Suites (2)

Indications

1 | 1. En deux temps:

(a) On montre que u posséde une limite £ > 0.
(b) On montre que £ =0

(a) Sachant que u est minorée par 0 il suffit de montrer
que u est décroissante (a partir d’un certain rang).

Pour cela choisir € > 0 tel que k+¢ < 1.
Unt1

En écrivant la définition de la limite « —k»,

Up

Unt1 N . .
montrer que L <1a partir d’un certain rang
uﬂ

. .. Ups1 .
rations sur les limites que —-— devrait tendre vers

u
1, ce qui contredit l’hypothésne de départ.

2. Il suffit d’adapter la méthode de la question 1.

o | 1. Vérifier que (w,) est croissante et majorée : elle possede
donc une limite finie . Reste a montrer que ¢ = 0. Pour

n-1
cela exprimer u, a 'aide de Zwk (télescopage) puis

k=0

procéder par 'absurde en montrant que u,, — oo si
n—+oo

¢ # 0. Par exemple si ¢ > 0, revenir a la définition de la

limite pour minorer les wy APCR par g ce qui permet
n-1
de minorer u, = ug + Zwk par une suite de limite +oo.
k=0
2. La question 1 fournit le signe de u,,1 — uy,.

3 | En revenant a la définition de la limite et en choisis-
sant € convenablement, montrer qu’a partir d’un certain
rang |u,,; —u,| < 1, ce qui imposera u,,; —u, = 0 car
Upyl — Uy €Z.

4 | En notant vy, = x,_; + 2x, pour tout n > 1, on obtient :

X, = _Exn_l + Ey" puis, par récurrence
-1
1\n 3 (—1)k
%o =(=3) %0+ )T ek
k=0
—

Ry
Le point délicat est de montrer que R, — 0.
n—+o0

Pour cela revenir a la définition de la limite.

Fixer € > 0 ainsi qu’un rang ng a partir duquel : ‘yn| <e.
n—1
Ensuite: |R,| < % |3’n—k|-
2
k=0 o
Couper la somme en deux en I'indice k =n—ng :
n—-ny
1 . .
e Dans Z% |}’n—k , majorer |yn_k| par ¢ puis calculer la
k=0
somme géométrique : on peut majorer ce morceau par &.
n—1 1
* Dans Z T |yn_k|, majorer |yn_k| par une constante
k=n-ng+1

M (cette suite est bornée) puis calculer la somme géomé-

trique : on peut majorer ce morceau par ————M.
on—np+1

Finalement: |R,|<e¢+

2n—n0+1A4'

Par I'absurde supposer ¢ = 0. Montrer alors par opé-

La suite de terme général u, = ¢+ M a pour limite ¢

pn—ng+1
donc peut-étre majorée par 2¢ a partir d’un certain rang.

1 I
5 |a) Le facteur — devant la somme permet d’écrire
n

n

bn—ﬁz%Z(ak—&

k=1
Revenir ensuite a la définition de la limite.
Fixer € > 0 et un rang ng a partir duquel |a; — €| < /2.

n
. 1
Ensuite: |b,—{] < —Zlak —{|.
n
k=1
Pour n > ng, couper la somme en deux en l'indice k = ng :

1 v .
e Dans - Z lag — €], on peut majorer les |ax — (| par §

k:ﬂ0+1
1 1
e [autre morceau : — E lag —£| est de la forme — x C pour
n n
k=1

une certaine constante C indépendante de n.
. e 1
Finalement: |b,—-/{| < 5 +=-xC.
n

. - e 1 €
La suite de terme général a,, = 5t C converge vers 5
n

donc est majorable par ¢ a partir d’un certain rang

b) Méme principe que précédemment : revenir ensuite a la
définition de la limite, fixer A > 0 ainsi qu’un rang ng a
partir duquel a; > 2A.

Couper la somme b, en deux en l'indice k = n :

1 © n—-n
* ak>

0 % 2A.

n
k:ﬂ0+1

o
1 1
* [autre morceau: — E ay est de la forme — x C
n n
k=1

_.no

1
Finalement: b, > n x2A+ —xC.
n

__no

. L n 1
La suite de terme général u, = x2A+—xC a pour

n n
limite 2A donc est minorable par A a partir d’un certain
rang.

6 | S’inspirer de la technique de découpe utilisée a I'exercice 5.

Le facteur

n n
(ni o) axbu)—ab= nl?Z(akbn_k ~ab)
k=0 k=0

Ensuite faire apparaitre les quantités ay —a et b,_x — b avec
l'astuce classique :  agb,_y —ab = (ay —a)b,_x +a(b,_x - b)
ce qui donne

devant la somme permet d’écrire

1 v 1 v 1 v
(-7 ) aibni)-ab= ——=) (@bt ——=) a(be=b)
k=0 k=0 =0
Revenir enfin a la définition de la limite en s’inspirant de la
technique de découpe utilisée a I’exercice 5 pour montrer
que

1 ¢ 1 ¢
n+1;(ak—a)bn_k = 0 et —n+1;a(bg—b)njw0

7 | Une possibilité est d’adapter la technique de découpe utili-
sée pour montrer le théoreme de Cesaro.



En itérant I'inégalité de 1’énoncé, on obtient, pour tout ({3
nelN:

n—-1
n k
Uy =g uO"'Zﬂ Tn-1-k
k=0

Fixer alors ¢ > 0 ainsi qu’un rang ny € IN* tel que r, < ¢
pour tout n > ny. Couper la somme en deux en l'indice
k=n-ng—1 ce qui permet de majorer u, par une suite de

limite .
1-4
On conclut comme dans les exercices précédents.

g | 1. Il s’agit d’une suite du type u, 11 = f(u,) ou la fonction

f x> a+xest croissante sur R,
2.a) Fixer N tel que a,, € [a— 1 1

;—),a+[—)] pour tout n > N.
Poser alors :
n>N:

vy = wy et wy = uy puis pour tout
1 1
Vsl =4la——+7V, et w,=,la+—+w,
p P
Alors :

* D’une part, par récurrence, pour tout n > N :
Uy S Uy S Wy

14
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* D’autre part, comme a la question 1. :

1
1+4((1—[—7)
2

1

1+ ;
16

1+ 1+4(a+

t
¢ 2

v w, —

n—+oo n—-+o0

1
En prenant ¢ = — dans la définition de la limite pour

(v,,) et (w,), on obtient 'encadrement demandé a par-
tir d’un certain rang.

b) Attention, le rang n de la question 2a) dépend de p
donc on ne peut faire tendre p vers +oo dans l’enca-
drement. Revenir a la définition de la limite en fixant
¢ >0 puis un rang p tel que

1 1+V1+4a
> 3 —&

1+ 1+4(a—%)

5 -

17

p
et

L+4(a+d)

1+ P
2

1 1+V1+4a
- < +é&
p 2
18
9

10/ Considérer la sous suite (u7¢,) et une autre sous-suite de la

forme (419,..) OU «... » est a choisir judicieusement. 19

11! 1. Considérer les sous suites (u,) et (42,41).

2. Supposer par ’'absurde qu'’il existe une sous-suite (u(p(n))
convergente de limite £ > 0 et obtenir une contradiction

en étudiant la limite de (|ln u‘f)(”)|)neIN'

12| 1. Utiliser la formule sur « cos(a + b) + cos(a—b) ».
Réponse : uy,q + 1,1 =2u,cos0.
2.a) Larelation trouvée a la question 1 assure que ¢ vérifie
0+ =20cos0 ce qui impose ¢ = 0. 20
b) (u,,) doit tendre elle aussi vers 0 en tant que sous
suite de u.
Mais la formule donnant cos(2a) montre par ailleurs
que Uy, = 214,% -1 — -1.

n—+oo

a) Selon le théoréeme de la limite monotone si u ne converge
pas, alors elle tend vers +co.
Dans ce cas (u,,) tendrait elle aussi vers +co.
b) Noter ¢ =limu,,, £, = limu,,, et 3 =limus,.
Par théoréme pour montrer que u converge, il suffit de
montrer que ¢ = ¢5.
Pour cela :

o {4 =05 car (ug,) est a la fois une sous-suite de (u,,) et
une sous-suite de (u3,)

* Prouver de méme que ¢, = {5 en trouvant une suite ex-
traite de u qui est a la fois une sous-suite de (u,,1) et
une sous-suite de (u3,) (chercher sous la forme ug,, )

Montrer que (uj,) et (Up,41) tendent vers 0 a I'aide du théo-
reme d’encadrement.
n—1
a) Pourn>1: v, =vy+ kaﬂ — v puis majorer la
k=0
somme par une somme géométrique en utilisant ’hypo-
thése sur u avec n = 2K,

b) Selon le théoreme de la limite monotone si u ne converge
pas, alors elle tend vers +co.
Dans ce cas (v,,) tendrait elle aussi vers +co.

Etant donné x € [-1,1], écrit sous la forme x = cos O (par
exemple pour 6 = Arccosx) il s’agit de construire une ex-
traction @ : IN — IN telle que cos(In¢@(n)) — cos0.

n—+oo

Pour cela on peut essayer définir ¢(n) € IN de sorte que
In¢(n) approche 2nm+ 6.

Précisément vérifier que ¢(n) = [ convient en mon-

eznn+6J
trant d’abord par encadrement que In@(n)—2nn ol 0
puis a l'aide de la 2rt—périodicité de cos que uy(y) vl
cos 6.
1. A nfixé, appliquer le TVI strictement monotone a f,, sur
[1,+00].
2. Suivre le savoir faire

3. Suivre le savoir faire

1. A nfixé, appliquer le TVI strictement monotone a f, sur
[0,1].

2. Suivre le savoir faire

» L'existence d’une borne supérieure pour A repose sur

le fait que A est non vide et majorée : tout b € B est un
majorant de A

* Le point précédent assure que A posséde une borne supé-
rieure a et que a < b pour tout b€ B

* Ce qui précede montre que a minore B donc en particu-
lier que B possede une borne inférieure 5 telle que a < j3.

* Reste a montrer que a = f. Pour cela utiliser la propriété
sur (A, B) pour montrer que  —«a < ¢ pour tout réel ¢ > 0.

Poser M =sup A —inf A puis :
* Montrer que |X —y| <M pour tous x,v € A.

* Former une suite d,, = |xn—yn| qui converge vers M
(prendre (x,) qui converge vers sup A et (v,) vers infA).
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1. Montrer que I'ensemble D, (A) ={|x—a| ; a € A} est une
partie non-vide et minorée de R.
2. SixeA, d(x,A) =0:c’est méme le plus petit élément.
3. Par symétrie des roles de x et p, il suffit de montrer que
d(x,A)—d(v,A) < |x~7|
Deux possibilités :
 Utiliser les suites. Considérer une suite (a,) d’éléments
de A telle que : |y - an| v d(x, B)
puis assurer que pour tout n € IN :
d(x,A) < |x—y|+|y—an|
* Montrer que d(x, A |x ;u| <d(p,A). 1l sufﬁt pour
cela de montrer que le réel :  m = d(x,A )x y(
est un minorant de l'ensemble D ( {|y a| ;a€ A}
c’est a dire de montrer que pour tout aeA:
d(x,A) - |x—y| <|x—aq|
0 sixe]0,1]
4. Réponse d trouver: f(x)=4 x—1 six>1
—X six <0
29| Utiliser les suites (méthode 1 du savoir faire ) alex-

23

ception des cas ou l'on a affaire a un plus grand/petit é1é-

ment

1. 2 estle plus grand élément de A, infA=1

2. 3/2 estle plus grand élément de A, infA=-

3. supA=1 et infA=-1

4. supA=1 et infA=-

5. supA=3 et infA=0

1. Montrer que A est non vide et majoré.

2. Montrer que s — 1 ne majore pas A.

3. Montrer que I'élément m de la question 2. est un majo-

rant de A, donc son plus grand élément.

24)a) On trouve que f posséde 2V2 pour minimum et ce mini-

25| Suivre le savoir faire
une suite d’éléments de E qui converge vers x. On peut
s’'inspirer des approximations décimales et considérer la

suite de terme général u, =

mum est atteint au point X = \/5

b) En remarquant que g E Zq = f(Z) :

* La question a) assure que 22 minore A.

* Si on prend une suite r, = Z—” de limite V2 alors
n

a, = f(ry) —>2\/_

: étant donné x € R constuire

L2"x]
2]’1

26! Tout I'exercice repose sur des évaluations judicieuses de la

1.

relation

*)  flx+p)=f(x)+ f
Prendre x =y = 0 pour calculer f(0
Prendre x et y = —x dans (*) pour prouver que

f)+f(=x) =

. Pour n € N, procéder par récurrence.

Pour I’hérédité, évaluer (%) avec nx et x.
Pour n e Z~, écrire n = —m avec m € IN et utiliser 'impa-
rité de f et le fait que la relation est vraie sur IN.

27
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3. Ecrire r = £

. Soit n € IN. Puisque M,

. Ecrire

puis utiliser la question 2 pour écrire

qaf(r)=f(qr)

«sortir» p:

= f(p) puis a nouveau la question 2 pour

flp)=flpx1)=pf(1

. Les suites d’approximations dec1ma1es (vn) et (z,) véri-

fient :

e V¥nelN, p,<x<z,

* V¥nelN, 7v,z,€Q

e limy, =limz, =x

Le premier point et la croissance de f assurent que pour
tout n €N :

f(@n) < f(x) < f(zn)

Le deuxiéme point et le troisieme point et la question 3
assurent que pour tout n € IN :

f(vn)

Il reste a utiliser le théoreme de passage aux limites.

flzy) =z, — ax

=v,a — ax et
n—-+oco n—+00

= max(|ups1], [tns2]), il s'agit
de montrer que :

lupn] < (1 + %)M,, et |upo| < (1 + %)Mn

. L'inégalité 1 +x < e* appliqué dans le résultat de la ques-

tion 1. donne :
VneN, M, <e’M,

—1
S

. S , . 3
Itérer cette inégalité permet d’obtenir : M, < ek=0>" M.
I1 suffit de calculer la somme géométrique puis de majo-
rer le résultat par 2.

@(n)-1
- Pourtout n € N*: gy — 1ty = Zuk+1—uk
k=n
Dans cette expression : Uy, — Uy = 2::1 .

Majorer la somme par inégalité triangulaire puis |ux_;| <
My

Utiliser 2. et calculer la somme géométrique qui appa-
rait.

Uy = Ugp(n) + (un - uq)(n)) puis raisonner par

somme de limites.

-l
Z 2 par une
k=p+1
1 1 1
_ S —_— —
k2 7 k-1 k
b) Raisonner par l'absurde : si (H,,) était de Cauchy alors
(H,, — H,) tendrait vers 0.

a) Pour 1 < p < g, majorer §; - S, =

somme télescopique en utilisant :

. Adapter la preuve du résultat de cours selon lequel toute

suite convergente est bornée.

. Siu est convergente de limite ¢, utiliser :

|up =] < |u

+|uq—€)

. Etant donné une sous-suite (uy(n)) convergente de limite

¢, montrer que u, —> {enrevenanta la définition de la
n—+o0o

limite puis en écrivant: |u, — €| < )un = Ug(n) )+|u§0 () —€|

. Procéder par contraposition. Supposer que (u,) ne

converge pas vers ¢ et montrer qu’elle possede une sous-
suite qui converge vers une limite autre que ¢. Pour cela
commencer par traduire I’hypothése :

de>0 | VngelN, dAnz=ng | lu,—¢>¢



Elle permet de construire une extraction ¢ : N — IN
pour laquelle :

VnelN, .u(p(,,) —f‘ >
Précisément on peut poser :
P(0)=min{n>0 | Ju,~]>¢)
puis pour tout k > 0, si ¢(0),..., (k) sont construits on
pose
ek+1)=min{n>@k)+1 | |u,—]>¢}
La suite (”@(”)) étant bornée on peut en extraire une
sous-suite convergente (uq)own)). Reste a montrer que sa
limite n’est pas ¢.
2.a) Procéder par récurrence sur k. Pour I'hérédité, étant

donné une sous-suite (”#’(”)) de limite a;, montrer

que (uw(n)) converge Vers dx, en exprimant uyy,,) en

. N . Uy
fonction d ty V est la suit ( + )
onction de uw(n) e l%l(n) ou es a suilte un 2

b) La suite (ay) est arithmético-géométrique de raison —2
ce qui donne, pour toutk>1: a=a+ (—Z)k(a - a)

. 2b . . . .
ou a = —. Le fait que la suite (ax) soit bornée impose :

a = a. Conclure a I'aide de la question 1..



