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MPSI 1 du 15 au 19 décembre

Toutes les définitions /énoncés du cours sont à connaître précisément.

• Cadre. • I est un intervalle de R non vide et non réduit à un point • a est un point de I • f : I →R est une fonction.

Exercice 1 Résultat de cours, chap 14.1, I —
Enoncer et démontrer le théorème de Rolle.

Exercice 2 Résultat de cours chap 14.0,II–3 et dém. de cours, chap 14.1,I–2 —
1. Enoncer le théorème de la limite de la dérivée.

Démontrer ce résultat en utilisant l’égalité des accroissements finis.
2. Prouver que l’implication : ( f est dérivable en a) =⇒ (f ′ admet une limite

finie en a) est fausse. on pourra considérer la fonction f définie sur R+ par :

f (x) = x2 sin
1
x

pour tout x > 0 et f (0) = 0.

Exercice 3 Exo de cours, chap 14.1,I–1 — Soit f : I → R de classe C n (n ≥ 1). On
suppose que f s’annule en au moins n+ 1 points distincts. Montrer que f (n) s’annule.

Exercice 4 Résultat et démonstration de cours, chap 14.1,I–2 et ex. feuille 12 —
1. Enoncer et démontrer le théorème de l’égalité des accroissements finis.
2. Etudier la limite en +∞ de (x+ 1)e

1
x+1 − xe

1
x .

Exercice 5 Dém. de cours, chap 14.1, I–3 — Soit f : I → R une fonction dérivable
sur l’intervalle I . Montrer que f est convexe sur I ssi f ′ est croissante sur I .

DERIVABILITE

1 Dérivée en un point
1.1 Définition

f est dérivable en a si son taux d’accroissement en a, τa : x 7→
f (x)− f (a)

x − a
possède

une limite finie quand x tend vers a. En ce cas on pose : f ′(a) = lim
x→a

f (x)− f (a)
x − a

.

Définition

• Vocabulaire et notation. On dit que f est dérivable à droite en a si son taux
d’accroissement en a possède une limite finie à droite en a. On pose alors :

f ′d (a) = lim
x→a+

f (x)− f (a)
x − a

. On définit de même la dérivée à gauche f ′g (a).

Supposons que a soit un point intérieur à I . Dans ce cas f est dérivable en a ssi
f est dérivable à gauche et à droite en a et si f ′d (a) = f ′g (a)

Théorème

1.2 Dérivabilité et continuité

Si f est dérivable en a pour tout x ∈ I : f (x) = f (a) + f ′(a)(x − a) + (x − a)ε(x)
où ε(x) −→

x→a
0

Si f est dérivable en a, alors f est continue en a.

Théorème

j Attention j La réciproque est fausse.
1.3 Extremum local

f possède un maximum local en a si, au voisinage de a, f (x) ≤ f (a)

Définition

On suppose que a est un point intérieur à I et que f est dérivable en a.
Si f possède un extremum local en a alors f ′(a) = 0.

Théorème

j Attention j La réciproque est fausse.
• Vocabulaire.Un a∈ I en lequel f est dérivable et f ′(a) = 0 est un point critique de f
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2 Justifier la dérivabilité
2.1 Opération sur les dérivées

Soient u,v deux fonction dérivables en a et soient λ,µ ∈R. Alors
1. Linéarité : λu +µv est dérivable en a et : (λu +µv)′(a) = λu′(a) +µv′(a),
2. Produit : uv est dérivable en a et : (uv)′(a) = u′(a)v(a) +u(a)v′(a).

3. Quotient : Si v(a) , 0, alors
u

v
est dérivable en a et

(u
v

)′
(a) =

u′(a)v(a)−u(a)v′(a)
v2(a)

Théorème : Opérations algébriques

Soient u : I →R et v : J→R. On suppose u à valeurs dans J . Si u est dérivable en
a et si v est dérivable en u(a) alors v ◦u est dérivable en a et :

(v ◦u)′(a) = u′(a)× v′(u(a))

Théorème : Composition

• Cas particuliers à savoir: Les dérivées des composées usuelles uα , eu , ln(u), ...

Il faut savoir justifier proprement la dérivabilité d’une composée.

En pratique :

2.2 Dérivation des fonctions réciproques

Soit f : I → R, continue et strictement monotone sur I .On pose b = f (a). On
suppose que f dérivable en a et que f ′(a) , 0. Alors f −1 est dérivable en b et :

(f −1)′(b) =
1

f ′(f −1(b))

Théorème : Réciproque

2.3 Théorème de la limite de la dérivée

On suppose que : •f est continue sur [a ,b[ •f est dérivable sur ]a ,b[

Si f ′(x) −→
x→a+

ℓ (finie ou non), alors
f (x)− f (a)

x − a
−→
x→a

ℓ.

Théorème : Théorème de la limite de la dérivée

• Remarque. Même conclusion si :
• f est continue sur ]a ,b] • f est dérivable sur ]a ,b[ • lim

x→b−
f ′(x) = ℓ

• Remarque. Même conclusion si :
• f est continue sur I • f est dérivable sur I \ {a} • lim

x→a
x,a

f ′(x) = ℓ

• Conséquence. Lorsque ℓ est finie, f est dérivable en a et f ′ est continue en a

3 Fonctions de classe C n

• Notation. On définit par récurrence les dérivées successives de f :

• f (0) = f • Si f est n fois dérivable et si f (n) est dérivable, f (n+1) =
(
f (n)

)′
.

Soit n ∈N. On dit que f est de classe C n sur I si :
• f est n fois dérivable sur I • La fonction f (n) est continue sur I

Définition

• Vocabulaire. f est de classe C∞ si f est de classe C n pour tout n ∈N ou encore
si f est indéfiniment dérivable.

3.1 Opérations sur les fonction de classe C n

Soit n ∈N. Soient f ,g : I →R, de classe C n et λ,µ ∈R.
• Combinaisons linéaires. λf +µg est de classe C n et (λf +µg)(n) = λf (n) +µg(n).

• Formule de Leibniz f g est de classe C n et (f g)(n) =
n∑

k=0

(n
k

)
f (k)g(n−k)

• Quotient. Si g ne s’annule pas, alors f
g est de classe C n.

Théorème : Opérations algébriques version C n

Soit n ∈N. Si : i) v est de classe C n sur J ii) u est de classe C n sur I , à valeurs
dans J alors v ◦u est de classe C n sur I

Théorème : Composition version C n

Soit n ∈N. Si :
i) f est une bijection de I sur J

ii) f est de classe C n sur I
iii) f ′ NE S’ANNULE PAS SUR I

alors f −1 est de classe C n sur J .

Théorème : Réciproque version C n
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3.2 Variante C 1 du théorème de la limite de la dérivée

• On justifie que f est C 1 sur I \ {a} par opérations.
• On étudie lim

x→a
f (x) pour prolonger f par continuité en a.

• On étudie lim
x→a
x,a

f ′(x) pour appliquer le théorème de la limite de la dérivée et

ainsi montrer que f est dérivable en a et que f ′ est continue en a.

En pratique : montrer que f se prolonge en une fonction C 1 sur I

ACCROISSEMENTS FINIS

1 Rolle et égalité des accroissements finis
1.1 Théorème de Rolle

Soit f : [a ,b]→R. On suppose que :
i) f est continue sur [a ,b].

ii) f est dérivable sur ]a ,b[.
iii) f (a) = f (b).

Alors il existe c ∈ ]a ,b[ tel que f ′(c) = 0.

Théorème

1.2 Egalité des accroissements finis

Soit f : [a ,b]→R. On suppose que :
i) f est continue sur [a ,b].

ii) f est dérivable sur ]a ,b[.

Alors il existe c ∈ ]a ,b[ tel que f ′(c) =
f (b)− f (a)

b − a
.

Théorème

• Graphiquement. Cf a une tangente parallèle à la corde reliant (a,f (a)) à (b,f (b))

1.3 Variations et convexité d’une fonction f dérivable sur I
• Cadre. f : I →R est dérivable sur l’intervalle I .
Démonstration des resultats suivants (précédemment admis) :

• f est croissante sur I ssi f ′ ≥ 0 sur I .
• f est convexe sur I ssi f ′ est croissante sur I .

f est strictement croissante si et seulement si :
i) ∀x ∈ I, f ′(x) ≥ 0,

ii) f ′ n’est nulle sur aucun intervalle [a ,b] avec a < b.

Théorème

• Remarque. Le théorème s’applique en particulier si :
• f ′ ne s’annule jamais • f ′ ne s’annule qu’un nombre fini de fois

2 Inégalité des accroissements finis
2.1 Inégalité des accroissements finis

Soit f : I →R, dérivable sur I .
On suppose qu’il existe k ∈R+ tel que :∀x ∈ I, |f ′(x)| ≤ k.
Alors : ∀x,y ∈ I,

∣∣∣f (x)− f (y)
∣∣∣ ≤ k

∣∣∣x − y∣∣∣.
On dit dans ce cas que la fonction f est k-lipschitzienne.

Théorème

2.2 Application à l’étude de suites du type un+1 = f (un).
• But. Montrer que la suite (un) converge vers un point fixe α de la fonction f .

• Hypothèse fondamentale. On trouve k ∈ ]0 ,1[ tel que : ∀x ∈ I, |f ′(x)| ≤ k.

• Application de l’IAF. Pour tout n, |f (un)− f (α)| ≤ k |un −α|
c’est à dire : |un+1 −α| ≤ k |un −α|

• Par récurrence sur n. ∀n ∈N, |un −α| ≤ kn |u0 −α|.
• Théorème d’encadrement. Puisque k ∈ [0 ,1[ : kn→ 0 et donc : |un −α| → 0

i.e. un→ α.

En pratique : les étapes clés pour montrer que un→ α

L’adresse de la page des maths est : https://mathieucathala.fr
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