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MPSI 1 du 16 au 20 février

Toutes les définitions /énoncés du cours sont à connaître précisément.

■ Exercice de cours
Exercice 1 Résultat de cours, Chap 21, II.3 — Soit E un K-espace vectoriel et

F = (u⃗1, . . . , u⃗p) une famille finie de vecteurs de E.
1. Montrer que rg(u⃗1, . . . , u⃗p) ≤ p.
2. Montrer que rg(u⃗1, . . . , u⃗p) = p ssi F est libre.

Exercice 2 Exercice feuille 19 — Soient d1, . . . ,dn ∈ R, tous distincts. On note D la
matrice diagonale de coefficients diagonaux d1, . . . ,dn et C (D) l’ensemble des ma-
trices M de Mn(R) qui commutent avec D. Montrer que (Dk)0≤k≤n−1 est une base
de C (D)

Exercice 3 Exercice feuille 19 — Soit a ∈C. On note F l’ensemble des suites u ∈CN
telles que pour tout n ∈N : un+2 = 2aun+1 + 4(ia− 1)un.
Déterminer une base du plan vectoriel F suivant la valeur de a.

Exercice 4 Exemple de cours, Chap 21, III — Dans E = F (R,R) montrer que l’en-
semble F des fonctions paires et l’ensemble G des fonctions impaires sont des
sous-espaces supplémentaires.

ESPACES VECTORIELS

1 Espaces vectoriels
1.1 La structure d’espace vectoriel

Un espace vectoriel surK est un ensemble E muni de deux lois :
i) une loi de composition interne + appelée addition telle que (E,+) est un

groupe commutatif ;
ii) une multiplication externe i.e. une application : : K×E −→ E

(λ, x⃗) 7−→ λ · x⃗
qui vérifie les propriétés suivantes :

1. ∀x⃗ ∈ E, 1 · x⃗ = x⃗
2. ∀x⃗ ∈ E,∀(λ,µ) ∈K2, (λ+µ) · x⃗ = λ · x⃗+µ · x⃗
3. ∀(x⃗, y⃗) ∈ E2,∀λ ∈K, λ · (x⃗+ y⃗) = λ · x⃗+λ · y⃗
4. ∀x⃗ ∈ E,∀(λ,µ) ∈K2, λ · (µ · x⃗) = (λµ) · x⃗ = µ · (λ · x⃗)

Définition

1.2 Espaces vectoriels de références

Exemple 0 K— (K,+,×) est unK-espace vecrtoriel.

Exemple 1 K
n — pour tout n ∈ N∗ l’ensemble des n-uplets est un K-espace

vectoriel pour ses lois usuelles.

Exemple 2 K[X] — L’ensemble des polynômes à coefficients dans K est un K-
espace vectoriel pour ses lois usuelles.

Exemple 3 Mn,p(K) — Pour tous n,p ∈N∗, l’ensemble des matrices de taille (n,p)
est unK-espace vectoriel pour ses lois usuelles.

Exemple 4 F (X,E) — Si E est unK-espace vectoriel quelconque et X un ensemble
non vide, on munit l’ensemble F (X,E) des fonctions de X dans E d’une structure
deK-espace vectoriel.

Exemple 5 E × F — Si E,F sont deux K-e.v., E × F est muni d’une structure de
K-e.v. La construction se généralise à E1 × E2 × · · · × En où E1, E2, . . ., En sont des
K-espaces vectoriels.

• Remarque. Tout C-espace vectoriel est aussi un R espace vectoriel

Dans toute la suite, E désigne unK-espace vectoriel.

1.3 Combinaisons linéaires de vecteurs

Soit F = (u⃗1, . . . , u⃗n) une famille finie de vecteurs E.Un vecteur x⃗ ∈ E est une
combinaison linéaire de la famille F (ou une combinaison linéaire de u⃗1, . . . , u⃗n)

s’il existe α1, . . .αn ∈K tels que x⃗ =
n∑
i=1

αi · u⃗i

Définition

• Remarque. • Familles d’un seul vecteur • Cas de la famille vide

2 Sous-espaces vectoriels
2.1 Définition

Soit F une partie de E. On dit que F est un sous-espace vectoriel de E si :
• F , ∅, • F est stable par + • F est stable par .

Définition
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i) F possède le vecteur nul : 0⃗E ∈ F
ii) F est stable par combinaisons linéaires :

∀(x⃗, y⃗) ∈ F2, ∀λ,µ ∈K, λ · x⃗+µ · y⃗ ∈ F.

En pratique : montrer que F est un sous-espace vectoriel (méthode 1)

Le plus simple est de montrer que F est un SOUS-espace vectoriel d’un espace
vectoriel de référence.

En pratique : pour montrer que F est un espace vectoriel

Toute intersection de sous-espaces vectoriels de E est un sous-espace vectoriel de E

Théorème

2.2 Sous-espaces vectoriels engendrés
Soit F = (u⃗1, u⃗2, . . . , u⃗n) une famille de vecteurs de E.

On note Vect F ou Vect(u⃗i)1≤i≤n ou encore Vect(u⃗1, u⃗2, . . . , u⃗n) l’ensemble de toutes
les combinaisons linéaires de F .

Définition

Vect F est un sous-espace vectoriel de E, appelé sous-espace vectoriel engendré par
F .

Théorème

Vect F est le plus petit sous-espace vectoriel de E qui contienne
{
u⃗1, . . . , u⃗n

}
i.e. :

•
{
u⃗1, . . . , u⃗n

}
⊂ VectF ;

• Pour tout sous-espace vectoriel G de E, si :
{
u⃗1, . . . , u⃗n

}
⊂ G, alors : VectF ⊂ G

Théorème : Caractérisation de « Vect »

Il peut être utile de montrer que F s’écrit comme un Vect

En pratique : montrer que F est un sous-espace vectoriel (méthode 2)

3 Familles génératrices
3.1 Familles génératrices

Soit F = (u⃗i)1≤i≤n une famille finie de vecteurs de E. F est dite génératrice de E
(ou engendre E) si tout vecteur de E est combinaison linéaire de F i.e. :

• VectF = E

ou encore • ∀x⃗ ∈ E, ∃(α1,α2, . . . ,αn) ∈Kn | x⃗ =
n∑
i=1

αi u⃗i

Définition

• Remarque. Toute sur-famille d’une famille génératrice est génératrice.

Si (u⃗1, u⃗2, . . . , u⃗n, u⃗n+1) est une famille génératrice de E et si u⃗n+1 est combinaison
linéaire de (u⃗1, . . . , u⃗n) alors (u⃗1, u⃗2, . . . , u⃗n) est encore génératrice de E.

Théorème

On écrit F comme un vect.

En pratique : pour trouver une famille génératrice de F

3.2 Bases

• Une famille finie F = (u⃗i)1≤i≤n de vecteurs de E est une base de E si tout
vecteur de E est d’une manière unique combinaison linéaire de F .

• Ou encore : ∀x⃗ ∈ E, ∃!(α1,α2, . . . ,αn) ∈Kn | x⃗ =
n∑
i=1

αi u⃗i

Définition

• Remarque. La famille vide est une base de l’espace vectoriel {0E}
3.3 Familles génératrices quelconques / parties génératrices

• Cadre. F = (u⃗i)i∈I est une famille quelconque de vecteurs de E

• x⃗ ∈ E est combinaison linéaire de F s’il est combinaison linéaire d’une sous-
famille finie de F .

• On définit de même le sous-espace engendré VectF comme l’ensemble des
combinaisons linéaires de F

• La famille F est dite génératrice de E si tout vecteur de E est combinaison
linéaire de F .

• La famille F est une base de E si tout vecteur de E est d’une manière unique
combinaison linéaire de F

Définition

• Vocabulaire. Une famille (αi)i∈I ∈KI est presque nulle si tous les αi sont nuls sauf
un nombre fini d’entre eux. Un vecteur x⃗ ∈ E est ainsi combinaison linéaire de F s’il
existe une famille (αi)i∈I ∈KI presque nulle telle que : x⃗ =

∑
i∈I

αi u⃗i

Soit A une partie de E.
• On définit VectA comme l’intersection de tous les sous-espaces vectoriels de E

contenant A. VectA est le plus petit sous-espace vectoriel de E contenant A.
• La partie A est dite génératrice de E lorsque : VectA = E.

Définition
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4 Familles libres, bases
4.1 Familles libres

• Cadre. F = (u⃗i)1≤i≤n est une famille finie de vecteurs de E

• La famille F est libre si la seule combinaison linéaire de F donnant le vecteur
nul est celle où tous les coefficients sont nuls. Autrement dit, si :

pour tout (αi)1≤i≤n ∈Kn :
n∑
i=1

αi u⃗i = 0⃗E =⇒ α1 = α2 = · · · = αn = 0

• F est liée si elle n’est pas libre i.e. si :

il existe α1, . . . ,αn ∈K non tous nuls tels que :
n∑
i=1

αi u⃗i = 0⃗E .

Définition

Une famille est liée ssi un de ses vecteurs est combinaison linéaire des autres

Théorème

• Remarques:
• Une famille de deux vecteurs (u⃗, v⃗) est liée ssi u⃗ et v⃗ sont colinéaires.
• La famille (u⃗) est libre ssi u⃗ , 0⃗E .
• La famille vide est libre.

• Si F est libre alors toute sous-famille de F est libre.
• Si F est libre et si u⃗n+1 n’est pas combinaison linéaire de (u⃗1, . . . , u⃗n) alors

(u⃗1, u⃗2, . . . , u⃗n, u⃗n+1) est encore libre.

Théorème

Une famille (P0, . . . , Pn) de polynômes est de degrés étagés si degPk = k pour tout
k ∈ ⟦0 ,n⟧. Une famille de polynôme de degrés étagés est libre.

Théorème

4.2 Bases

• Rappel. Une famille finie F = (u⃗i)1≤i≤n de vecteurs de E est une base de E si tout
vecteur de E est d’une manière unique combinaison linéaire de F .

Une famille est une base de E ssi elle est à la fois libre et génératrice.

Théorème

• Vocabulaire : bases canoniques de Kn, Mn,p(K) et Kn[X].
• On pose e⃗1 = (1,0, . . . ,0), e⃗2 = (0,1,0, . . . ,0) , . . ., e⃗n = (0, . . . ,0,1).

La famille (e⃗1, e⃗2, . . . , e⃗n) est une base deKn, appelée base canonique.
• La base canonique de Mn,p(K) est la famille (Ei,j )1≤i≤n

1≤j≤p
.

• La base canonique deKn[X] est la famille (1,X,X2, . . . ,Xn).

4.3 Familles libres quelconques / parties libres

Soit (u⃗i)i∈I une famille de vecteur de E. La famille (u⃗i)i∈I ou la partie A =
{
u⃗i
}
i∈I est

dite libre si toutes ses sous-familles finies sont libres. Elle liée dans le cas contraire.

Définition

On montre que la famille (u⃗i)1≤i≤n est libre pour tout n ∈N.

En pratique : pour vérifier la liberté d’une famille infinie (u⃗i)i∈N

• Remarque. Comme pour les familles finies, la famille (u⃗i)i∈I (ou la par-
tie est

{
u⃗i
}
1≤i≤n) est libre si pour toute famille (αi)i∈I ∈ KI presque nulle :∑

i∈I
αi u⃗i = 0⃗E =⇒ ∀i ∈ I, αi = 0

5 Complément : la notion d’algèbre

UneK-algèbre est un ensemble A muni de deux lois de composition interne + et
× et d’une multiplication externe · telles que

i) (A,+,×) est un anneau
ii) (A,+, ·) est unK-espace vectoriel

iii) Pour tout λ ∈K et tous x⃗, y⃗ ∈ A : (λ · x⃗)× y⃗ = x⃗ × (λ · y⃗) = λ · (x⃗ × y⃗).

Définition

Soit (A,+,×, ·) uneK-algèbre. Une sous-algèbre de A est une partie B de A telle que :
• B est un sous-anneau de (A,+,×) • B est un sous-espace vectoriel de (A,+, ·)

Définition

On vérifie que :
i) B possède l’élément neutre pour × : 1⃗A ∈ B

ii) B est stable par combinaisons linéaires : ∀x⃗, y⃗ ∈ B, ∀λ,µ ∈K, λx⃗+µy⃗ ∈ B.
iii) B est stable par multiplication : ∀x⃗, y⃗ ∈ B, x⃗ × y⃗ ∈ B

En pratique : pour montrer que B est une sous-algèbre de A
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DIMENSION

Dans ce qui suit, E désigne unK-espace vectoriel et n un entier naturel.

1 Théorie de la dimension

E est dit de dimension finie s’il possède une famille génératrice finie.

Définition

1.1 Algorithme de la base incomplète

Si E possède une famille génératrice de cardinal n alors toute famille libre de E
possède au plus n éléments.

Théorème

Si E est de dimension finie, alors toute famille libre de E est complétable en une
base de E. Précisément

Théorème : Théorème de la base incomplète

• Remarque. Précisément, on a montré que si G est une famille génératrice finie
de E alors toute famille libre de E peut-être complétée en une base de E à l’aide de
vecteurs de G .

De toute famille génératrice finie de E on peut extraire une base de E.

Théorème : Théorème de la base extraite

1.2 Dimension d’un espace vectoriel

Si E est de dimension finie, alors toutes ses bases sont finies et ont même cardinal.

Théorème

Si E est de dimension finie, on appelle dimension de E le cardinal commun à
toutes ses bases.

Définition

• dimKn = n • dimKn[X] = n+ 1 • dimMn,p(K) = np

Théorème : Exemples fondamentaux

Si E et F sont deuxK.e.v de dimensions finies : dim(E ×F) = dimE + dimF

Théorème : Espace produit

2 Utiliser la dimension finie
2.1 Familles libres /génératrices en dimension finie

On suppose ici que E est de dimension finie n.

1. Toute famille libre a au plus n éléments.
2. Toute famille de E génératrice a au moins n éléments.

Théorème

1. Toute famille libre de cardinal n est une base.
2. Toute famille génératrice de E de cardinal n est une base de E.

Théorème

• On constate qu’elle est de cardinal n = dimE • On vérifie uniquement la liberté

En pratique : pour montrer qu’une famille est une base de E

2.2 Sous-espaces et dimension

On suppose que E est de dimension finie n. Soit F un sous-espace vectoriel de E :
• F est de dimension finie et dimF ≤ n. • F = E ssi dimF = n.

Théorème

En dimension finie, étant donnés deux sous-espaces vectoriels F et G de E, pour
montrer que F = G on peut montrer que : • F ⊂ G • dimF = dimG.

En pratique : raisonnement par « Inclusion dimension »
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2.3 Rang d’une famille de vecteurs
Soit E unK-e.v. (quelconque) et F = (u1, . . . ,up) une famille de vecteurs de E.

Le rang de F est la dimension de VectF : rgF =
déf.

dimVectF

Définition

1. On a toujours rg(u1, . . . ,up) ≤ p. 2. rg(u1, . . . ,up) = p ssi F est libre

Théorème

3 Somme de sous-espaces
Dans toute cette partie, F et G désignent deux sous-espaces vectoriels de E.

3.1 Généralités

La somme de F et G est le sous-espace vectoriel F +G =
déf.
{x+ y, x ∈ F, y ∈ G}

Définition

• Remarques:• F +G contient les sous-espaces F et G.
•C’est le plus petit sev ayant cette propriété : si un sev H contient F et G alors F+G ⊂H

Soient X et Y des parties de E.
Si F = VectX et si G = VectY alors F +G = VectX ∪Y

En pratique : somme de « Vect »

Si F,G sont de dimension finie alors F +G l’est aussi et :
dim(F +G) = dimF + dimG −dim(F ∩G)

Théorème : Formule de Grassmann

3.2 Somme directe

On dit que F et G sont en somme directe si, pour tout vecteur z de F +G, il y a
unicité de la décomposition sous la forme z = x+ y avec x ∈ F et y ∈ G.

Définition

• Notation. Lorsque F et G sont en somme directe, la somme est notée F⊕G.

F et G sont en somme directe si et seulement si F ∩G = {0E}

Théorème : Critère pratique

• Base adaptée à une somme directe.
• Cadre.F, G sont de dimension finie. B est une base de F, C une base de G

Si F et G sont en somme directe alors (B , C ) est une base de F ⊕G appelée base
adaptée à la somme directe F ⊕G.
En particulier F ⊕G est de dimension finie et : dim(F ⊕G) = dimF + dimG

Théorème

Si (B,C ) est une famille libre, alors F et G sont en somme directe.

Théorème

3.3 Sous-espaces supplémentaires

On dit que F et G sont supplémentaires si tout vecteur de E se décompose d’une
manière unique comme somme d’un vecteur de F et d’un vecteur de G.

Définition

• Remarque. F et G sont supplémentaires ssi : F∩G= {0} et F+G=E

3.4 Supplémentaires en dimension finie

On suppose E de dimension finie. Alors F et G sont en supplémentaires ssi
F ∩G = {0} et dimF + dimG = dimE

Théorème : Critère à utiliser en dimension finie

Si E est de dimension finie, tout sous-espace vectoriel F de E possède au moins
un supplémentaire.

Théorème : Existence de supplémentaires en dimension finie
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