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MPSI 1 du 9 au 13 février

Toutes les définitions /énoncés du cours sont à connaître précisément.

• Cadre. • I est un intervalle non vide, non réduit à un point •a est un point de I ou une de ses extrémités • les fonctions sont définies sur D = I ou I\{a} et à valeurs dans R

■ Exercice de cours sur les espaces vectoriels
Exercice 1 Résultat de cours, Chap 20, III.1 — Soit E un K-espace vectoriel et

(u⃗1, . . . , u⃗n, u⃗n+1) une famille génératrice de E. Montrer que si u⃗n+1 est combinaison
linéaire de (u⃗1, . . . , u⃗n), alors (u⃗1, . . . , u⃗n) est encore une famille génératrice de E.

Exercice 2 Résultat de cours, Chap 20, IV.2 — Soit E un K-espace vectoriel,
(u⃗1, . . . , u⃗n) une famille libre de E et u⃗n+1 ∈ E. Montrer que si u⃗n+1 n’est pas com-
binaison linéaire de (u⃗1, . . . , u⃗n) alors (u⃗1, . . . , u⃗n, u⃗n+1) est une famille libre de E.

Exercice 3 Résultat de cours, Chap 21, I.2 — Déterminer la dimension de l’espace
vectoriel Sn(K) de l’ensemble des matrices symétriques de Mn(K) (on admet la
liberté de la famille obtenue pour ne pas perdre de temps).

Exercice 4 Résultat de cours, Chap 21, II.2 — Soit E un K-espace vectoriel de di-
mension finie et F un sous-espace vectoriel de E.
Montrer que F est de dimension finie.

Développements limités

1 Négligeabilité, domination
Dans cette partie et les suivantes on suppose que g ne s’annule pas au voisinage

de a, sauf éventuellement en a. Lorsque g(a) = 0 on impose f (a) = 0.

1.1 Définitions

• On dit que f est négligeable devant g au voisinage de a si
f (x)
g(x)

−→
x→a

0

On note alors f (x) =
x→a

o(g(x)) ou f =
a
o(g). (« f est un petit o de g »)

• On dit que f est dominée par g au voisinage de a si
f

g
est bornée au voisinage

de a. On note alors f (x) =
x→a

O(g(x)) ou f =
a
O(g). (« f est un grand O de g »)

Définition

• Cas des suites . Soient u,v ∈RN telles que vn , 0 à partir d’un certain rang. On

dit que u est négligeable devant v si :
un
vn
−→

n→+∞
0.

• si α < β : xα =
x→+∞

o(xβ) • si α ∈R∗+ : (lnx)β =
x→+∞

o(xα) • si β ∈R∗+ : xα =
x→+∞

o(eβx)

Théorème : Croissances comparées en +∞

• Si α < β : xβ =
x→0

o(xα) • Si α ∈R∗+ : |lnx|β =
x→0

o(
1
xα

)

Théorème : Croissances comparées en 0

1.2 Règles de calcul

1. Combinaisons linéaires. Si f1 =
a
o(g) et f2 =

a
o(g) alors, pour tout (α,β) ∈ R2,

αf1 + βf2 =
a
o(g). On retiendra : « α × o(g) + β × o(g) =

a
o(g) »

2. Transitivité. Si : f =
a
o(g) et g =

a
o(h), alors : f =

a
o(h).

3. Produit. Si : f1 =
a
o(g1) et f2 =

a
o(g2) alors : f1f2 =

a
o(g1g2).

4. Produit par une fonction. Si : f =
a
o(g) alors : f h =

a
o(gh)

Théorème : Opérations sur les o

lim
x→a

f (x) = 0 ⇐⇒ f (x) =
x→a

o(1)

Théorème : Fonctions de limite nulle

• Remarque. f (x) =
x→a

O(1) signifie : f est bornée au voisinage de a.

Si : f (x) =
a
o(g(x)) et u(t) −→

t→α
a alors : f

(
u(t)

)
=

t→α
o
(
g
(
u(t)

))
.

Théorème : Changement de variable

2 Equivalence
2.1 Généralités
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f est équivalente à g au voisinage de a si
f (x)
g(x)

−→
x→a

1, noté f (x) ∼
x→a

(g(x)) ou f ∼
a

(g)

Définition

• Cas des suites . Soient u,v ∈RN.
Si vn , 0 APCR, on dit que u est équivalent à v si :

un
vn
−→

n→+∞
1.

f (x) ∼
x→a

g(x) ⇐⇒ f (x) =
x→a

g(x) + o(g(x))

Théorème : Equivalence et négligeabilité

On garde UN SEUL terme : le « plus gros »

En pratique : pour trouver une fonction équivalente à une somme

• Remarque. Pour une fonction polynomiale P : x 7→ adx
d + ad+1x

d+1 + · · ·+ anx
n où

ad et an sont non nuls :

• En ±∞ : P (x) ∼
x→+∞

anx
n (monôme de plus haut degré)

• En 0 : P (x) ∼
x→0

adx
d (monôme de plus bas degré)

Si f ∼
a
g alors f et g ont le même signe au voisinage de a.

Théorème : Equivalence et signe

Si f ∼
a
g et si g admet une limite en a (finie ou non) alors f admet la même limite.

Théorème : Equivalence et existence + valeur de la limite

Si : i) Au voisinage de a : f (x) ≤ g(x) ≤ h(x) ii) f (x) ∼
x→a

h(x)

Alors : g(x) ∼
x→a

f (x) et g(x) ∼
x→a

h(x).

Théorème : Equivalent par encadrement

2.2 Règles de calcul

1. Transitivité. Si f ∼
a
g et g ∼

a
h, alors : f ∼

a
h.

2. Produit. Si : f1 ∼a g1 et f2 ∼a g2 alors : f1f2 ∼a g1g2

3. Quotient, inverse. Si : f1 ∼a g1 et f2 ∼a g2,

alors :
f1

f2
∼
a

g1

g2
, en particulier :

1
f1
∼
a

1
g1

4. Puissances d’exposant CONSTANT . On suppose f > 0 au voisinage de a.
Si : f ∼

a
g alors : ∀α ∈R, f α ∼

a
gα .

5. Equivalence avec une constante. Si ℓ ∈R∗ : f (x) ∼
x→a

ℓ ⇐⇒ f (x) −→
x→a

ℓ

6. Changement de variable. Si f ∼
a
g et lim

t→α
u(t) = a alors f

(
u(t)

)
∼

t→α
g
(
u(t)

)
.

7. Substitution . Si : f =
a
o(g) et g ∼

a
h alors f =

a
o(h)

Théorème

1. Somme. f1 ∼a g1 et f2 ∼a g2 ���XXX=⇒ f1 + f2 ∼a g1 + g2

2. Composition. f ∼
a
g ���XXX=⇒ φ ◦ f ∼

a
φ ◦ g

en particulier : f ∼
a
g ���XXX=⇒ ef ∼

a
eg

3. Puissances d’exposant non constant.

Eviter le célèbre : 1 +
1
x
∼

x→+∞
1 ���XXXdonc

(
1 +

1
x

)x
�

��H
HH
∼

x→+∞
1x = 1.

j Propriétés FAUSSES j
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3 Développements limités en un point (a est fini)
3.1 Généralités

Soit n ∈N. On dit que f admet en a un développement limité d’ordre n s’il existe

a0, a1, . . . , an ∈R tels que : f (x) =
x→a

n∑
k=0

ak(x − a)k + o
(
(x − a)n

)
Définition

3.2 Propriétés des développements limités

Si f possède un développement limité d’ordre n en a, alors la liste (a0, . . . , an) des
coefficients est unique.

Théorème : Unicité

• Conséquence. En cas d’existence, le DLn en 0 d’une fonction paire ne comporte
que des puissances paires.

Soient n ∈N∗, a ∈D et f dérivable sur D.

Si f ′ admet en a le DLn−1 : f ′(x) =
x→a

n−1∑
k=0

ak(x − a)k + o
(
(x − a)n−1

)
.

Alors f admet en a le DLn : f (x) =
x→a

f (a) +
n−1∑
k=0

ak
k + 1

(x − a)k+1 + o
(
(x − a)n

)

Théorème : Primitivation

On suppose que a ∈D et que f est de classe C n sur D.

Alors f admet un DLn en a, donné par : f (x) =
x→a

n∑
k=0

f (k)(a)
k!

(x − a)k + o
(
(x − a)n

)
Théorème : Formule de Taylor-Young

• Remarque. Troncature à l’ordre p. Un DLn fournit pour tout p ≤ n un DL à l’ordre
p en « oubliant » les termes d’ordre supérieur ou égal à p

3.3 Développements limités usuels
A connaître !

4 Opérations sur les développements limités
■ Combinaisons linéaires

On suppose ici que f et g admettent un DLn en a.

Les DLn de f et g se combinent termes à termes.

En pratique : pour obtenir un DLn de λf +µg

■ Produit

Les DLn de f et g fournissent un développement de f g au moins d’ordre n.

En pratique : pour obtenir un DLn de f g

• Remarque : « gain d’ordre ». Lorsqu’on cherche un DLn en 0 de f g :
• si f (x) = xp(ap + ...), alors il suffit de développer g à l’ordre n− p
• si g(x) = xq(αq + ...), alors il suffit de développer f à l’ordre n− q.

■ Exemples de composition de développements limités
■ Inverse (et quotient) de développement limités

On se ramène à
1

1 +u(x)
avec u(x) −→

x→a
0.

En pratique : pour obtenir un DLn de 1
g

Si g admet un DLn de la forme g(x) = (bqxq + ...), il suffit de :
1. Développer f et g à l’ordre n+ q. 2. Simplifier le quotient par xq

On est ainsi ramené à un DL de la forme
N (x)

1 +u(x)
= N (x)× 1

1 +u(x)
.

En pratique : pour obtenir un DLn en 0 de f
g lorsque g(0) = 0

■ Développement limité en un point a autre que 0

• On effectue un DLn en 0 de g : h 7→ f (a+ h) • On « revient » à x via « h = x − a »

En pratique : on « pose » g(h) = f (a+ h)
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APPLICATIONS
DES DEVELOPPEMENTS LIMITES

1 Recherche d’équivalents et de limites
1.1 Développements limités et équivalence

Supposons que f admet un DLn en a à coefficients non tous nuls et notons ap le
premier coefficient non nul : f (x) = ap(x − a)p + · · ·+ an(x − a)n + o((x − a)n)

• f (x) ∼
x→a

ap(x − a)p • Au voisinage de a, f est du signe de ap(x − a)p

Théorème

Il suffit de trouver le premier terme non nul de son développement limité en a.

Pour trouver un équivalent de f au voisinage de a

1.2 Recherche de limites

• On peut rechercher un équivalent simple de la quantité à étudier.
• Les développements limités permettent d’obtenir cet équivalent

En pratique : pour lever une forme indéterminée

2 Etude locale d’une courbe – étude de suites
2.1 Développement limité et prolongement C 1

On peut utiliser les développements limités pour chercher les limites de f et f ′ .

En pratique : montrer que f est prolongeable en une fonction C 1

2.2 Développement limité et tangente

On suppose que f est définie sur I \ {a}.
Si f admet en a le DL1 : f (x) = a0 + a1(x − a) + o(x − a), alors :

• f est prolongeable par continuité en a en posant f (a) = a0.
• f est dérivable en a, avec f ′(a) = a1.

Théorème

• L’équation de la tangente à Cf en a est y = a0 + a1(x − a).
• Un DL d’ordre supérieur donne la position courbe/tangente au voisinage de a.

En pratique : DL1 et tangente

2.3 Asymptotes (obliques) en ±∞

Soient a,b ∈ R. On suppose que f est définie au voisinage de +∞. La droite
d’équation y = ax+ b est dite asymptote à Cf en +∞ si : f (x) = ax+ b+ o

(
1
)

Définition

• On peut éventuellement effectuer un DLn de g : h 7→ hf
(1
h

)
en 0 avec n ≥ 2

• On « revient » ensuite à x via « h =
1
x

»

En pratique : (une) méthode pour rechercher une asymptote

2.4 Comportement asymptotique de suites

Pour tout q ∈R : qn = o(n!).

Théorème : Suites géométriques et factorielles

n! ∼
(n
e

)n√
2nπ

Théorème : Formule de Stirling (Admise)

■ Développement asymptotique d’une suite implicite sur un exemple

L’adresse de la page des maths est : http://mathieucathala.fr
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