
14
MPSI 1 du 12 au 16 janvier

Toutes les définitions /énoncés du cours sont à connaître précisément.

■ Exercice de cours
Exercice 1 Théorème du cours, chap. 16, V — Soient x1, . . . ,xn ∈K deux à deux dis-
tincts et y1, . . . , yn ∈K quelconques. Montrer qu’il existe un unique P ∈Kn−1[X] tel

que P (xk) = yk pour tout k ∈ ⟦1 ,n⟧ et que ce polynôme est donné par : P =
n∑
i=1

yiLi

(où L1, . . . ,Ln sont les polynômes de Lagrange associés à x1, . . . ,xn).

Exercice 2 Exercice feuille 14 — Soit n un entier supérieur ou égal à 2. Trouver
le reste de la division euclidienne de X2n par (X2 + 1)2. Pour vérification : on trouve
(−1)n(−nX2 + 1−n).

Exercice 3 Exercice feuille 14 — Soient n ∈N∗ et a ∈R. On pose P = (X + 1)n − e2ina.

a) Calculer les racines de P dansC . b) En déduire :
n−1∏
k=0

sin
(
a+

kπ

n

)
=

sin(na)
2n−1 .

Exercice 4 Exercice feuille 14 — Soit n ∈N∗. On pose P =
n−1∑
k=0

Xk

a) Pour k ∈ ⟦1 ,n−1⟧, calculer P ′(ωk) où ωk = e
2ikπ
n b) En déduire :

n−1∏
k=1

P ′(ωk) = nn−2

Dans tout le chapitreK est R ou C.

0 Construction de l’anneau des polynômes
Définition de l’ensembleK[X] des polynômes à une indéterminée à coefficient

dansK comme l’ensemble des suites d’éléments deK nulles à partir d’un certain
rang. Polynômes constants, polynôme nul. Opérations sur les polynômes (somme et
produit). L’anneau (K[X],+,×). Notation polynomiale.

1 Divisibilité et division euclidienne
1.1 Degré d’un polynôme

• Soit P ∈K[X] avec P , 0 et (an)n∈N la suite de ses coefficients (nulle apcr).
• Le degré de P est par définition le plus grand indice k tel que ak est non nul.

• d = degP signifie : P =
d∑

k=0

ak et ad , 0.

Définition

• Vocabulaire. • ad est le coefficient dominant de P • P est unitaire si ad = 1
• Remarques: Par convention deg0 = −∞.

Pour tout n ∈N, on noteKn[X] l’ensemble des polynômes de degré inférieur ou
égal à n

Définition

Soient P ,Q ∈K[X]. • deg(P +Q) ≤max(degP ,degQ) • degPQ = degP + degQ

Théorème

Soient P ,Q ∈K[X]. Si PQ = 0 alors P = 0 ou Q = 0

Théorème : K[X] est un anneau intègre

• Elements inversibles de K[X]. Il s’agit des polynômes constants non nuls

1.2 Composition

Soient P ,Q ∈K[X], avec P =
n∑

k=0

akX
k . On note P ◦Q ou P (Q) le polynôme

n∑
k=0

Qk .

Définition

• Remarque. Si le polynôme Q n’est pas constant : deg(P ◦Q) = degP ×degQ

1.3 Diviseurs, multiples

Soient A,B ∈ K[X]. On dit que B divise A (ou que A est un multiple de B) si il
existe Q ∈K[X] tel que A = BQ.

Définition

• Polynômes associés. Soit A,B ∈K[X] : A | B et B | A⇔∃λ ∈K∗ | A = λB

1.4 Division euclidienne

Soient A,B ∈K[X], avec B , 0. Il existe un unique couple (Q,R) de polynômes
tels que : 1. A = BQ+R 2. degR ≤ (degB)− 1.
Q est le quotient et R le reste de la division euclidienne de A par B.

Théorème
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2 Racines d’un polynôme
2.1 Evaluation d’un polynôme
• Vocabulaire. Evaluation d’un polynôme, fonction polynomiale associée.

Soit P ∈K[X] et a ∈K. On dit que a est une racine de P dansK si P (a) = 0.

Définition

2.2 Racines et divisibilité

Soient P ∈K[X] et a ∈K. P (a) = 0 ssi (X − a) divise P

Théorème

Soit P ∈K[X] et a1, a2, . . . , ak ∈K, deux à deux distincts.

P (a1) = · · · = P (ak) = 0 ssi P est divisible par
k∏

i=1

(X − ai).

Théorème

2.3 Racines et degré

Soit P ∈K[X], non nul. Si degP = n (n ∈N) alors P a au plus n racines dansK.

Théorème

• Si on sait que degP ≤ n et que P a (au moins) n+ 1 racines, alors P = 0.
• Si P a une infinité de racines, alors P = 0

En pratique : pour montrer que P est nul

• Conséquence. Si P (a) = Q(a) en une infinité de valeurs a ∈K, alors P = Q (i.e. P
et Q ont mêmes coefficients).

3 Polynôme dérivé
3.1 Généralités

Soit P =
n∑

k=0

akX
k ∈K[X] avec n ≥ 1. On pose P ′ =

n∑
k=1

kakX
k−1 =

n−1∑
k=0

(k + 1)ak+1X
k

Définition

• Conséquences . • P ′ = 0 ssi P ∈K • Si degP ≥ 1 : degP ′ = f degP − 1

3.2 Polynômes dérivés d’ordre supérieur

Soient P ,Q ∈K[X], λ,µ ∈K et soit n ∈N.
1. Combinaisons linéaires. (λP +µQ)(n) = λP (n) +µQ(n)

2. Formule de Leibniz. (PQ)(n) =
n∑

k=0

(
n

k

)
P (k)Q(n−k)

Théorème : Opérations

Soit a ∈K et n ∈N. Pour tout P ∈Kn[X] : P =
n∑

k=0

P (k)(a)
k!

(X − a)k .

Théorème : Formule de Taylor

3.3 Multiplicité d’une racine

Soit P ∈K[X] non nul et a ∈K. La multiplicité de a dans P est le plus grand m ∈N
tel que (X − a)m divise P . Autrement dit, a est racine de multiplicité m de P si

• (X − a)m | P et (X − a)m+1 ne divise pas P
• ou encore si P = (X − a)mQ avec Q(a) , 0.

Définition

Soit P ∈K[X] non nul de degré n (donc n ∈N).
•Si a1, ..., ak sont des racines distinctes de P de multiplicités au moins m1, ...,mk

alors :
k∏

i=1

(X − ai)mi divise P

• P a au plus n racines comptées avec multiplicité.

Théorème
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3.4 Polynômes dérivés et racines

Soient P ∈K[X], a ∈K et m ∈N. Il y a équivalence entre :
i) a est racine de multiplicité m de P

ii) P (a) = P ′(a) = · · · = P (m−1)(a) = 0 et P (m)(a) , 0

Théorème

• Conséquences.
• a est racine simple de P si et seulement si P (a) = 0 et P ′(a) , 0.
• Si a est de multiplicité m ≥ 1 dans P alors a est de multiplicité m− 1 dans P ′ .

Soient P ∈K[X], a ∈K et m ∈N∗. (X − a)m divise P ssi P (a) = · · · = P (m−1)(a) = 0.

Théorème

4 Polynômes scindés, relations coefficients-racines
4.1 Polynômes scindés

Soit P ∈K[X], non constant de degré n. On dit que P est scindé surK si :
• P se factorise dansK[X] en un produit de polynômes de degré 1 i.e. s’il est de la

forme : P = λ
n∏
i=1

(X − zi) pour certains λ ∈K∗ et z1, . . . , zn ∈C

• C’est équivalent à : P a (au moins) n racines comptées avec multiplicité

Définition

Exemple 1 -r- Xn − 1 =
n−1∏
k=0

(
X − e

2ikπ
n

)
et

n−1∑
k=0

Xk =
n−1∏
k=1

(
X − e

2ikπ
n

)
4.2 Relations entre coefficients et racines

■ Cas n = 2 (rappel)

Si P = aX2 +bX + c = a(X − z1)(X − z2), alors z1 + z2 = −b
a

et z1z2 =
c

a

Les solutions de

z1 + z2 = s

z1z2 = p
sont : les racines de X2 − sX + p.

En pratique : résolution de systèmes non-linéaires

■ Cas n = 3
Si P = aX3 + bX2 + cX + d = a(X − z1)(X − z2)(X − z3) ∈K[X], alors

z1 + z2 + z3 = −b
a

z1z2 + z1z3 + z2z3 =
c

a
et z1z2z3 = −d

a

Les solutions de


z1 + z2 + z3 = α

z1z2 + z1z3 + z2z3 = β

z1z2z3 = γ

sont : les racines de X3 −αX2 + βX −γ .

En pratique : résolution de systèmes non-linéaires

■ Cas général

Soit P =
n∑

k=0

akX
k = an(X − z1)× . . .×(X − zn) un polynôme scindé sur K de degré n

•
n∑
i=1

zi = −an−1

an
• z1z2 + z1z3 + · · ·+ zn−1zn =

an−2

an
•

n∏
i=1

zi = (−1)n
a0

an

Théorème

• Remarque. Pour tout k ∈ ⟦1 ,n⟧ :
∑

1≤i1<···<ik≤n
zi1zi2 . . . zik = (−1)k

an−k
an

5 Interpolation de Lagrange
• Données. • x1,x2, . . . ,xn ∈K distincts • y1, y2, . . . , yn ∈K quelconques

Pour tout i ∈ ⟦1 ,n⟧, on définit le polynôme Li par : Li =
∏

1≤j≤n
j,i

X − xj
xi − xj

Ce polynôme est de degré n− 1 et vérifie :

Li(xi) = 1
Li(xk) = 0 pour k , i

L1,L2, . . . ,Ln sont les polynômes de Lagrange associés à x1, . . . ,xn.

Définition

Il existe un unique P ∈Kn−1[X] tel que : ∀k ∈ ⟦1 ,n⟧, P (xk) = yk ,

Ce polynôme est donné par : P =
n∑
i=1

yiLi .

Théorème
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