
9 bis
Suites (2) Exercices
■ Définition de la convergence

1 SF 4 SF 6 Soit u une suite strictement positive. On suppose

que la suite
(un+1

un

)
converge vers un réel k.

1. On suppose que k < 1. Montrer que u converge vers 0.

2. On suppose que k > 1. Montrer que u tend vers +∞.

2 SF 4 SF 6 Soit u une suite bornée telle que 2un ≤ un−1+un+1
pour tout n ≥ 1. Pour tout n ∈N, on pose wn = un+1 −un.

a) Montrer que : wn −→n→+∞
0.

b) En déduire que u est convergente.

3 SF 7 Soit u une suite convergente à valeurs dansZ. Montrer
que u est constante à partir d’un certain rang.

4 SF 7 Soit (xn) une suite réelle telle que : xn−1+2xn −→n→+∞
0.

Montrer que xn −→n→+∞
0.

5 SF 7 Soit (an)n∈N∗ une suite réelle.

Pour tout entier n ∈N∗, on pose : bn =
1
n

n∑
k=1

ak .

a) Montrer que si : an −→n→+∞
ℓ ∈R alors : bn −→n→+∞

ℓ.

b) Montrer que si : an −→n→+∞
+∞ alors : bn −→n→+∞

+∞.

6 SF 7 Soient (an) et (bn) deux suites réelles convergentes de

limites a et b. Montrer :
1

n+ 1

n∑
k=0

akbn−k −→n→+∞
ab.

7 SF 7 Soit u une suite positive. On suppose qu’il existe
q ∈ [0 ,1[ et une suite (rn)n∈N une suite positive de limite
nulle tels que pour tout n ∈N : un+1 ≤ qun + rn.
Montrer que : un −→n→+∞

0.

8 SF 11 Soit u0 ∈R+.

1. Soit a > 0. Montrer la suite (un) définie pour tout n ∈N,

un+1 =
√
a+un converge vers

1 +
√

1 + 4a
2

.

2. Soit (an) une suite strictement positive de limite a > 0.
On définit (un) en posant pour tout n ∈N,

un+1 =
√
an +un

a) Soit p ∈N∗ tel que
1
p
< a. Montrer qu’il existe un rang

n0 tel que pour tout n ≥ n0 :

1 +
√

1 + 4(a− 1
p )

2
− 1
p
≤ un ≤

1 +
√

1 + 4(a+ 1
p )

2
+

1
p

Indication : Considérer les suites (vn)n≥N et (wn)n≥N définies

par vn+1 =
√
a− 1

p + vn et wn+1 =
√
a+ 1

p +wn à partir

d’un certain rang N .

b) Montrer que (un) converge vers
1 +
√

1 + 4a
2

.

9 SF 7 Soit (an)n∈N une suite décroissante de réels positifs.

Pour tout n ∈N et tout x ≥ 1, on pose : un(x) =
⌊nx⌋∑

k=n+1

ak .

Montrer qu’il y a équivalence entre :

i) La suite (nan)n∈N est convergente

ii) Pour tout x > 1, la suite
(
un(x)

)
n∈N

est convergente.

■ Suites extraites

10 SF 9 Montrer que la suite (un)n∈N définie pour tout entier

naturel n par un =
5n2 + sinn

3n2 cos
nπ

5

n’a pas de limite.

11 SF 9 On pose, pour tout n ∈N∗ : un = n(−1)n .
1. Montrer que (un)n∈N n’a pas de limite.
2. Montrer que toute sous-suite convergente de u converge

nécessairement vers 0. Indication : Procéder par l’absurde.

12 Soit θ ∈ R \ πZ.Le but de cet exercice est de prouver la
divergence de la suite u = (cosnθ)n∈N.
1. Pour n ∈N, exprimer un+1 +un−1 en fonction de un
2. On suppose que u converge vers un réel ℓ.

a) Montrer que ℓ = 0
b) Aboutir à une contradiction en considérant u2n

13 SF 6 SF 10 Soit (un)n∈N une suite réelle. Dans chacun des
cas suivants, montrer que (un)n∈N est convergente.
a) (un)n∈N est croissante et (u2n)n∈N est convergente.
b) (u2n)n∈N, (u2n+1)n∈N et (u3n)n∈N sont convergentes

14 SF 7 SF 10 Soit u une suite telle que pour tous n,p ∈N∗ :

0 ≤ un+p ≤
n+ p

np
. Montrer que : un −→n→+∞

0.

15 SF 6 Soit u une suite croissante telle que pour tout n ∈N∗ :

u2n −un ≤
1
n

. Pour tout n ∈N, on pose vn = u2n .

a) Montrer que la suite v est majorée.
b) En déduire que u est convergente.

16 Pour tout n ∈ N∗ on pose : un = cos(lnn). Montrer que
tout réel x ∈ [−1 ,1] est limite d’une suite extraite de u.

■ Suites implicites

17 SF 12 Pour tout n ∈N∗, on définit fn sur R∗+ par :

∀x ∈R∗+, fn(x) = xn lnx − 1

1. Montrer que pour tout n ∈N∗, l’équation xn lnx = 1 pos-
sède exactement une solution dans [1 ,+∞[, notée xn.

2. Montrer que (xn) est décroissante.
Indication : Montrer que pour tout n ≥ 1, fn+1(xn) ≥ 0.

3. Montrer que (xn) converge et déterminer sa limite.

18 SF 12 Pour tout n ∈N∗, on définit fn sur [0 ,1] par :

∀x ∈ [0 ,1], fn(x) = xn − cosx

1. Montrer que l’équation xn = cosx possède exactement
une solution dans [0 ,1], notée xn.

2. Montrer que (xn) converge et déterminer sa limite.



■ Borne supérieure

19 SF 13 Soit A,B deux parties non vides de R telles que :

∀(a,b) ∈ A×B, a ≤ b et ∀ε > 0, ∃(a,b) ∈ A×B | b − a ≤ ε

Montrer que A possède une borne supérieure, que B possède
une borne inférieure et que supA = infB.

20 SF 13 Soit A une partie non vide et bornée de R.
On pose : D = {|x − y| ; (x,y) ∈ A2}.
Montrer que : supD = supA− infA

21 SF 13 Soit A une partie non vide deR. Pour tout x ∈R on ap-
pelle distance de x à A le réel : d(x,A) = inf {|x − a| ; a ∈ A}.
1. Justifier la bonne définition de d(x,A) pour tout x ∈R.
2. Que vaut d(x,A) pour tout x ∈ A ?
3. Montrer que pour tous x,y ∈R :∣∣∣d(x,A)− d(y,A)

∣∣∣ ≤ ∣∣∣x − y∣∣∣
4. On pose A =Q∩[0 ,1[ et pour tout x ∈R : f (x) = d(x,A)

Déterminer une expression simple de f (x) en fonction
de x pour tout x ∈R.

22 SF 13 Déterminer, lorsqu’elles existent, les bornes supé-
rieures et inférieures des ensembles suivants.
a) A=

{
1 +

1
n

; n ∈N∗
}

b) B=
{
(−1)n +

1
n

; n ∈N∗
}

c) C=
{

(−1)nn
n+ 1

; n ∈N∗
}

d) D=
{

1
p
− 1
q

; p,q ∈N∗
}

e) E=
{

pq

p2 + q2 ; p,q ∈N∗
}

23 SF 13 Soit x un réel positif ou nul. La partie entière de x a
été définie dans le cours comme le plus grand élément de
l’ensemble A = {n ∈Z | n ≤ x}. L’objectif de cet exercice est
de justifier l’existence d’un plus grand élément pour A.
1. Montrer que A possède une borne supérieure s.
2. Montrer qu’il existe un élément m ∈ A tel que s < m+ 1.
3. En déduire que A possède un plus grand élément.

■ Approximations d’un réel

24 SF 13 SF 14 a) Etudier la fonction x 7→ x+
2
x

sur R∗+

b) En déduire la borne inférieure de A =
{
p

q
+ 2

q

p
; p,q ∈N∗

}

25 SF 14 On pose E =
{ p

2n ; p ∈Z,n ∈N
}
.

Montrer que E est dense dans R.

26 Soit f :R→R telle que : ∀x,y ∈R, f (x+y) = f (x) + f (y)
1. Calculer f (0) et montrer que f est impaire.
2. Soit x ∈ R. Démontrer : ∀n ∈ N, f (nx) = nf (x).

Montrer que cette relation est encore vraie pour n ∈Z−.
3. On pose a = f (1). Etablir que pour tout r ∈Q, f (r) = ar.
4. On suppose f croissante. Montrer : ∀x ∈R, f (x) = ax

Indication : Considérer les approximations décimales (yn) et (zn)

■ Autour de Bolzano-Weierstrass

27 Soit u ∈CN.

On suppose que pour tout n ∈N : un+2 = un+1 +
un
2n .

Pour tout n ∈N, on pose Mn = max {|un| , |un+1|}.
1. Montrer que pour tout n ∈N : Mn+1 ≤

(
1 +

1
2n

)
Mn.

2. En déduire que pour tout n ∈N : Mn ≤ e2M0.
En déduire alors que u est bornée.

3. Le théorème de Bolzano-Weierstrass assure qu’il existe
une fonction ϕ :N→N strictement croissante telle que
la suite

(
uϕ(n)

)
n∈N

est convergente.

Montrer que pour tout n ∈N∗ :
∣∣∣uϕ(n) −un

∣∣∣ ≤ 4e2M0

2n .

4. En déduire que u est convergente.

28 Suites de Cauchy On dit que u ∈ CN est une suite de Cauchy
si :

∀ε > 0, ∃n0 ∈N | ∀p ≥ n0, ∀q ≥ n0,
∣∣∣up −uq∣∣∣ ≤ ε

1. a) Un exemple. Pour tout n ≥ 1, on pose Sn =
n∑

k=1

1
k2 .

Montrer que (Sn)n≥1 est de Cauchy.

b) Un autre exemple. Pour tout n ≥ 1, on pose Hn =
n∑

k=1

1
k

.

Montrer que (Hn)n≥1 n’est pas de Cauchy
2. Montrer que toute suite de Cauchy est bornée
3. Montrer que toute suite convergente est de Cauchy.
4. Réciproquement montrer que toute suite de Cauchy

est convergente à l’aide du théorème de Bolzano-
Weierstrass.

29 1. Soient ℓ ∈ C et u ∈ CN une suite bornée. On suppose

que toutes les sous-suite convergentes de u convergent
vers ℓ. Montrer alors que u converge elle aussi vers ℓ.

2. Application. Soit u une suite réelle bornée.

On suppose que : un +
u2n

2
−→

n→+∞
b ∈R.

a) Soit
(
uϕ(n)

)
n∈N

une sous-suite convergente de u. On

note a la limite de
(
uϕ(n)

)
et on définit la suite (ak)k∈N

par a0 = a et : ∀k ∈N, ak+1 = 2(b − ak).
Montrer que pour tout k ∈N, il existe une sous-suite
de (un) qui converge vers ak .

b) En déduire à l’aide du résultat de 1. que la suite (un)
est convergente.
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