
9 - bis
Suites (2) Indications

1 1. En deux temps :

(a) On montre que u possède une limite ℓ ≥ 0.
(b) On montre que ℓ = 0

(a) Sachant que u est minorée par 0 il suffit de montrer
que u est décroissante (à partir d’un certain rang).
Pour cela choisir ε > 0 tel que k + ε < 1.

En écrivant la définition de la limite «
un+1

un
→ k »,

montrer que
un+1

un
≤ 1 à partir d’un certain rang

(b) Par l’absurde supposer ℓ , 0. Montrer alors par opé-

rations sur les limites que
un+1

un
devrait tendre vers

1, ce qui contredit l’hypothèse de départ.

2. Il suffit d’adapter la méthode de la question 1.

2 1. Vérifier que (wn) est croissante et majorée : elle possède

donc une limite finie ℓ. Reste à montrer que ℓ = 0. Pour

cela exprimer un à l’aide de
n−1∑
k=0

wk (télescopage) puis

procéder par l’absurde en montrant que un −→n→+∞
±∞ si

ℓ , 0. Par exemple si ℓ > 0, revenir à la définition de la

limite pour minorer les wk APCR par
ℓ

2
ce qui permet

de minorer un = u0 +
n−1∑
k=0

wk par une suite de limite +∞.

2. La question 1 fournit le signe de un+1 −un.

3 En revenant à la définition de la limite et en choisis-
sant ε convenablement, montrer qu’à partir d’un certain
rang |un+1 −un| < 1, ce qui imposera un+1 − un = 0 car
un+1 −un ∈Z.

4 En notant yn = xn−1 + 2xn pour tout n ≥ 1, on obtient :

xn = −1
2
xn−1 +

1
2
yn puis, par récurrence

xn =
(
−1

2

)n
x0 +

n−1∑
k=0

(−1)k

2k+1
yn−k︸          ︷︷          ︸

Rn

Le point délicat est de montrer que Rn −→n→+∞
0.

Pour cela revenir à la définition de la limite.
Fixer ε > 0 ainsi qu’un rang n0 à partir duquel :

∣∣∣yn∣∣∣ ≤ ε.

Ensuite : |Rn| ≤
n−1∑
k=0

1
2k+1

∣∣∣yn−k ∣∣∣.
Couper la somme en deux en l’indice k = n−n0 :

• Dans
n−n0∑
k=0

1
2k+1

∣∣∣yn−k ∣∣∣, majorer
∣∣∣yn−k ∣∣∣ par ε puis calculer la

somme géométrique : on peut majorer ce morceau par ε.

• Dans
n−1∑

k=n−n0+1

1
2k+1

∣∣∣yn−k ∣∣∣, majorer
∣∣∣yn−k ∣∣∣ par une constante

M (cette suite est bornée) puis calculer la somme géomé-

trique : on peut majorer ce morceau par
1

2n−n0+1M.

Finalement : |Rn| ≤ ε+
1

2n−n0+1M.

La suite de terme général un = ε+
1

2n−n0+1M a pour limite ε

donc peut-être majorée par 2ε à partir d’un certain rang.

5 a) Le facteur
1
n

devant la somme permet d’écrire

bn − ℓ =
1
n

n∑
k=1

(ak − ℓ)

Revenir ensuite à la définition de la limite.
Fixer ε > 0 et un rang n0 à partir duquel |ak − ℓ| ≤ ε/2.

Ensuite : |bn − ℓ| ≤
1
n

n∑
k=1

|ak − ℓ|.

Pour n ≥ n0, couper la somme en deux en l’indice k = n0 :

• Dans
1
n

n∑
k=n0+1

|ak − ℓ|, on peut majorer les |ak − ℓ| par ε
2

• L’autre morceau :
1
n

n0∑
k=1

|ak − ℓ| est de la forme
1
n
×C pour

une certaine constante C indépendante de n.

Finalement : |bn − ℓ| ≤
ε

2
+

1
n
×C.

La suite de terme général an =
ε

2
+

1
n
×C converge vers

ε

2
donc est majorable par ε à partir d’un certain rang

b) Même principe que précédemment : revenir ensuite à la
définition de la limite, fixer A > 0 ainsi qu’un rang n0 à
partir duquel ak ≥ 2A.
Couper la somme bn en deux en l’indice k = n0 :

•
1
n

n∑
k=n0+1

ak ≥
n−n0

n
× 2A.

• L’autre morceau :
1
n

n0∑
k=1

ak est de la forme
1
n
×C

Finalement : bn ≥
n−n0

n
× 2A+

1
n
×C.

La suite de terme général un =
n−n0

n
×2A+

1
n
×C a pour

limite 2A donc est minorable par A à partir d’un certain
rang.

6 S’inspirer de la technique de découpe utilisée à l’exercice 5.

Le facteur
1

n+ 1
devant la somme permet d’écrire( 1

n+ 1

n∑
k=0

akbn−k
)
− ab =

1
n+ 1

n∑
k=0

(akbn−k − ab)

Ensuite faire apparaître les quantités ak − a et bn−k − b avec
l’astuce classique : akbn−k − ab = (ak − a)bn−k + a(bn−k − b)
ce qui donne( 1
n+ 1

n∑
k=0

akbn−k
)
−ab =

1
n+ 1

n∑
k=0

(ak−a)bn−k+
1

n+ 1

n∑
ℓ=0

a(bℓ−b)

Revenir enfin à la définition de la limite en s’inspirant de la
technique de découpe utilisée à l’exercice 5 pour montrer
que

1
n+ 1

n∑
k=0

(ak − a)bn−k −→n→+∞
0 et

1
n+ 1

n∑
ℓ=0

a(bℓ − b) −→
n→+∞

0

7 Une possibilité est d’adapter la technique de découpe utili-
sée pour montrer le théorème de Cesàro.



En itérant l’inégalité de l’énoncé, on obtient, pour tout
n ∈N :

un ≤ qnu0 +
n−1∑
k=0

qkrn−1−k

Fixer alors ε > 0 ainsi qu’un rang n0 ∈ N∗ tel que rn ≤ ε
pour tout n ≥ n0. Couper la somme en deux en l’indice
k = n−n0 − 1 ce qui permet de majorer un par une suite de

limite
ε

1− q
.

On conclut comme dans les exercices précédents.

8 1. Il s’agit d’une suite du type un+1 = f (un) où la fonction

f : x 7→
√
a+ x est croissante sur R∗+.

2. a) Fixer N tel que an ∈ [a− 1
p , a+ 1

p ] pour tout n ≥N .
Poser alors : vN = wN et wN = uN puis pour tout
n ≥N :

vn+1 =

√
a− 1

p
+ vn et wn+1 =

√
a+

1
p

+wn

Alors :

• D’une part, par récurrence, pour tout n ≥ N :
vn ≤ un ≤ wn

• D’autre part, comme à la question 1. :

vn −→n→+∞

1 +
√

1 + 4(a− 1
p )

2
et wn −→n→+∞

1 +
√

1 + 4(a+ 1
p )

2

En prenant ε =
1
p

dans la définition de la limite pour

(vn) et (wn), on obtient l’encadrement demandé à par-
tir d’un certain rang.

b) Attention, le rang n0 de la question 2a) dépend de p
donc on ne peut faire tendre p vers +∞ dans l’enca-
drement. Revenir à la définition de la limite en fixant
ε > 0 puis un rang p tel que

1 +
√

1 + 4(a− 1
p )

2
− 1
p
≥ 1 +

√
1 + 4a
2

− ε

et

1 +
√

1 + 4(a+ 1
p )

2
− 1
p
≤ 1 +

√
1 + 4a
2

+ ε
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10 Considérer la sous suite (u10n) et une autre sous-suite de la
forme (u10n+...) où « . . . » est à choisir judicieusement.

11 1. Considérer les sous suites (u2n) et (u2n+1).

2. Supposer par l’absurde qu’il existe une sous-suite
(
uϕ(n)

)
convergente de limite ℓ > 0 et obtenir une contradiction
en étudiant la limite de

(∣∣∣lnuϕ(n)

∣∣∣)
n∈N

.

12 1. Utiliser la formule sur « cos(a+ b) + cos(a− b) ».

Réponse : un+1 +un−1 = 2un cosθ.
2. a) La relation trouvée à la question 1 assure que ℓ vérifie

ℓ + ℓ = 2ℓ cosθ ce qui impose ℓ = 0.
b) (u2n) doit tendre elle aussi vers 0 en tant que sous

suite de u.
Mais la formule donnant cos(2a) montre par ailleurs
que u2n = 2u2

n − 1 −→
n→+∞

−1.

13 a) Selon le théorème de la limite monotone si u ne converge

pas, alors elle tend vers +∞.
Dans ce cas (u2n) tendrait elle aussi vers +∞.

b) Noter ℓ1 = limu2n, ℓ2 = limu2n+1 et ℓ3 = limu3n.
Par théorème pour montrer que u converge, il suffit de
montrer que ℓ1 = ℓ2.
Pour cela :

• ℓ1 = ℓ3 car (u6n) est à la fois une sous-suite de (u2n) et
une sous-suite de (u3n)

• Prouver de même que ℓ2 = ℓ3 en trouvant une suite ex-
traite de u qui est à la fois une sous-suite de (u2n+1) et
une sous-suite de (u3n) (chercher sous la forme u6n+...)

14 Montrer que (u2n) et (u2n+1) tendent vers 0 à l’aide du théo-
rème d’encadrement.

15 a) Pour n ≥ 1 : vn = v0 +
n−1∑
k=0

vk+1 − vk puis majorer la

somme par une somme géométrique en utilisant l’hypo-
thèse sur u avec n = 2k .

b) Selon le théorème de la limite monotone si u ne converge
pas, alors elle tend vers +∞.
Dans ce cas (vn) tendrait elle aussi vers +∞.

16 Etant donné x ∈ [−1 ,1], écrit sous la forme x = cosθ (par
exemple pour θ = Arccosx) il s’agit de construire une ex-
traction ϕ :N→N telle que cos(lnϕ(n)) −→

n→+∞
cosθ.

Pour cela on peut essayer définir ϕ(n) ∈ N de sorte que
lnϕ(n) approche 2nπ+θ.
Précisément vérifier que ϕ(n) =

⌊
e2nπ+θ

⌋
convient en mon-

trant d’abord par encadrement que lnϕ(n) − 2nπ −→
n→+∞

θ

puis à l’aide de la 2π−périodicité de cos que uϕ(n) −→n→+∞
cosθ.

17 1. A n fixé, appliquer le TVI strictement monotone à fn sur

[1 ,+∞[.

2. Suivre le savoir faire SF 12

3. Suivre le savoir faire SF 12

18 1. A n fixé, appliquer le TVI strictement monotone à fn sur

[0 ,1].

2. Suivre le savoir faire SF 12

19 • L’existence d’une borne supérieure pour A repose sur

le fait que A est non vide et majorée : tout b ∈ B est un
majorant de A

• Le point précédent assure que A possède une borne supé-
rieure α et que α ≤ b pour tout b ∈ B

• Ce qui précède montre que α minore B donc en particu-
lier que B possède une borne inférieure β telle que α ≤ β.

• Reste à montrer que α = β. Pour cela utiliser la propriété
sur (A,B) pour montrer que β −α ≤ ε pour tout réel ε > 0.

20 Poser M = supA− infA puis :

• Montrer que
∣∣∣x − y∣∣∣ ≤M pour tous x,y ∈ A.

• Former une suite dn =
∣∣∣xn − yn∣∣∣ qui converge vers M

(prendre (xn) qui converge vers supA et (yn) vers infA).

2



21 1. Montrer que l’ensemble Dx(A) = {|x − a| ; a ∈ A} est une

partie non-vide et minorée de R.
2. Si x ∈ A, d(x,A) = 0 : c’est même le plus petit élément.
3. Par symétrie des rôles de x et y, il suffit de montrer que

d(x,A)− d(y,A) ≤
∣∣∣x − y∣∣∣

Deux possibilités :
• Utiliser les suites. Considérer une suite (an) d’éléments

de A telle que :
∣∣∣y − an∣∣∣ −→n→+∞

d(x,B)

puis assurer que pour tout n ∈N :

d(x,A) ≤
∣∣∣x − y∣∣∣+ ∣∣∣y − an∣∣∣

• Montrer que d(x,A) −
∣∣∣x − y∣∣∣ ≤ d(y,A). Il suffit pour

cela de montrer que le réel : m = d(x,A) −
∣∣∣x − y∣∣∣

est un minorant de l’ensemble Dy(a) =
{∣∣∣y − a∣∣∣ ; a ∈ A

}
c’est à dire de montrer que pour tout a ∈ A :

d(x,A)−
∣∣∣x − y∣∣∣ ≤ |x − a|

4. Réponse à trouver : f (x) =


0 si x ∈ ]0 ,1[
x − 1 si x ≥ 1
−x si x ≤ 0

.

22 Utiliser les suites (méthode 1 du savoir faire SF 13 ) à l’ex-
ception des cas où l’on a affaire à un plus grand/petit élé-
ment
1. 2 est le plus grand élément de A, infA = 1
2. 3/2 est le plus grand élément de A, infA = −1
3. supA = 1 et infA = −1
4. supA = 1 et infA = −1
5. supA = 1

2 et infA = 0

23 1. Montrer que A est non vide et majoré.

2. Montrer que s − 1 ne majore pas A.
3. Montrer que l’élément m de la question 2. est un majo-

rant de A, donc son plus grand élément.

24 a) On trouve que f possède 2
√

2 pour minimum et ce mini-

mum est atteint au point x =
√

2.
b) En remarquant que p

q + 2 qp = f (pq ) :

• La question a) assure que 2
√

2 minore A.
• Si on prend une suite rn = pn

qn
de limite

√
2 alors

an = f (rn) −→
n→+∞

2
√

2.

25 Suivre le savoir faire SF 14 : étant donné x ∈ R constuire
une suite d’éléments de E qui converge vers x. On peut
s’inspirer des approximations décimales et considérer la

suite de terme général un =
⌊2nx⌋

2n
.

26 Tout l’exercice repose sur des évaluations judicieuses de la
relation

(⋆) f (x+ y) = f (x) + f (y)

1. Prendre x = y = 0 pour calculer f (0).
Prendre x et y = −x dans (⋆) pour prouver que
f (x) + f (−x) = 0.

2. Pour n ∈N, procéder par récurrence.
Pour l’hérédité, évaluer (⋆) avec nx et x.
Pour n ∈Z−, écrire n = −m avec m ∈N et utiliser l’impa-
rité de f et le fait que la relation est vraie surN.

3. Ecrire r = p
q puis utiliser la question 2 pour écrire

qf (r) = f (qr) = f (p) puis à nouveau la question 2 pour
« sortir » p : f (p) = f (p × 1) = pf (1).

4. Les suites d’approximations décimales (yn) et (zn) véri-
fient :

• ∀n ∈N, yn ≤ x ≤ zn
• ∀n ∈N, yn, zn ∈Q
• limyn = limzn = x

Le premier point et la croissance de f assurent que pour
tout n ∈N :

f (yn) ≤ f (x) ≤ f (zn)

Le deuxième point et le troisième point et la question 3
assurent que pour tout n ∈N :

f (yn) = yna −→n→+∞
ax et f (zn) = zna −→n→+∞

ax

Il reste à utiliser le théorème de passage aux limites.

27 1. Soit n ∈N. Puisque Mn+1 = max(|un+1| , |un+2|), il s’agit

de montrer que :

|un+1| ≤
(
1 +

1
2n

)
Mn et |un+2| ≤

(
1 +

1
2n

)
Mn

2. L’inégalité 1 +x ≤ ex appliqué dans le résultat de la ques-
tion 1. donne :

∀n ∈N, Mn+1 ≤ e
1

2nMn

Itérer cette inégalité permet d’obtenir : Mn ≤ e
n−1∑
k=0

1
2kM0.

Il suffit de calculer la somme géométrique puis de majo-
rer le résultat par 2.

3. Pour tout n ∈N∗ : uϕ(n) −un =
ϕ(n)−1∑
k=n

uk+1 −uk

Dans cette expression : uk+1 −uk =
uk−1

2k−1
.

Majorer la somme par inégalité triangulaire puis |uk−1| ≤
Mk
Utiliser 2. et calculer la somme géométrique qui appa-
raît.

4. Ecrire un = uϕ(n) +
(
un − uϕ(n)

)
puis raisonner par

somme de limites.

28 1. a) Pour 1 ≤ p ≤ q, majorer Sq − Sp =
q∑

k=p+1

1
k2 par une

somme télescopique en utilisant :
1
k2 ≤

1
k − 1

− 1
k

b) Raisonner par l’absurde : si (Hn) était de Cauchy alors
(H2n −Hn) tendrait vers 0.

2. Adapter la preuve du résultat de cours selon lequel toute
suite convergente est bornée.

3. Si u est convergente de limite ℓ, utiliser :∣∣∣up −uq∣∣∣ ≤ ∣∣∣up − ℓ∣∣∣+ ∣∣∣uq − ℓ∣∣∣
4. Etant donné une sous-suite (uϕ(n)) convergente de limite
ℓ, montrer que un −→n→+∞

ℓ en revenant à la définition de la

limite puis en écrivant : |un − ℓ| ≤
∣∣∣un −uϕ(n)

∣∣∣+ ∣∣∣uϕ(n) − ℓ
∣∣∣

29 1. Procéder par contraposition. Supposer que (un) ne

converge pas vers ℓ et montrer qu’elle possède une sous-
suite qui converge vers une limite autre que ℓ. Pour cela
commencer par traduire l’hypothèse :

∃ε > 0 | ∀n0 ∈N, ∃n ≥ n0 | |un − ℓ| > ε

3



Elle permet de construire une extraction ϕ : N → N
pour laquelle :

∀n ∈N,
∣∣∣uϕ(n) − ℓ

∣∣∣ > ε
Précisément on peut poser :

ϕ(0) = min {n ≥ 0 | |un − ℓ| > ε}
puis pour tout k ≥ 0, si ϕ(0), . . . ,ϕ(k) sont construits on
pose

ϕ(k + 1) = min {n ≥ ϕ(k) + 1 | |un − ℓ| > ε}
La suite

(
uϕ(n)

)
étant bornée on peut en extraire une

sous-suite convergente
(
uϕ◦ψ(n)

)
. Reste à montrer que sa

limite n’est pas ℓ.
2. a) Procéder par récurrence sur k. Pour l’hérédité, étant

donné une sous-suite
(
uψ(n)

)
de limite ak , montrer

que
(
u2ψ(n)

)
converge vers ak+1 en exprimant u2ψ(n) en

fonction de uψ(n) et vψ(n) où v est la suite
(
un +

u2n

2

)
.

b) La suite (ak) est arithmético-géométrique de raison −2
ce qui donne, pour tout k ≥ 1 : ak = α + (−2)k

(
a−α

)
où α =

2b
3

. Le fait que la suite (ak) soit bornée impose :

a = α. Conclure à l’aide de la question 1..
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