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Suites Indications

1 Il s’agit d’une suite récurrente linéaire d’ordre 2. La résolu-
tion de l’équation caractéristique permet d’exprimer un en
fonction de deux constantes A,B ∈R.
On détermine A et B à l’aide des valeurs de u10 et u20.
On peut alors calculer u0 et u1.
Réponses : u0 = −20 et u1 = −38.

2 Il s’agit d’une suite récurrente linéaire d’ordre 2. L’équa-
tion caractéristique a pour racines a et b, il y a donc deux
racines réelles mais elles peuvent être confondues donc il
faut distinguer deux cas

• Si a , b L’équation caractéristique a deux racines distinctes,

on obtient un =
bn − an

b − a
.

• Si a = b L’équation caractéristique a une racine double, on
obtient un = nan−1.

3 Il s’agit d’une suite récurrente linéaire d’ordre 2 et on est
dans le cas complexe ici (car a ∈ C). On peut écrire le dis-
criminant ∆ de l’équation caractéristique comme un carré :
∆ = 4(a+ 2i)2 il faut distinguer deux cas selon que ∆ = 0 ou
∆ , 0.

• Si a , −2i L’équation caractéristique a deux racines dis-
tinctes, on obtient un = A× 2n(a+ i)n +B× (−2i)n.

• Si a = −2i L’équation caractéristique a une racine double,
on obtient un = (A+nB)(−2i)n.

4 Il s’agit d’une suite récurrente linéaire d’ordre 2 et on est
dans le cas complexe ici.
Réponses pour vérifier vos calculs :
• Le discriminant ∆ de l’équation caractéristique vaut ∆ =
−15 + 8i.

• Une racine carrée de ∆ est δ = 1 + 4i.
• Les solutions de l’équation caractéristiques sont λ1 = 1− 3i

et λ2 = 2 + i.
• Pour tout n ∈N : un = −(1− 3i)n + (2 + i)n.

5 Considérer la suite (vn) vérifiant v0 = u0, v1 = u1 et ∀n ∈
N, vn+2 = 1

3vn+1 + 2
9vn.

• Montrer d’abord par récurrence double sur n ∈N que :
un ≤ vn pour tout n ∈N.

• On a donc : ∀n ∈N, 0 ≤ un ≤ vn.
En vertu du th. d’encadrement, il suffit de montrer que
vn→ 0.
Pour cela calculer vn en fonction de n en vérifiant que les
deux suites géométriques dont v est combinaison linéaire
tendent vers 0.

6 1. La suite v de terme général vn = lnun vérifie, vn+1 =

ln2 + 2vn pour tout n ∈N.
v est donc une suite arithmético-géométrique.
On peut ainsi exprimer vn en fonction de n puis revenir
à un = evn .
Réponse : un = 22n−1.

2. La suite v de terme général vn = lnun vérifie, vn+2 =
6vn+1 − 5vn pour tout n ∈N.
v est donc une suite récurrente linéaire d’ordre 2.
On peut ainsi exprimer vn en fonction de n puis revenir
à un = evn .

Réponse : un = 2
5n−1

4 .

7 1. zn+1 =
1 + i

2
zn + 2− i.

2. (zn) est arithmético-géométrique, on trouve, pour tout

n ∈N : zn =
(1 + i

2

)n
(z0 −α) +α où α = 3 + i.

Puisque
∣∣∣∣∣1 + i

2

∣∣∣∣∣ < 1, zn −→n→+∞
α donc un −→n→+∞

Re(α) = 3

et un −→n→+∞
Im(α) = 1

8 Procéder par analyse-synthèse.
Pour l’analyse, si f convient pour x ∈ R∗+ fixé, considérer
la suite u définie par u0 = x puis pour tout n ∈ N, par
un+1 = f (un).
L’hypothèse faite sur f permet d’exprimer un+2 en fonction
de un+1 et un puis (suite récurrente linéaire d’ordre 2) d’ob-
tenir un = A× 2n +B× (−3)n pour tout n ∈N.
La positivité de u exige B = 0 et donc un = A× 2n.
On obtient A = x avec u0 et f (x) = u1 = 2x.
Ne pas oublier la synthèse.

9 1. Raisonner par l’absurde. Si xn ≥ n pour tout n ∈N, dé-

gager une contradiction en utilisant la définition de la
suite pour montrer que (xn) est décroissante.

2. Procéder par récurrence.
3. Remarquer que la suite (un) = (xn − n

2 ) est arithmético-

géométrique, on obtient un+1 = −un −
1
2

.

10 a) Utiliser la quantité conjuguée puis factoriser le dénomi-

nateur par
√
n2 = n.

Réponse : un −→n→+∞
1.

b) Factoriser par
√
en (le terme prépondérant)

Réponse : un −→n→+∞
+∞.

c) Factoriser par n au numérateur et au dénominateur.

Réponse : un −→n→+∞
2
5

.

d) Revenir à la forme exponentielle et utiliser la limite clas-
sique lim

t→0

ln(1+t)
t = 1.

Réponse : un −→n→+∞
e.

e) Ecrire ln(1 − 1
k2 ) = ln(k − 1) + ln(k + 1) − 2lnk puis sé-

parer les sommes, réindexer et simplifier, on obtient
un = ln(1 + 1

n )− ln2 puis un −→n→+∞
− ln2.

f) Distinguer les cas a < b, a = b et a > b puis factoriser par
le terme prépondérant dans chaque cas.

Réponse un −→n→+∞


1 si a > b

0 si a = b

−1 si a < b

g) Il s’agit d’une somme géométrique, que l’on sait donc
calculer explicitement.
Réponse : un −→n→+∞

1
2

h) Revenir à l’exponentielle, on voit apparaître un produit
d’une suite bornée par une suite de limite nulle.
Réponse : un −→n→+∞

1.

i) Factoriser par en (terme prépondérant) dans le loga-
rithme.
Réponse : un −→n→+∞

0.

j) Ecrire n2 +2n+3 = (n+1)2 +2 au dénominateur et utiliser



ensuite le fait que sin((n+ 1)π+ x) = (−1)n+1 sinx.
Réponse : un −→n→+∞

0.

11 1. • Si un → 0, alors
un

1 +un
→ 0

1 + 0
(opérations sur les

limites).
• Si vn→ 0, exprimer un en fonction de vn et conclure

de même que dans le cas précédent.

2. • Si un→ 0, alors u est bornée (cours) et
un

1 +u2
n
→ 0

1 + 02

(opérations sur les limites).
• Si vn → 0 et si u est bornée, écrire un = vn × (1 + u2

n)
c’est à dire un produit d’une suite ... par une suite ...

12 1. a)

b) Utiliser : vn = v0 +
n−1∑
k=0

vk+1 − vk .

La somme
n−1∑
k=0

vk+1 − vk est géométrique avec 1a).

Réponse : vn =


n+ 1 si a = 1

1 +
1− a−n

1− a−1 si a , 1
.

2. Utiliser l’expression de 1b) et le fait que un = an
2−nvn.

Réponse :

• Si a = 1 : un −→n→+∞
+∞.

• Si 0 < a < 1 : un −→n→+∞
0.

• Si a > 1 : un −→n→+∞
+∞.

13 1. Réponse : un −→n→+∞
N −N2 |ℓ|2.

2. La suite (un) est positive donc sa limite l’est aussi.

14 Les hypothèses permettent de montrer que unvn ≤ un ≤ 1
et unvn ≤ vn ≤ 1.
On conclut par encadrement

15 Itérer la relation |un+1 −un| ≥ q |un −un−1| :
|un+1 −un| ≥ q |un −un−1|

≥ q2 |un−1 −un−2| ≥ · · · ≥ qn−N |uN+1 −uN |
(prouver : |un+1 −un| ≥ qn−N |uN+1 −uN | par récurrence
sur n ≥ N pour plus de rigueur). L’hypothèse faite sur u
assure alors par encadrement que qn −→

n→+∞
0.

16 On utilise dans tous les cas le théorèmes de comparai-
son (i.e. encadrement pour une limite finie, ou minoration-
majoration pour une limite infinie).
a) Encadrer un à l’aide de l’encadrement x − 1 ≤ ⌊x⌋ ≤ x.

Réponse un −→n→+∞
a

b
.

b) Utiliser le savoir faire SF 3 i.e. encadrer l’intérieur, ici,
la minoration 1√

k
≥ 1√

n
pour k ∈ ⟦1 ,n⟧ permet de minorer

un par
√
n.

Réponse un −→n→+∞
+∞.

c) Utiliser le savoir faire SF 3 i.e. encadrer l’intérieur, ici,
l’encadrement 1

n+1 ≤
n

n2+k ≤
1
n pour k ∈ ⟦1 ,n⟧ permet

d’encadrer un par deux suites de limite 1.
Réponse un −→n→+∞

1.

d) Utiliser le savoir faire SF 3 i.e. encadrer l’intérieur, ici,
l’encadrement kπ − 1 ≤ ⌊kπ⌋ ≤ kπ pour k ∈ ⟦1 ,n⟧ permet
d’encadrer un par deux sommes que l’on sait calculer
puis d’appliquer le théorème d’encadrement..
Réponse un −→n→+∞

π
2 .

e) Utiliser le savoir faire SF 3 i.e. encadrer l’intérieur. At-
tention ici on part de k ∈ ⟦1 ,2n+ 1⟧ donc 1 ≤ k ≤ 2n+ 1.
On obtient 1

n+1 ≤
1√
n2+k

≤ 1
n pour k ∈ ⟦1 ,2n + 1⟧ et on

somme pour k ∈ ⟦1 ,2n+ 1⟧ ce qui permet d’encadrer un
par deux suites de limite 2.
Réponse un −→n→+∞

2.

f) La même méthode qu’au cas précédent permet de mino-
rer un par une suite de limite infinie.Réponse un −→n→+∞
+∞.

17 a) un = 0 dès que n > b donc un −→n→+∞
0.

b) En « sortant » le facteur 1 : n! ≤ 1×nn−1 ce qui permet de
montrer que un −→n→+∞

0.

c) Sortir les termes d’indices k = n et k = n−1 de la somme :

un = 1 +
1
n

+
n−2∑
k=1

k!
n!

puis majorer, pour k ∈ ⟦1 ,n−2⟧, k! par (n−2)! ce qui per-

met de montrer que
n−2∑
k=1

k!
n! −→n→+∞

0 puis que un −→n→+∞
1.

d) Sortir les deux termes extrêmes au début et à la fin :

un = 1 +
1
n

+
n−2∑
k=2

1(n
k

)
︸ ︷︷ ︸

Sn

+
1
n

+ 1

Montrer ensuite que pour 2 ≤ k ≤ n−2,
(n
k

)
≥ n(n−1)

2 ce qui
permet de montrer que Sn −→n→+∞

0

e) L’idée est de minorer les termes du produit par une
constante strictement supérieure à 1 afin de minorer un
par une suite géométrique divergeant vers +∞ :
Pour n ∈N∗ :

• Si 1 ≤ k ≤ n : 2− k

2n
≥ 3

2
donc

n∏
k=1

(
2− k

2n

)
≥
(3

2

)n
.

• Ensuite couper le produit en deux et minorer de même
2n∏

k=n+1

(
2− k

2n

)
par 1.

Par minoration, on montre que un −→n→+∞
+∞.

18 1. Sommer « par paquets » en regroupant les termes en

fonction de la valeur de
⌊

lnn

lnk

⌋
.

2. En posant N =
lnn

ln2
, remarquer que

⌊
n

1
j

⌋
= 1 si j > N .

Couper la somme Sn en l’indice N et majorer les termes
d’indices supérieurs à N + 1 par

√
n.

19 a) Noter que pour k ≥ 2 :
1

k−1 −
1
k = 1

k(k−1) = 1
k2−k .

b) Utiliser le théorème de la limite monotone.
Il n’est pas difficile de montrer que u est croissante
(un+1 −un est simple).

2



Ensuite utiliser la question a) pour majorer :
Sommer les inégalités 1

k2 ≤ 1
k−1 −

1
k pour k ∈ ⟦2 ,n⟧

Ajouter ensuite le terme d’indice k = 1 à savoir 1.

On obtient après télescopage :
n∑

k=1

1
k2 ≤ 2− 1

n ≤ 2.

20 1. Procéder par minoration en utilisant 1 + ak ≥ 2.

2. Utiliser le théorème de la limite monotone. Il n’est pas
difficile de montrer que u est croissante.
Ensuite majorer un à l’aide de l’inégalité 1 + ak ≤ ea

k

Cela permet de majorer un par un produit d’exponen-
tielles donc par l’exponentielle d’une somme qui est une
somme géométrique de raison a, donc on peut calculer
la somme.
En calculant la somme on obtient un ≤ e

1
1−a pour tout

n ≥ 1.

21 1. En deux temps :

• Convergence : avec le théorème de la limite monotone.
On constate (récurrence) que un > 0 pour tout n ∈N,
puis on montre facilement que u décroît.

• Valeur de ℓ = limun
L’égalité : ∀n ∈N, un+1 =

un√
1 +u2

n

assure que ℓ vérifie : ℓ =
ℓ

√
1 + ℓ2

.

On trouve ainsi ℓ = 0.

2. • Première façon : Par télescopage : Sn =
1
n

( 1

u2
n
− 1

u2
0

)
.

• Deuxième façon : Par définition : uk =
u2
k−1√

1 +u2
k−1

ce qui

donne
1

u2
k

− 1

u2
k−1

= 1 pour k ∈N∗ et Sn = 1.

En égalant les deux expressions de Sn :
1
n

( 1

u2
n
− 1

u2
0

)
= 1

ce qui donne une expression de
√
nun en fonction de n

(et de u0) où l’on constate que
√
nun→ 1.

22 a) Etudier la fonction f : x 7→ x(1−x) sur [0 ,1] pour trouver
son maximum.

b) Utiliser le théorème de la limite monotone.
La monotonie suffit vu que u est bornée par hypothèse.
Pour trouver le signe de un+1 −un combiner l’hypothèse
avec le résultat de la question a) appliqué avec x = un :
(1−un)un+1 > (1−un)un.

c) Le théorème de passage aux limites dans (1−un)un+1 >
1
4

combiné avec le résultat de la question a) appliqué avec

x = ℓ assure que (1− ℓ)ℓ =
1
4

i.e. f (ℓ) =
1
4

.

Utiliser alors le tableau de f de la question a)

23 Utiliser le théorème de la limite monotone :

• Montrer que u est croissante.

• Pour majorer u :

• montrer d’abord que un+1 ≤ (1 + an)un pour tout n ≥ 1.

• en déduire que un ≤
(n−1∏
k=1

1 + ak
)
u1 pour tout n ≥ 2.

• à l’aide de : 1 + ak ≤ ea
k

montrer : un ≤ e
a

1−au1.

24 a) Montrer que pour tout n ≥ 1 :

1 +
√

4(n− 1)
2

≤ un ≤
1 +
√

4n+ 1
2

b) Utiliser l’encadrement de la question précédente.

Réponse : un −
√
n −→

n→+∞
1
2

.

25 1. Montrer que (vn) est croissante. Pour montrer que

vn+1 = min(un,un+1) ≥ vn il s’agit de montrer que un ≥ vn
et un+1 ≥ vn.

2. Procéder par minoration en utilisant un ≥ vn.
3. a) Distinguer deux cas :

• Ou bien un ≤ ℓ. Dans ce cas : un ≤max(ℓ,wn).
• Ou bien un > ℓ. Dans ce cas, vu que (vn) est crois-

sante de limite ℓ, un > vn donc vn = un−1 et pour la
même raison vn+1 = un+1. L’hypothèse sur la suite u
s’écrit ainsi : vn+1 ≥ aun + (1− a)vn. Cette inéga-
lité se réécrit un ≤ wn donc un ≤max(ℓ,wn).

b) Commencer par montrer que wn −→n→+∞
ℓ (par opé-

rations en utilisant vn −→n→+∞
ℓ). Ensuite revenir à la

définition de la limite (« avec les ε ») pour montrer
que max(ℓ,wn) −→

n→+∞
ℓ.

Le résultat en découle par encadrement sachant que
vn ≤ un ≤max(ℓ,wn) pour tout n ≥ 1.

26 1. Commencer par montrer (par récurrence) que les deux

suites sont strictement positives puis utiliser le théorème
de la limite monotone.

2. Notant ℓ1 la limite de (un) et ℓ2 celle de (vn) :

• L’égalité un+1 × (un + vn) = u2
n donne ℓ1(ℓ1 + ℓ2) = ℓ2

1
donc ℓ1ℓ2 = 0.

• Montrer par ailleurs que la suite (un−vn) est constante
ce qui donne ℓ1 − ℓ2 = a− b.

Il y a deux alternatives :
(ℓ1 = 0 et ℓ2 = b−a) ou (ℓ2 = 0 et ℓ1 = a−b)
Eliminer la première alternative en observant le signe
de b − a.

27 Il suffit de vérifier les trois conditions du théorème sur les
suites adjacentes (ici u est croissante, v est décroissante,
vn −un→ 0).

28 Il suffit de vérifier les trois conditions du théorème sur les
suites adjacentes (ici u est décroissante, v est croissante,
vn −un→ 0), utiliser la quantité conjugué pour des calculs
efficaces.

29 1. Montrer que u et v sont adjacentes.

Pour cela commencer par montrer que la suite (dn) =

(vn −un) est géométrique de raison
1
2

.
Ceci assure que vn −un −→n→+∞

0 et que vn > un pour tout

n ∈N. Ce dernier point permet de déterminer les signes
de un+1 −un et vn+1 − vn.

2. La bonne définition de cn repose sur le fait que un,vn ∈
R
∗
+ et un , vn pour tout n ∈ N. Vérifier ensuite que

cn+1 = cn en remplaçant vn+1 et un+1 par leurs expres-
sions en fonction de vn et un.

3. a) Appliquer l’inégalité des tangentes à la fonction
concave ln aux points x et y.

3



b) En appliquant l’inégalité de3a) avec un et vn, montrer
par encadrement que cn −→n→+∞

ℓ.

Conclure en utilisant le fait que (cn) est constante.

Réponse : ℓ =
b − a

lnb − lna
.

30 Dans chacun des cas, on étudie une suite du type un+1 =
f (un) où la fonction f : I → R est croissante sur son inter-
valle I de définition, et où I est stable par f . On applique
donc la méthode du savoir-faire SF 11 :

• On étudie le signe de g : x 7→ f (x)− x
• On distingue des cas selon la position de u0 par rapport

aux zéros de g en montrant, dans chaque cas, que :

1. Les termes de la suite (un) « restent » dans un inter-
valle où g est de signe constant

2. (un) est monotone (croissante ou décroissante selon
le signe de g).

3. (un) a une limite (avec le théorème de la limite mo-
notone)

31 a) Distinguer deux cas :

• Si u0 ≥ 1 alors :

• [1 ,+∞[ est stable par f
• f est croissante sur [1 ,+∞[

Donc ce cas se traite par la méthode standard.
• Si 0 < u0 < 1, alors montrer que u1 ≥ 1 ce qui permet

de se ramener au premier cas.

b) Distinguer deux cas :

• Si u0 ≥ 0 alors :

• [0 ,+∞[ est stable par f
• f est croissante sur [0 ,+∞[

Donc ce cas se traite par la méthode standard (f pos-

sède deux points fixes sur R+ : 0 et
1
3

).

• Si u0 < 0, alors montrer que u1 ≥ 0 ce qui permet
de se ramener au premier cas. Plus précisément, dis-
tinguer des cas sur u0 en fonction de la position de
u1 = f (u0) par rapport à 1

3 (il convient de distinguer

les cas : u0 <
−1
3

, u0 =
1
3

et u0 >
1
3

).

32 1. Réponse : La suite est bien définie ssi u0 ∈ [0 ,1].

2. En posant α =
−1 +

√
5

2
, on trouve que h est :

• Positive sur [0 ,α]
• Négative sur [α ,1]

3. Vu que f ◦ f est croissante, le signe de h permet de mon-
trer la convergence de (u2n) vers α selon la méthode stan-
dard (en distinguant des cas selon que u0 < α, u0 = α ou
u0 > α).
On montre ensuite que (u2n+1) est monotone de sens
contraire à (u2n) (grâce à la décroissance de f ) et qu’elle
converge elle aussi vers α.

4. Observer les valeurs de u2n et u2n+1.

33 Commencer par étudier le cas où (an) est constante.
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