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Suites

Il s’agit d’une suite récurrente linéaire d’ordre 2. La résolu-
tion de I’équation caractéristique permet d’exprimer u, en
fonction de deux constantes A, B € R.

On détermine A et B a 'aide des valeurs de uy et uyg.

On peut alors calculer u et uy.

Réponses : ug =—-20 et uy =—-38.

Il s’agit d’une suite récurrente linéaire d’ordre 2. L'équa-
tion caractéristique a pour racines a et b, il y a donc deux
racines réelles mais elles peuvent étre confondues donc il
faut distinguer deux cas

Sia = b L'équation caractéristique a deux racines distinctes,
n n
—-a

on obtient u, .
—-a

Sia =b L’équation caractéristique a une racine double, on
obtient u, = na™!.

Il s’agit d’une suite récurrente linéaire d’ordre 2 et on est
dans le cas complexe ici (car a € C). On peut écrire le dis-
criminant A de I’équation caractéristique comme un carré :
A = 4(a+2i)? il faut distinguer deux cas selon que A = 0 ou
A=0.

Si a # =2i I’équation caractéristique a deux racines dis-
tinctes, on obtient u, = A x 2"(a+i)" + B x (=2i)".

Si a =-2i I’équation caractéristique a une racine double,
on obtient u, = (A + nB)(-2i)".

Il s’agit d’une suite récurrente linéaire d’ordre 2 et on est
dans le cas complexe ici.
Réponses pour vérifier vos calculs :

» Le discriminant A de I'équation caractéristique vaut A =
—15+8i.

e Une racine carrée de A est 6 = 1 +4i.

* Les solutions de I'équation caractéristiques sont Ay =1 —3i
et )Lz =2+1.

o PourtoutnelN: wu,=—(1-3)"+(2+1)".

Considérer la suite (v,) vérifiant vy = ug, v1 = u; et Vn €

1 2

N, Vpi2 = 3Vn41 + 50

* Montrer d’abord par récurrence double sur n € IN que :
u, <v, pour tout n € IN.

* Onadonc: VYnelN, 0<u,<v,.
En vertu du th. d’encadrement, il suffit de montrer que
v, — 0.
Pour cela calculer v, en fonction de n en vérifiant que les
deux suites géométriques dont v est combinaison linéaire
tendent vers 0.

1. La suite v de terme général v, = Inu, vérifie, v, =

In2+ 2v, pour tout n € IN.

v est donc une suite arithmético-géométrique.

On peut ainsi exprimer v, en fonction de n puis revenir

au,=e'n.

Réponse : u,,
2. La suite v de terme général v, = lnu, vérifie, v,,, =

6v,,1 — 5v, pour tout n € IN.

v est donc une suite récurrente linéaire d’ordre 2.

On peut ainsi exprimer v, en fonction de n puis revenir

au,=e".

=221,

, 511
Réponse : u, =27 .

7
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Indications

141 .
1. Zn+l :Tzn+2—z.

2. (z,) est arithmético-géométrique, on trouve, pour tout

1+1i N .
nelN: zn:(T)n(zo—a)+aoua:3+z.
. +1
Puisque |—|< 1,2z, — adoncu, — Re(a)=3
n—+oo n—+oo

et u, i Im(a) =1

Procéder par analyse-syntheése.

Pour 'analyse, si f convient pour x € R} fixé, considérer
la suite u définie par uy = x puis pour tout n € IN, par
Uny1 = f (up).

L'hypothese faite sur f permet d’exprimer u,,, en fonction
de u, ., et u, puis (suite récurrente linéaire d’ordre 2) d’ob-
tenir u, = Ax 2" + Bx (-3)" pour tout n € IN.

La positivité de u exige B =0 et donc u, = A x2".

On obtient A = x avec ug et f(x) =u; = 2x.

Ne pas oublier la synthese.

1. Raisonner par I’absurde. Si x,, > n pour tout n € IN, dé-
gager une contradiction en utilisant la définition de la
suite pour montrer que (x,) est décroissante.

2. Procéder par récurrence.

3. Remarquer que la suite (u,) = (x, — 5) est arithmético-

L . 1
géométrique, on obtient u, 1 = —u, — >

10/ @) Utiliser la quantité conjuguée puis factoriser le dénomi-

nateur par Vn? = n.
Réponse : u, — 1.

n—+oo

b)

Factoriser par Ve (le terme prépondérant)

Réponse : u,, — +oo.
n—+oo

c) Factoriser par n au numérateur et au dénominateur.
, 2
Réponse : u, — —.
n—+oco 5
d) Revenir a la forme exponentielle et utiliser la limite clas-
. . In(1+4t)
sique lim —— =1.
t—0
Réponse : u, — e.
p n n—+oo

e) Ecrire In(1 - kl—z) =In(k—-1)+In(k+ 1) — 2Ink puis sé-
parer les sommes, réindexer et simplifier, on obtient

u, =In(1+ %)—an puis uy, o —In2.

f) Distinguer les cas a < b, a="b et a> b puis factoriser par
le terme prépondérant dans chaque cas.
1 sia>b
Réponse u, —
p n n—+oo O
-1
Il s’agit d’'une somme géométrique, que l'on sait donc
calculer explicitement.
1

Réponse : u,, — 5
P " p+oo 2

sia=b
sia<b
9)

h) Revenir a I'exponentielle, on voit apparaitre un produit

d’une suite bornée par une suite de limite nulle.

Réponse : u, —> 1.
n—+oo

i) Factoriser par ¢" (terme prépondérant) dans le loga-
rithme.
Réponse : uy, vt 0.

)2

j) Ecrire n>+2n+3 = (n+1)?+2 au dénominateur et utiliser



ensuite le fait que sin((n+ 1)+ x) = (=1)"*!sinx.

Réponse: u, — 0.
n—+oo

14) 1. ¢ Siu, — 0, alors Un

N
+ Uy, 1+

limites).

* Siv, — 0, exprimer u, en fonction de v, et conclure

de méme que dans le cas précédent.

2. ¢ Siu, — 0,alors u est bornée (cours) et

(opérations sur les limites).

* Siv, — 0 et si u est bornée, écrire u, = v, x (1 + u?)
c’est a dire un produit d’une suite ... par une suite ...

12) 1.a)
n-1
b) Utiliser: v, =vg+ kaﬂ - V.
k=0
n—1
La somme ka+1 — v est géométrique avec 1a).
k=0
n+1 sia=1
Réponse : v, = 1—am .
1 sita=1
1-al
. ) . . 2_
2. Utiliser I'expression de 1b) et le fait que u,, =a" "
Réponse :
e Sia=1: u, — +oo.
n—+oo
e Si0<a<l: wu, — 0.
n—+oo
e Sia>1: u, — +co.
n—+oo

13! 1. Réponse: uy, =2 N -NZ2je)%.
n—-+oo

2. La suite (u,) est positive donc sa limite 1’est aussi.

14| Les hypothéses permettent de montrer que u,v, <u, <1

etu,v, <v, <1
On conclut par encadrement

15 Itérer la relation |u,) —u,| > qlu, —u,—|:
|un+1 - ”nl 2q |un - un—ll

2 N
> g up—1 —Up_o| =2 9" Jun1 —un|

(prouver: |up, —uy| > q" N |uns1 —uy| par récurrence
sur n > N pour plus de rigueur). L'hypothése faite sur u

assure alors par encadrement que g — 0.
n—+o0

16/ On utilise dans tous les cas le théorémes de comparai-

d) Utiliser le savoir faire

0 o
5 (opérations sur les

ﬁ—
1+u? 1+02

v,

i.e. encadrer l'intérieur, ici,
I'encadrement k7t — 1 < | k7] < k7 pour k € [1,n] permet
d’encadrer u, par deux sommes que l'on sait calculer
puis d’appliquer le théoreme d’encadrement..

Réponse u, — Z.

P " nostoo 2

Utiliser le savoir faire i.e. encadrer l'intérieur. At-
tention ici on part de k € [[1,2n+ 1] donc 1 <k <2n+1.

On obtient nlﬁ < m <1 pourke[l,2n+1] et on

somme pour k € [[1,2n+ 1] ce qui permet d’encadrer u,
par deux suites de limite 2.

Réponse u, — 2.
n—+oo

La méme méthode qu’au cas précédent permet de mino-
rer u, par une suite de limite infinie.Réponse u, —

n—+o0o
+00.

17! @) u, =0deés que n>bdoncu, — 0.

n—+oo

b) En «sortant » le facteur 1 : n! <1 xn"! ce qui permet de

montrer que u, — 0.
n—+oo

c) Sortir les termes d’indices k = n et k = n—1 de la somme :

1+ ! + § K
u, = — J—
! n n!
k=1
puis majorer, pour k € [1,n—2], k! par (n—2)! ce qui per-
n-=2
k! .
met de montrer que : i 0 puis que u, e L.
=1
d) Sortir les deux termes extrémes au début et a la fin :
n-2
1+ ! + ! +1 +1
Up =1+~ ZT -
n k=2 (k) n
~—
Sn

Montrer ensuite que pour 2 <k <n-2,(}) > ”(”271) ce qui

ermet de montrer que S, — 0
p q n n—+oo

e) L'idée est de minorer les termes du produit par une

constante strictement supérieure a 1 afin de minorer u,
par une suite géométrique divergeant vers +oo :
Pour n € IN*:

e Sil<k<n: 2—2k—nzgdoncﬁ(2—£)2(§)n.

L 2n 2
* Ensuite couper le produit en deux et minorer de méme
2n
k
H (2 - Z_n) par 1.
k=n+1

Par minoration, on montre que u, — +oo.
n—+o0

son (i.e. encadrement pour une limite finie, ou minoration- 18/ 1. Sommer « par paquets » en regroupant les termes en

majoration pour une limite infinie).

a) Encadrer u, a I'aide de I'’encadrement x — 1 < [x] < x.
a

Réponse u,, — -—.
p "o b

b) Utiliser le savoir faire

u, par \n.

Réponse u, —> +oo.
n—+oo

c) Utiliser le savoir faire

; n+l — n2+k. = n T
d’encadrer u, par deux suites de limite 1.

Réponse u, — 1.
n—

+00

i.e. encadrer l'intérieur, ici,
la minoration \/LE > \/Lﬁ pour k € [[1,n]] permet de minorer

i.e. encadrer 'intérieur, ici,
l'encadrement -1~ < 12— < L pour k € [1,n] permet

fonction de la valeur de ln_n .
Ink

Inn

1
2. En posant N = —, remarquer que {n/’J =1sij>N.

In2
Couper la somme S, en I'indice N et majorer les termes

d’indices supérieurs a N + 1 par y/n.

19/ @) Noter que pour k > 2:

A _1__1 _ _1
e Xy e St

b) Utiliser le théoréme de la limite monotone.

Il n'est pas difficile de montrer que u est croissante
(Upe1 — U, est simple).



20| 1

Ensuite utiliser la question a) pour majorer :
. s s 1 1 1
S(.)mmer les 1pegahtes EESEITER pour ke [[.2,n]]
Ajouter ensuite le terme d’indice k = 1 a savoir 1.
n
On obtient aprés télescopage: ) kl—z <2- % <2.

. Procéder par minoration en utilisant 1+ a* > 2.

24| @) Montrer que pour tout n>1:

14+4/4(n—-1) <y < 1+Vén+1
o2 Tt
b) Utiliser 'encadrement de la question précédente.

Réponse : u, —\n — —.

n—+oo 2

2. Utiliser le théoréme de la limite monotone. Il nest pas | 25| 1- Montrer que (v,) est croissante. Pour montrer que

22| a)

b)

c)

difficile de montrer que u est croissante.

Ensuite majorer u,, a I'aide de I'inégalité 1 +a* < "
Cela permet de majorer u,, par un produit d’exponen-
tielles donc par I’exponentielle d’'une somme qui est une
somme géométrique de raison a, donc on peut calculer
la somme. 1

En calculant la somme on obtient u, < eT pour tout
n1.

. En deux temps :

» Convergence : avec le théoreme de la limite monotone.
On constate (récurrence) que u, > 0 pour tout n € IN,
puis on montre facilement que u décroit.

o Valeur de ¢ =limu,

Légalité: VnelN, Un

Upyl =
V1+ u,%

4
ViteZ

assure que ¢ vérifie: ¢ =

On trouve ainsi € = 0.

1,1 1
. * Premiére facon : Par télescopage : S, = —(— - —)
n

Up_q

[ 2
L+up_,

1 1
donne — - ——=1pourkeN"et S, =1.

U U,

* Deuxieme facon : Par définition : uy = ce qui

1,1 1
En égalant les deux expressions de S, : —(—2 - —2) =1
ntug ug

ce qui donne une expression de y/nu, en fonction de n
(et de ug) ot I'on constate que Vnu, — 1.

Etudier la fonction f : x + x(1—x) sur [0, 1] pour trouver
son maximum.

Utiliser le théoréme de la limite monotone.

La monotonie suffit vu que u est bornée par hypothése.
Pour trouver le signe de u,,; —u, combiner I’hypothése
avec le résultat de la question a) appliqué avec x = u,, :
(1 - un)un+l > (1 - un)un-

1
Le théoreme de passage aux limites dans (1 —u,)u,,.; > 1

combiné avec le résultat de la question a) appliqué avec

1
x ={ assure que (1 -¢)¢ = 1 ie. f(0)= 1
Utiliser alors le tableau de f de la question a)

23| Utiliser le théoréme de la limite monotone :

* Montrer que u est croissante.

* Pour majorer u :

* montrer d’abord que u, .1 <(1+4a")u, pour tout n > 1.
n-1

* en déduire que u, < (1_[1 + ak)u1 pour tout n > 2.
k=1

N . k _a_
e alaidede: 1+af<e? montrer: u, <evl-auj.

Vg1 = min(uy,, u,1) > v, il s’agit de montrer que u, > v,
et Uy 1 20,

2. Procéder par minoration en utilisant u, > v,.

3. a) Distinguer deux cas :

* Ou bien u, <¢. Dans ce cas : u, < max({,w,).

* Ou bien u, > ¢. Dans ce cas, vu que (v,) est crois-
sante de limite ¢, u, > v, donc v, = u,_; et pour la
méme raison v,,,1 = U,41. Lhypotheése sur la suite u
s’écrit ainsi: v,y >au, +(1—a)v,. Cette inéga-
lité se réécrit u, < w, donc u, < max(¢,w,).

b) Commencer par montrer que w, — ¢ (par opé-
n—+oo

rations en utilisant v, — ¢). Ensuite revenir a la

n—+oo

définition de la limite (« avec les € ») pour montrer
que max(¢,w,) — .

n—+oo
Le résultat en découle par encadrement sachant que
v, < u, <max({,w,) pour tout n > 1.

26! 1. Commencer par montrer (par récurrence) que les deux
suites sont strictement positives puis utiliser le théoreme
de la limite monotone.

2. Notant ¢, la limite de (u,) et ¢, celle de (v,,) :

o Légalité u,, x (u, +v,) = u2 donne £, (61 +6,) = 3
donc ¢1¢, = 0.

* Montrer par ailleurs que la suite (1, —v,,) est constante
ce qui donne ¢; —¢, =a—b.

I1y a deux alternatives :

(¢1=0 et ¢, =b-a) ou (€, =0 et ¢ =a-b)

Eliminer la premiére alternative en observant le signe

de b—a.

27| Il suffit de vérifier les trois conditions du théoréme sur les
suites adjacentes (ici u est croissante, v est décroissante,
v, —u, — 0).

28! Il suffit de vérifier les trois conditions du théoréme sur les
suites adjacentes (ici u est décroissante, v est croissante,
v, —u, — 0), utiliser la quantité conjugué pour des calculs
efficaces.

29| 1. Montrer que u et v sont adjacentes.
Pour cela commencer par montrer que la suite (d,) =
(v, — uy) est géométrique de raison 5
Ceci assure que v, —u, —> 0 et que v, > u, pour tout
n—+oo

n € IN. Ce dernier point permet de déterminer les signes
de u,.1 —u, et v, —v,.

2. La bonne définition de c, repose sur le fait que u,,v, €
R} et u, # v, pour tout n € IN. Vérifier ensuite que

Cpny1 = €, en remplacant v, et u, | par leurs expres-
sions en fonction de v, et u,.

3.a) Appliquer l'inégalité des tangentes a la fonction
concave In aux points x et .



b) En appliquant I'inégalité de 3a) avec u,, et v,,, montrer
ar encadrement que ¢, — £.
p q n n—+oo
Conclure en utilisant le fait que (c,) est constante.
b-a

Réponse: €= ob—Ina

30! Dans chacun des cas, on étudie une suite du type u,,; =
f(u,) ou la fonction f : I — R est croissante sur son inter-
valle I de définition, et ou I est stable par f. On applique

donc la méthode du savoir-faire

On étudie le signede g: x— f(x)—x
On distingue des cas selon la position de ug par rapport
aux zéros de g en montrant, dans chaque cas, que :

1. Les termes de la suite (u,) « restent » dans un inter-
valle ou ¢ est de signe constant

2. (u,) est monotone (croissante ou décroissante selon
le signe de g).

3. (u,) a une limite (avec le théoreme de la limite mo-
notone)

31| a) Distinguer deux cas :

32

b)

1.

4,

e Siug>1alors:
* [1,+00[ est stable par f
* f estcroissante sur [1,+oo]

Donc ce cas se traite par la méthode standard.

* S5i0<uy<1,alors montrer que u; > 1 ce qui permet
de se ramener au premier cas.

Distinguer deux cas :
* Siug>0alors:
* [0,+0o[ est stable par f
* f est croissante sur [0, +oo]
Donc ce cas se traite par la méthode standard (f pos-

séde deux points fixes sur R, : 0 et 3).

* Si uy < 0, alors montrer que u; > 0 ce qui permet
de se ramener au premier cas. Plus précisément, dis-
tinguer des cas sur uy en fonction de la position de
uy = f(up) par rapport a % (il convient de distinguer

1 < ! ! t > 1)
escas: Uy<—, U= et uy>=)
R 73
Réponse : La suite est bien définie ssi ug €[0,1].
-1+v5
. En posant a = T\/_, on trouve que h est :

* Positive sur [0, o]
* Négative sur [a, 1]

. Vu que f o f est croissante, le signe de h permet de mon-

trer la convergence de (u;,) vers a selon la méthode stan-
dard (en distinguant des cas selon que uy < a, upg = a ou
ug > a).

On montre ensuite que (u;,,1) est monotone de sens
contraire a (u,,) (grace a la décroissance de f) et qu’elle
converge elle aussi vers a.

Observer les valeurs de u,, et ;1.

33| Commencer par étudier le cas ou (a,) est constante.



