du 16 au 20 février

Toutes les définitions /énoncés du cours sont a connaitre précisément.

» EXxercice de cours

Exercice 1 Résultat de cours, Chap 21, II.3 — Soit E un K-espace vectoriel et
F =(ify,...,#,) une famille finie de vecteurs de E.

1. Montrer que rg(if},...,i,) < p.

2. Montrer que rg(ify,...,i,) = p ssi .F est libre.

Exercice 2 Exercice feuille 19 — Soient dy,...,d, € R, tous distincts. On note D la
matrice diagonale de coefficients diagonaux dy,...,d, et ¥(D) I'ensemble des ma-
trices M de .#,(IR) qui commutent avec D. Montrer que (Dk)ogkgn—l est une base

de €(D)

Exercice 3 Exercice feuille 19 — Soit a € C. On note F I'ensemble des suites u € CN
telles que pour tout n € N :  uy,,, = 2au, . +4(ia—1)u,.
Déterminer une base du plan vectoriel F suivant la valeur de a.

Exercice 4 Exemple de cours, Chap 21, III — Dans E = #(RR,R) montrer que l’en-
semble F des fonctions paires et I'ensemble G des fonctions impaires sont des
sous-espaces supplémentaires.

ESPACES VECTORIELS

1 Espaces vectoriels

1.1 La structure d’espace vectoriel

Définition
Un espace vectoriel sur K est un ensemble E muni de deux lois :
i) une loi de composition interne + appelée addition telle que (E, +) est un

groupe commutatif;
ii) une multiplication externe i.e. une application : :

KxE — E
(LX) +— A-X
qui vérifie les propriétés suivantes :

1. VXe€E, 1-¥=X

2. VYeEV(Ap) e K%, (A+p)-¥=A-X+u-X

3. V(XD EELVAEK, A-(F+)=A-T+ -7

4. VXeEV(Lp) ek A (p-X) = (Ap)-¥=p-(1-7)
~———

1.2 Espaces vectoriels de références

Exemple 0 K — (KK, +, x) est un [K-espace vecrtoriel.

Exemple 1 K" — pour tout n € IN* I'ensemble des n-uplets est un K-espace
vectoriel pour ses lois usuelles.

Exemple 2 K[X]| — L'ensemble des polyndémes a coefficients dans KK est un K-
espace vectoriel pour ses lois usuelles.

Exemple 3 .7, ,(K) — Pour tous n,p € N, I'ensemble des matrices de taille (n, p)
est un K-espace vectoriel pour ses lois usuelles.

Exemple 4 .7 (X,E) — Si E est un K-espace vectoriel quelconque et X un ensemble
non vide, on munit 'ensemble .# (X, E) des fonctions de X dans E d’une structure
de K-espace vectoriel.

Exemple 5 E xF — Si E,F sont deux K-e.v., E x F est muni d’une structure de
IK-e.v. La construction se généralise a E; X E; x ---X E, ou Ey, E;, ..., E, sont des
K-espaces vectoriels.

* Remarque. Tout C-espace vectoriel est aussi un R espace vectoriel

Dans toute la suite, E désigne un K-espace vectoriel.

1.3 Combinaisons linéaires de vecteurs

Définition

Soit & = (171,...

combinaison linéaire de la famille .# (ou une combinaison linéaire de i7},...
n

,il,) une famille finie de vecteurs E.Un vecteur X € E est une
—
) Uy)

s'il existe ay,...a, € K tels que ¥'= E a; - i
i=1

¢ Cas de la famille vide

¢ Remarque. ¢ Familles d’un seul vecteur

2 Sous-espaces vectoriels
2.1

Définition

Définition

Soit F une partie de E. On dit que F est un sous-espace vectoriel de E si :
e F#@, ¢Feststablepar+ ¢ F eststable par.
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En pratique : montrer que F est un sous-espace vectoriel (méthode 1)

i) F posséde le vecteur nul : 65 eF
ii) F est stable par combinaisons linéaires :

V(X,7)eF?, VApueK, A-X+u-yeF.

N————
En pratique : pour montrer que F est un espace vectoriel

Le plus simple est de montrer que F est un SOUS-espace vectoriel d'un espace
vectoriel de référence.

~—

Théoreme
Toute intersection de sous-espaces vectoriels de E est un sous-espace vectoriel de E]
.

2.2 Sous-espaces vectoriels engendrés
Soit & = (i}, i5,...,U,) une famille de vecteurs de E.

Définition

On note Vect .Z ou Vect(#;); <j<, ou encore Vect(ify, i, ..., U,) 'ensemble de toutes
les combinaisons linéaires de .%.

~—
Théoreme )

Vect .# est un sous-espace vectoriel de E, appelé sous-espace vectoriel engendré par
F

7.
Théoréme : Caractérisation de « Vect » N

Vect .7 est le plus petit sous-espace vectoriel de E qui contienne {if},..., i} i.e.
— —
o {ify,..., iy} C Vect.F ;
 Pour tout sous-espace vectoriel Gde E, si:

{if},...,iU,} CG,alors:  Vect.Z CG
J

r

En pratique : montrer que F est un sous-espace vectoriel (méthode 2)

Il peut étre utile de montrer que F s’écrit comme un Vect
_ - 14 I 4 -

3 Familles génératrices

3.1 Familles génératrices

Soit # = (il;)1<j<, une famille finie de vecteurs de E. .7 est dite génératrice de E
(ou engendre E) si tout vecteur de E est combinaison linéaire de . i.e. :
° Vect.# = E

n
ouencore* YX€E, d(aj,as,...,a,) K" | ¥= E a;i;
i=1

~—————

* Remarque. Toute sur-famille d’une famille génératrice est génératrice.

Théoréme

Si (ify, s, ..., iy, Uy, ) est une famille génératrice de E et si if,,,; est combinaison
- s . — — JEEN — s s -
linéaire de (iry,...,u,) alors (ify, if,...,i,) est encore génératrice de E.

G

En pratique : pour trouver une famille génératrice de F

On écrit F comme un vect.
~—

3.2 Bases

Définition
* Une famille finie .# = (if;);<j<, de vecteurs de E est une base de E si tout
vecteur de E est d'une maniére unique combinaison linéaire de .%.

n
* Ou encore : ¥YXeE, dlap,az...,a,) €K' | X= E a;il;
i=1

* Remarque. La famille vide est une base de 'espace vectoriel {0}
3.3 Familles génératrices quelconques / parties génératrices

« Cadre. .# = (il});¢; est une famille quelconque de vecteurs de E

* X € E est combinaison linéaire de .Z s'il est combinaison linéaire d’une sous-
famille finie de .

* On définit de méme le sous-espace engendré Vect.# comme l'ensemble des
combinaisons linéaires de .#

* La famille % est dite génératrice de E si tout vecteur de E est combinaison
linéaire de .Z.

* La famille .# est une base de E si tout vecteur de E est d'une maniére unique
combinaison linéaire de .%

+ Vocabulaire. Une famille (a;);c; € K est presque nulle si tous les a; sont nuls sauf
un nombre fini d’'entre eux. Un vecteur X € E est ainsi combinaison linéaire de .# s'il
existe une famille (a;)ic; € K presque nulle telle que :  ¥'= Zaiﬁ’i

iel

Définition
Soit A une partie de E.
* On définit VectA comme l'intersection de tous les sous-espaces vectoriels de E

contenant A. VectA est le plus petit sous-espace vectoriel de E contenant A.
e La partie A est dite génératrice de E lorsque: VectA =E.
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4 Familles libres, bases
4.1

e Cadre. .Z = (il;)|<j<, est une famille finie de vecteurs de E

Familles libres

e La famille .% est libre si la seule combinaison linéaire de .# donnant le vecteur
nul est celle ou tous les coefficients sont nuls. Autrement dit, si :

n
R
pour tout (a;)<j<, € K" : Za,-z?,- =0 = a;=a,=---=a,=0
i=1
* 7 est liée si elle n'est pas libre i.e. si :

n
. . =2
il existe ay,...,a, € K non tous nuls tels que : E a;i; = 0p.
i=1

~——

* Vocabulaire : bases canoniques de K", .7, ,(K) et K, [X].
¢ On pose ¢} = (1,0,...,0), &> =(0,1,0,...,0), ..., &, =(0,...,0,1).
La famille (&},&,...,¢,) est une base de K", appelée base canonique.

¢ La base canonique de .#,, ,(KK) est la famille (E; ;)1 <i<n-
1<j<p

* La base canonique de K,[X] est la famille (1,X,X?,...,X").

4.3 Familles libres quelconques / parties libres

Soit (if;);e; une famille de vecteur de E. La famille (i7;);c; ou la partie A = {if;};; est

dite libre si toutes ses sous-familles finies sont libres. Elle liée dans le cas contraire.
~—

En pratique : pour vérifier la liberté d’une famille infinie (i7;);n

On montre que la famille (if});<;<, est libre pour tout n € IN.
|

Théoréme ]

Une famille est liée ssi un de ses vecteurs est combinaison linéaire des autres

* Remarques:
 Une famille de deux vecteurs (i7, V) est liée ssi if et ¥ sont colinéaires.
« La famille (i7) est libre ssi i # Of.
* La famille vide est libre.

Théoréme )

e Si.Z est libre alors toute sous-famille de .# est libre.
* Si .7 est libre et si if,,,1 n'est pas combinaison linéaire de (ify,...,i,) alors

> > > > .
(v, iy, .., Uy, U,y ) est encore libre.
\ J

Théoréme N

Une famille (P, ..., P,) de polynomes est de degrés étagés si deg Py = k pour tout
k € [0, n]]. Une famille de polynéme de degrés étagés est libre.

J

4.2 Bases

¢+ Rappel. Une famille finie .# = (if;),<;<, de vecteurs de E est une base de E si tout
vecteur de E est d'une maniére unique combinaison linéaire de .%.

Théoreme ]

Une famille est une base de E ssi elle est a la fois libre et génératrice.

« Remarque. Comme pour les familles finies, la famille (if;);c; (ou la par-
tie est {if;},<;<,) est libre si pour toute famille (a;);e; € K presque nulle :
Z’aiﬂ}:ﬁ}g = Viel,
iel

5 Complément : la notion d’algebre

Définition
Une K-algebre est un ensemble A muni de deux lois de composition interne + et
x et d’'une multiplication externe - telles que

i) (A, +,%) est un anneau
ii) (A,+,-) est un K-espace vectoriel

iii) Pour tout A € K et tous X, V€ A :
~—

Soit (A, +, %, ) une K-algebre. Une sous-algebre de A est une partie B de A telle que :

* B est un sous-anneau de (A,+,x) © B est un sous-espace vectoriel de (A, +,-)
~——

En pratique : pour montrer que B est une sous-algebre de A

On vérifie que :
i) B posséde I'élément neutre pour x : T eB
ii) Best stable par combinaisons linéaires :  VX,y€B, VYA, u€eK, AX+uy€B.

iii) B est stable par multiplication: V¥X,y€B, Xx}y€B
~—

()(i=0

A-D)xF=Tx(A-7) = A- (¥x D).
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Dans ce qui suit, E désigne un [K-espace vectoriel et # un entier naturel.

1 Théorie de la dimension

Définition

E est dit de dimension finie s’il possede une famille génératrice finie.

1.1 Algorithme de la base incompléte

Théoréme )

Si E possede une famille génératrice de cardinal n alors toute famille libre de E

posseéde au plus n éléments.
\ J

Théoréme : Théoréme de la base incompléete N

Si E est de dimension finie, alors toute famille libre de E est complétable en une
| base de E. Précisément

J

* Remarque. Précisément, on a montré que si ¢4 est une famille génératrice finie
de E alors toute famille libre de E peut-étre complétée en une base de E a l'aide de
vecteurs de ¢.

Théoréme : Théoréme de la base extraite
De toute famille génératrice finie de E on peut extraire une base de E. ]

1.2 Dimension d’un espace vectoriel

1]

Si E est de dimension finie, alors toutes ses bases sont finies et ont méme cardina

Si E est de dimension finie, on appelle dimension de E le cardinal commun a
toutes ses bases.
~———

*dimK"=n <dimK,[X]=n+1 ¢dim.#,,(K)=np

Théoréme : Exemples fondamentaux ]

.

Théoréme : Espace produit
Si E et F sont deux K.e.v de dimensions finies : dim(E x F) = dim E + dim F ]

2 Utiliser la dimension finie
2.1 Familles libres /génératrices en dimension finie
On suppose ici que E est de dimension finie n.

Théoréme “

1. Toute famille libre a au plus n éléments.
2. Toute famille de E génératrice a au moins n éléments.

Théoréeme 3

1. Toute famille libre de cardinal n est une base.
2. Toute famille génératrice de E de cardinal n est une base de E.

Vs
.

Vs

J

En pratique : pour montrer qu’une famille est une base de E

* On constate qu’elle est de cardinal n =dim E ¢ On vérifie uniquement la liberté
~———

2.2 Sous-espaces et dimension

Théoréeme

On suppose que E est de dimension finie n. Soit F un sous-espace vectoriel de E :
e F est de dimension finie et dimF <n. ¢ F=E ssidimF =n.

En pratique : raisonnement par « Inclusion dimension »

En dimension finie, étant donnés deux sous-espaces vectoriels F et G de E, pour

montrer que F = G on peut montrer que:* FC G < dimF =dimG.
~—




2.3 Rang d’une famille de vecteurs

Soit E un K-e.v. (quelconque) et .# = (uy,..., u,) une famille de vecteurs de E.

Théoréme : Critére pratique

F et G sont en somme directe si et seulement si F NG = {0}

Le rang de .# est la dimension de Vect.7 :
——

Théoreme

1. On a toujours rg(uy,..., upy) <p.  2.1g(Uy,..., up) = p ssi F est libre

G

rg# = dimVects
déf.

3 Somme de sous-espaces

Dans toute cette partie, F et G désignent deux sous-espaces vectoriels de E.

3.1

Généralités

» Base adaptée a une somme directe.
e Cadre.F, G sont de dimension finie. & est une base de F, € une base de G

Théoréeme

Si F et G sont en somme directe alors (%, €) est une base de F @ G appelée base
adaptée a la somme directe F & G.
En particulier F & G est de dimension finie et : dim(F& G) =dimF +dim G

Théoreme

Si (%, %) est une famille libre, alors F et G sont en somme directe.

Définition

La somme de F et G est le sous-espace vectoriel F + G = {x+7,
er.

xeF, peGl

* Remarques:e F + G contient les sous-espaces F et G.

3.3 Sous-espaces supplémentaires

Définition

Soient X et Y des parties de E.
Si F =VectX et si G=VectY alors F + G =VectXUY
N——

Théoréme : Formule de Grassmann

Si F, G sont de dimension finie alors F + G 1’est aussi et :
dim(F + G) =dim F + dim G — dim(F N G)

Vs

3.2 Somme directe

*C’est le plus petit sev ayant cette propriété : si un sev H contient F et G alors F+G Cc H
En pratique : somme de « Vect »

On dit que F et G sont supplémentaires si tout vecteur de E se décompose d’une
maniére unique comme somme d’un vecteur de F et d’un vecteur de G.

* Remarque. F et G sont supplémentaires ssi: FNG={0} et F+G=E

3.4 Supplémentaires en dimension finie

Théoréeme : Critére a utiliser en dimension finie

On suppose E de dimension finie. Alors F et G sont en supplémentaires ssi

FNG={0} et dimF +dim G = dimE

Définition

On dit que F et G sont en somme directe si, pour tout vecteur zde F+ G, il y a
unicité de la décomposition sous la forme z=x+y avecxe Fetp € G.

* Notation. Lorsque F et G sont en somme directe, la somme est notée F®G.

Théoréme : Existence de supplémentaires en dimension finie

Si E est de dimension finie, tout sous-espace vectoriel F de E posséde au moins
un supplémentaire.
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