du 16 au 20 mars

Toutes les définitions /énoncés du cours sont a connaitre précisément.

= EXxercice de cours

Exercice 1 — Soient E un K-e.v. de dimension finie et f,g € Z(E).
1. Ex.de cours, Chap. 23, I1.4. Montrer que go f =0 ssiIm f C Kerg.
2. Ex.decours, Chap. 23, IV.2. On suppose que go f = 0. Montrer : rg(f)+rg(g)<n

Exercice 2 Résultat de cours, Chap. 23, Il — On suppose E muni d’une base (b;);¢;.

Soit f € Z(E,F). Montrer que f est injective si et seulement si (f(bi))iel est libre.

Exercice 3 Exercice, feuille 21 (et Ex. 62, banque INP) — Soit E un K-espace vectoriel
et f € Z(E)tel que f2— f —2Idg = 0. Montrer : E = Ker(f +1dg) ® Ker(f — 21dg).

Exercice 4 Résultats de cours, Chap 23 IV — Soit E, F deux K-e.v. et f € Z(E,F)

1. Théoréeme 1, Chap 23, IV. On suppose que Ker f posséde un supplémentaire S
dans E. Montrer que f induit un isomorphisme de S sur Im f

2. Théoréme 2, Chap 23, IV. Enoncer et démontrer le théoréme du rang.

1 Geénéralités

Sauf mention du contraire, E et F sont des espaces vectoriels sur K (=R ou C).

1.1

Montrer qu’une application est linéaire

Définition
Une application f : E — F est dite linéaire si :
V(x,p) €EL VA ueK, f(Ax+up)=Af(x)+uf(®)

* Vocabulaire. Endomorphisme, isomorphisme, automorphisme, forme linéaire.

* Remarque. f € Z(E,F) est un morphisme de groupes additifs donc | f(0z) = 0

1.2 Opérations sur les applications linéaires

n n—1
: n_ n\ ck n—k n_ . n_ o k n—1-k
Slfetgcommutent[(f+g) _Z(k)f og ]f ¢"=(f g)to og
k=0 k=0
Théoréeme
Si f est un isomorphisme de E sur F, alors f~! est linéaire. ]

* Remarque. ((GL(E),O) est un groupe) (groupe des inversibles de 'anneau .Z(E)).

2 Noyau et image d’une application linéaire
e Cadre. f estune application linéaire de E dans F.

2.1

Définitions

Définition
* Le noyau de f, noté Kerf, est 'ensemble des antécédents de Of par f :

Kerf ={x € E | f(x)=0g}. C’est un sous-espace vectoriel de E
e U'image de f est:Im f = f(E) ={f(x), x € E}. C’est un sous-espace vectoriel de F

. (x € Ker f signifie : f(x) = OF) . (y eIm f signifie: il existe x € E tel que f(x) = y)

Théoréme

* Si E; est un sous-e.v. de E alors f(E) est un sous-espace vectoriel de F.
* Si F; est un sous-e.v. de F alors f~!(F,) est un sous-espace vectoriel de E.

2.2 Noyau : détermination pratique, lien avec I’ injectivité

Théoréme : Injectivité et noyau
f est injective si et seulement si Ker f = {0g}. ]

Théoréme )

Z(E,F) est un [K-espace vectoriel (pour les lois usuelles).

Théoréeme )

Soient E, F et G trois K-espaces vectoriels et soient f € Z(E,F) et ¢ € Z(F,G).
go f est une application linéaire: go f € Z(E,G).
L

r
.

. Remarque.((.,iﬂ(E), +,0) est un anneau}
+ Conséquence. Pour f € Z(E)etneN, fO=Idget f"=fofo...fsin>1.

Rédaction : pour montrer que f € Z(E, F) est injective

Soit x € E tel que f(x) = OF. Donc x = 0.

2.3

Image : détermination pratique, lien avec la surjectivité

Théoréme : Surjectivité et image
f est surjective si et seulement si Im f = F. ]
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3 Applications linéaires et bases

¢ Cadre. % = (b;);¢ est une base de £ ) .
3.1 Utiliser une base de E pour déterminer Im f

Théoreme

Soit f € Z(E,F).  Imf = Vect(f(b;)).

iel’

* Remarque. Il suffit que (b;);¢; soit génératrice de E

3.2 Base de E et injectivité surjectivité ou bijectivité

Théoréme

Soit f une application linéaire de E dans F.

i) f estinjective si et seulement si (f(b,-))id

ii) f est surjective si et seulement si (f(bi))iel est génératrice de F

iii) f est bijective si et seulement si (f(bi))iel est une base de F

est libre

4 Rang d’une application linéaire
* Cadre. f € Z(E,F)

4.1

Définition du rang

Définition

* f est dite de rang fini si Im f est de dimension finie.
* En ce cas on pose rgf =dimIm f

* Remarque. Si E est de dimension finie muni d’une base (by,...,b,) alors f est de
rang fini et rg(f) = rg(f(bl),...,f(bn)).
4.2 Théoreme du rang

Théoreme : Forme géomeétrique du théoreme du rang

~

On suppose que Ker f posséde un supplémentaire S dans E. Dans ce cas
@: S —Imf est un isomorphisme de S sur Im f (isomorphisme induit par f)

|

3.3 Détermination d’une application linéaire par 'image d’une
base ou une somme directe

Théoréme : Théoreme du rang

Si E est de dimension finie : dimE = dimKer f +rgf

.

Soit j € I. La j¢ forme coordonnée de E est la forme linéaire : ¢; :
Elle vérifie : « ¢;(b;) = 1

— K

I
X=inbi

i€l

¢ (Pj(bi) =0 pour tout i #j — X

Théoréeme :

‘{

« Interpolation linéaire »

Soit (u;);e; une famille de vecteurs de F.
Il existe une unique f € Z(E,F) telle que :

.

Vie [[1 o T’l]], f(b,) = Uj.

» Conséquence. Pour définir f € Z(E, F) il suffit de définir les valeurs de f sur les
vecteurs d’une base de E.

Théoreme

On suppose que E = E; @ E,. Soient f; € Z(Ey,F) et f, € Z(E,, F).

Il existe une unique f € Z(E,F) telleque:* fig, = fi * fie, = f2

3.4 Espaces de dimension finie isomorphes

Théoreme

On suppose E de dimensions finie.

F est isomorphe a E ssi F est de dimension finieet: dimE =dimF.

Théoreme : Miracle de la dimension finie

On suppose E et F (de méme dimension ﬁnie.) Alors il y a équivalence entre :

ii) f est surjective iii) f est bijective

i) f est injective
\ J

* Remarque. Le théoreme s’applique en particulier lorsque f est un endomor-
phisme en dimension finie.

4.3 Rang et composition

Théoréeme

Si E est de dimension finie et si f € Z(E), alors :
*feEGLE)yedge ZX(E) | gof=1dg *feGL(E)edge X(E) | fog=1dg

Théoréme : Rang d’'une composée

Soit u € Z(E,F) et v e Z(F,G) de rang fini.
L'application v o u est de rang fini et rg(v o u) < min(rgu,rgv)

~\

Théoreme : Composer par un isomorphisme ne modifie pas le rang

On suppose E, F et G de dimensions finies. Soient f € Z(E,F) et g € Z(F,G).
* Si f est un isomorphisme : rg(gof)=rg(g)
* Si g est un isomorphisme: rg(go f)=rg(f)
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