
Groupe symétrique et déterminants

A - Groupe symétrique

Le groupe symétrique est introduit en vue de l’étude des déterminants, mais aussi pour son intérêt propre et ses interven-
tions possibles dans diverses questions d’algèbre et de probabilités.

CONTENUS CAPACITÉS & COMMENTAIRES

a) Généralités

Groupe des permutations de l’ensemble
{
1, . . . ,n

}
. Notation Sn .

Cycle, transposition. Notation (a1 a2 . . . ap ).
Décomposition d’une permutation en produit de cycles
à supports disjoints : existence, unicité, commutativité.

La démonstration n’est pas exigible, mais les étudiants
doivent savoir décomposer une permutation.

b) Signature d’une permutation

Décomposition d’une permutation en produit de trans-
positions.
Signature : il existe un unique morphisme de groupes de
Sn dans {−1,1} envoyant toute transposition sur −1.

La démonstration n’est pas exigible.

B - Déterminants

Les objectifs de cette partie sont les suivants :
– introduire la notion de déterminant d’une famille de vecteurs, en motivant sa construction par la géométrie ;
– établir les principales propriétés des déterminants des matrices carrées et des endomorphismes ;
– indiquer quelques méthodes simples de calcul de déterminants.

CONTENUS CAPACITÉS & COMMENTAIRES

a) Formes n-linéaires alternées

Forme n-linéaire alternée sur un K-espace vectoriel de
dimension n.

La définition est motivée par les notions intuitives d’aire
et de volume algébriques, en s’appuyant sur des figures.

Antisymétrie, effet d’une permutation. Si f est une forme n-linéaire alternée et si (x1, . . . , xn) est
une famille liée, alors f (x1, . . . , xn) = 0.

b) Déterminant d’une famille de vecteurs dans une base

Si e est une base, il existe une unique forme n-linéaire
alternée f pour laquelle f (e) = 1 ; toute forme n-linéaire
alternée est un multiple de dete .

Notation dete . La démonstration de l’existence n’est pas
exigible.

Expression du déterminant dans une base en fonction
des coordonnées.

Dans R2 (resp. R3), interprétation du déterminant dans
la base canonique comme aire orientée (resp. volume
orienté) d’un parallélogramme (resp. parallélépipède).

Comparaison, si e et e ′ sont deux bases, de dete et dete ′ .
La famille (x1, . . . , xn) est une base si et seulement si
dete (x1, . . . , xn) ̸= 0.

c) Déterminant d’un endomorphisme

Déterminant d’un endomorphisme.
Déterminant d’une composée. Caractérisation des automorphismes.

d) Déterminant d’une matrice carrée

Déterminant d’une matrice carrée. Caractère n-linéaire alterné du déterminant par rapport
aux colonnes.

Déterminant d’un produit. Relation det(λA) =λn det(A).
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CONTENUS CAPACITÉS & COMMENTAIRES

Caractérisation des matrices inversibles.
L’application det induit un morphisme de GL(E) (resp.
GLn(K)) sur K∗.
Déterminant d’une transposée. Caractère n-linéaire alterné du déterminant par rapport

aux lignes.

e) Calcul des déterminants

Effet des opérations élémentaires.
Cofacteur. Développement par rapport à une ligne ou
une colonne.
Déterminant d’une matrice triangulaire.
Déterminant de Vandermonde. Lien avec les polynômes de Lagrange.

f ) Comatrice

Comatrice. Notation Com(A).
Relation A Com(A)⊤ = Com(A)⊤ A = det(A)In . Expression de l’inverse d’une matrice inversible.
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Procédés sommatoires discrets

L’étude des séries prolonge celle des suites et permet d’appliquer les techniques d’analyse asymptotique. Les objectifs
majeurs en la matière portent sur les séries à termes positifs et la convergence absolue. L’étude de séries semi-convergentes
est limitée aux exemples fournis par le théorème des séries alternées.

L’étude des familles sommables est menée dans un deuxième temps. On prolonge les calculs de sommes finies effectués
en début d’année, en mettant en évidence un cadre permettant de sommer « en vrac » une famille infinie et procurant
ainsi un grand confort de calcul. Dans le cas d’une famille positive, le calcul dans [0,+∞] se suffit à lui-même et contient
l’étude de la sommabilité. Dans le cas d’une famille quelconque, il est préconisé de commencer par un calcul formel à
justifier dans un second temps.
On se concentre sur la pratique, qui jouera un rôle important en deuxième année.

CONTENUS CAPACITÉS & COMMENTAIRES

a) Convergence et divergence

Sommes partielles d’une série numérique.
Convergence, divergence, somme.

La série est notée
∑

un .

En cas de convergence, sa somme est notée
+∞∑
n=0

un .

Linéarité de la somme.
Le terme général d’une série convergente tend vers 0. Divergence grossière.
Reste d’une série convergente.
Lien suite-série. La suite (un) et la série télescopique

∑
(un+1 −un) sont

de même nature.
Séries géométriques : condition nécessaire et suffisante
de convergence, somme.

Relation ez =
+∞∑
n=0

zn

n!
pour z ∈C.

b) Séries à termes positifs ou nuls

Une série à termes positifs converge si et seulement si la
suite de ses sommes partielles est majorée.
Si 0 É un É vn pour tout n, la convergence de

∑
vn im-

plique celle de
∑

un .
Si (un)n∈N et (vn)n∈N sont positives et si un ∼ vn , les séries∑

un et
∑

vn sont de même nature.
Si f est monotone, encadrement des sommes partielles
de

∑
f (n) à l’aide de la méthode des rectangles.

Application à l’étude de sommes partielles.

Séries de Riemann.

c) Séries absolument convergentes à termes réels ou complexes

Une série numérique absolument convergente est conver-
gente.

Le critère de Cauchy est hors programme.

Si (un) est une suite complexe, si (vn) est une suite d’élé-
ments de R+, si un = O(vn) et si

∑
vn converge, alors∑

un est absolument convergente donc convergente.

d) Théorème des séries alternées

Si la suite réelle (un)n∈N converge en décroissant vers 0,∑
(−1)nun converge.

Signe et majoration en valeur absolue de la somme, des
restes.

e) Familles sommables de nombres réels positifs

Convention de calcul et relation d’ordre dans [0,+∞].
Borne supérieure dans [0,+∞].
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CONTENUS CAPACITÉS & COMMENTAIRES

Somme d’une famille (ui )i∈I d’éléments de [0,+∞], défi-
nie comme borne supérieure dans [0,+∞] de l’ensemble
des sommes

∑
i∈F

ui quand F décrit l’ensemble des parties

finies de I .

La somme est notée
∑
i∈I

ui .

Cas où I est fini, où I =N (lien avec les séries). On note
∞∑

n=0
un =+∞ si la série

∑
un d’éléments de R+ diverge.

Invariance de la somme par permutation.

La famille (ui )i∈I d’éléments de R+ est dite sommable si∑
i∈I

ui <+∞.
On souligne que les calculs sont justifiés par la seule posi-
tivité et qu’ils fournissent un moyen d’étudier la somma-
bilité.

Opérations : somme, multiplication par un réel positif.
Théorème de sommation par paquets : si I est réunion
disjointe des I j pour j ∈ J et si (ui )i∈I est à valeurs dans

R+, alors
∑
j∈J

( ∑
i∈I j

ui

)
= ∑

i∈I
ui .

La démonstration est hors programme.

Cas où I est un produit : théorème de Fubini positif.

f ) Familles sommables de nombres complexes

La famille (ui )i∈I deCI est dite sommable si
∑
i∈I

|ui | < +∞. Notation ℓ1(I ).
Pour I =N, lien avec les séries.
Sommabilité d’une sous-famille d’une famille sommable.

Somme d’une famille sommable de nombres complexes. Si (ai )i∈I est sommable et si ε ∈ R+∗, il existe une partie

finie F de I telle que
∣∣∣∑
i∈I

ai −
∑
i∈F

ai

∣∣∣É ε.

Invariance de la somme par permutation.
Soit (ui )i∈I une famille de nombres complexes et soit (vi )
une famille sommable de réels positifs vérifiant, pour
tout i ∈ I , |ui | É vi . Alors (ui )i∈I est sommable.
Linéarité de la somme.
Théorème de sommation par paquets : si I est réunion
disjointe des I j pour j ∈ J , si (ui )i∈I est sommable, alors∑
j∈J

( ∑
i∈I j

ui

)
= ∑

i∈I
ui .

La démonstration est hors programme.

Cas où I est un produit : théorème de Fubini.
Si (ai )i∈I et (bi ′ )i ′∈I ′ sont sommables alors (ai bi ′ )(i ,i ′)∈I×I ′
est sommable et∑

(i ,i ′)∈I×I ′
ai bi ′ =

∑
i∈I

ai ×
∑

i ′∈I ′
bi ′ .

Extension, sans rédaction de la démonstration, au pro-
duit d’un nombre fini de familles sommables.

Produit de Cauchy de deux séries absolument conver-
gentes.

On retrouve le fait que l’exponentielle complexe est un
morphisme de (C,+) dans (C∗,×).
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Fonctions de deux variables

Le but de cette section, dont le contenu sera entièrement repris dans un cadre plus général en seconde année, est de
familiariser les étudiants avec les calculs sur les dérivées partielles, notamment avec la « règle de la chaîne », et de
développer une vision géométrique des fonctions de deux variables. Le point de vue est donc essentiellement pratique.
Toute extension et tout développement théorique supplémentaire sont hors programme.

CONTENUS CAPACITÉS & COMMENTAIRES

a) Ouverts de R2, fonctions continues

Boules de R2 muni de la norme euclidienne canonique.
Ouverts.
Continuité d’une fonction définie sur un ouvert de R2, à
valeurs dans R.

Représentation graphique d’une fonction de deux va-
riables par une surface.
La notion de continuité est introduite uniquement en
vue du calcul différentiel. L’étude de la continuité d’une
fonction n’est pas un objectif du programme.

b) Dérivées partielles

Dérivées partielles en un point d’une fonction f définie
sur un ouvert de R2, à valeurs dans R.

Notations
∂ f

∂x
(x0, y0),

∂ f

∂y
(x0, y0). L’existence des dérivées

partielles n’entraîne pas la continuité.
Fonction de classe C 1 sur un ouvert. Définition par la continuité des dérivées partielles.

La notion de fonction différentiable est hors programme.
Développement limité à l’ordre 1 au point (x0, y0) d’une
fonction f de classe C 1 :

f (x0+h, y0+k) = f (x0, y0)+ ∂ f

∂x
(x0, y0)h+ ∂ f

∂y
(x0, y0)k

+o(∥(h,k)∥).

Démonstration hors programme.
On met en évidence l’idée de l’approximation linéaire de
f (x0 +h, y0 +k)− f (x0, y0) et l’interprétation de

z − z0 = ∂ f

∂x
(x0, y0)(x −x0)+ ∂ f

∂y
(x0, y0)(y − y0)

comme équation du plan tangent en (x0, y0) à la surface
d’équation z = f (x, y).

Gradient d’une fonction de classe C 1. Notation ∇ f (x0, y0).
Expression du développement limité à l’aide du gradient. Le gradient de f en (x0, y0) définit la direction dans la-

quelle f croît le plus vite.

c) Dérivées partielles et composées

Dérivée selon un vecteur. Expression à l’aide du gradient 〈∇ f (x0, y0),u〉.
Règle de la chaîne : les fonctions considérées étant de
classe C 1, la fonction t 7→ f (x(t ), y(t )) est de classe C 1 et

d

dt

(
f (x(t ), y(t ))

)= ∂ f

∂x
(x(t ), y(t ))x ′(t )+∂ f

∂y
(x(t ), y(t ))y ′(t )

Interprétation comme dérivée de f le long d’un arc γ
donné par γ(t ) = (x(t ), y(t )) et expression à l’aide du gra-
dient

( f ◦γ)′(t ) = 〈∇ f (γ(t )),γ′(t )〉
où γ′(t ) est défini par (x ′(t ), y ′(t )).
Le gradient de f est orthogonal aux lignes de niveau de f .

Sous les hypothèses appropriées, dérivées partielles de
(u, v) 7→ f (ϕ(u, v),ψ(u, v)).

d) Extremums

Maximum et minimum, local ou global d’une fonction
définie sur une partie de R2.
Point critique. Tout extremum local d’une fonction de
classe C 1 sur un ouvert de R2 est un point critique.

Exemples d’étude de points critiques.
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