une application linéaire
• Cadre. f est une application linéaire de E dans F.

2.1 Définitions

• Le noyau de f , noté Kerf , est l’ensemble des antécédents de 0F par f :
Kerf = {x ∈ E | f (x) = 0F}. C’est un sous-espace vectoriel de E

• L’ image de f , notée Imf , est l’ensemble Imf = f (E) = {f (x), x ∈ E}. C’est un
sous-espace vectoriel de F

Définition

• x ∈ Kerf signifie : f (x) = 0F • y ∈ Imf signifie : il existe x ∈ E tel que f (x) = y

• Si E1 est un sous-e.v. de E alors f (E1) est un sous-espace vectoriel de F.
• Si F1 est un sous-e.v. de F alors f −1(F1) est un sous-espace vectoriel de E.

Théorème

2.2 Noyau : détermination pratique, lien avec l’ injectivité

f est injective si et seulement si Kerf = {0E}.

Théorème : Injectivité et noyau

Soit x ∈ E tel que f (x) = 0F . . . . Donc x = 0E .

Rédaction : pour montrer que f ∈L (E,F) est injective

2.3 Image : détermination pratique, lien avec la surjectivité

f est surjective si et seulement si Imf = F.

Théorème : Surjectivité et image
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3 Applications linéaires et bases
• Cadre. B = (bi)i∈I est une base de E
3.1 Utiliser une base de E pour déterminer Imf

Soit f ∈L (E,F). Imf = Vect
(
f (bi)

)
i∈I

.

Théorème

• Remarque. Il suffit que (bi)i∈I soit génératrice de E

3.2 Base de E et injectivité surjectivité ou bijectivité

Soit f une application linéaire de E dans F.
i) f est injective si et seulement si

(
f (bi)

)
i∈I

est libre

ii) f est surjective si et seulement si
(
f (bi)

)
i∈I

est génératrice de F

iii) f est bijective si et seulement si
(
f (bi)

)
i∈I

est une base de F

Théorème

3.3 Détermination d’une application linéaire par l’image d’une
base ou une somme directe

Soit j ∈ I . La je forme coordonnée de E est la forme linéaire : ϕj : E −→K
x =

∑
i∈I

xibi 7−→ xjElle vérifie : • ϕj (bj ) = 1 • ϕj (bi) = 0 pour tout i , j

Définition

Soit (ui)i∈I une famille de vecteurs de F.
Il existe une unique f ∈L (E,F) telle que : ∀i ∈ ⟦1 ,n⟧, f (bi) = ui .

Théorème : « Interpolation linéaire »

• Conséquence. Pour définir f ∈L (E,F) il suffit de définir les valeurs de f sur les
vecteurs d’une base de E.

On suppose que E = E1 ⊕E2. Soient f1 ∈L (E1,F) et f2 ∈L (E2,F).
Il existe une unique f ∈L (E,F) telle que : • f|E1

= f1 • f|E2
= f2

Théorème

3.4 Espaces de dimension finie isomorphes

On suppose E de dimensions finie.
F est isomorphe à E ssi F est de dimension finie et : dimE = dimF.

Théorème

4 Rang d’une application linéaire
• Cadre. f ∈L (E,F)

4.1 Définition du rang

• f est dite de rang fini si Imf est de dimension finie.
• En ce cas on pose : rgf = dimImf

Définition

• Remarque. Si E est de dimension finie muni d’une base (b1, . . . , bn) alors f est de
rang fini et rg(f ) = rg

(
f (b1), . . . , f (bn)

)
.

4.2 Théorème du rang

On suppose que Kerf possède un supplémentaire S dans E. Dans ce cas
ϕ : S −→ Imf

x 7−→ f (x)
est un isomorphisme de S sur Imf (isomorphisme induit par f )

Théorème : Forme géométrique du théorème du rang

Si E est de dimension finie : dimE = dimKerf + rgf

Théorème : Théorème du rang

On suppose E et F de même dimension finie. Alors il y a équivalence entre :
i) f est injective ii) f est surjective iii) f est bijective

Théorème : Miracle de la dimension finie

• Remarque. Le théorème s’applique en particulier lorsque f est un endomor-
phisme en dimension finie.
4.3 Rang et composition

Si E est de dimension finie et si f ∈L (E), alors :
• f ∈ GL(E)⇔∃g ∈L (E) | g ◦ f = IdE • f ∈ GL(E)⇔∃g ∈L (E) | f ◦ g = IdE

Théorème

Soit u ∈L (E,F) et v ∈L (F,G) de rang fini.
L’application v ◦u est de rang fini et rg(v ◦u) ≤min(rgu,rgv)

Théorème : Rang d’une composée

On suppose E,F et G de dimensions finies. Soient f ∈L (E,F) et g ∈L (F,G).
• Si f est un isomorphisme : rg(g ◦ f ) = rg(g)
• Si g est un isomorphisme : rg(g ◦ f ) = rg(f )

Théorème : Composer par un isomorphisme ne modifie pas le rang
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COMPLEMENT : PROJECTEURS ET SYMETRIES

1 Projecteurs et symétries
• Cadre. E est unK-espace vectoriel et F et G deux sous-espaces supplémentaires
de E : pour tout x ∈ E, il existe un unique couple (y,z) ∈ F ×G tel que x = y + z.

1.1 Projecteurs

Le projecteur sur F parallèlement à G est l’application p : E −→ E
x = y + z 7−→ y

Définition

1. p est linéaire. 2. G = Kerp et F = Imp = Invp 3. p ◦ p = p.

Théorème

• Remarque. Inv p désigne ici l’ensemble des vecteurs invariants par p :
F = Invp = {x ∈ E | p(x) = x} = Ker(p − IdE)

Soit f ∈L (E). Si f ◦ f = f , alors f est un projecteur.

Théorème

Pour montrer que f ∈L (E) est un projecteur, il suffit de calculer f ◦ f .

En pratique :

1.2 Symétries

La symétrie par rapport à F parallèlement à G est l’application s : E −→ E
x= y + z 7−→ y − z

Définition

• Lien avec le projecteur p. s = 2p − IdE .

1. s est linéaire : s ∈L (E). 2. F = Invs et G = AntiInv s 3. s ◦ s = IdE .

Théorème

• Ici encore : F = Invs = {x ∈ E | s(x) = x} = Ker(s − IdE)
• AntiInv s désigne ici l’ensemble des vecteurs anti-invariants par s :

G = AntiInv s = {x ∈ E | s(x) = −x} = Ker(s+ IdE)

Soit f ∈L (E). Si f ◦ f = IdE , alors f est une symétrie.

Théorème

Pour montrer que f ∈L (E) est une symétrie, il suffit de calculer f ◦ f .

En pratique :

L’adresse de la page des maths est : https://mathieucathala.fr
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