Calculs de primitives

Exercices

m Méthodes directes

1 Déterminer une primitive des fonctions :
*
a) t2t(3t2-1)3 b) tste 3
1
c) t d) t > (6t +8)sin(t> + 4t
Jio g 9 1 (6 e 8)sing 440
e) t £ )t L
1+ tht
el/t
g) t+>tan’t h) t— —
. 1 1
i)yt — ]) [
2 2
t+t(h’1t) ch (t) l—thz(t)

k) t+—> V5t+4

) t—

1
t+ A\t

Calculer une primitive de :
a) t > cos(2t)sin(3t) b) t - ch*(t)
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Calculer une primitive des fonctions :
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Calculer une primitive sur ]-%, 2F[ des fonctions
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COS X sinx

fixm et gixm

sinx + cosx COSX +sinx

Indication : On pourra primitiver f + g et f —g.

En utilisant les nombres complexes, déterminer une
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primitive de t - 2¢sin’t.

6 @ Etant donné w=a+ib € C\RR, calculer une primitive de la
ok
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fonction t > ——.
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= Primitives et intégrales

Montrer :

dt =In(x+ V1 +x2)
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Soient I un intervalle et a € I.
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*Soit f : I — C une fonction de classe ¢! qui ne sannule pas.
Montrer qu’il existe une fonction g : I — C de classe ¢!

telle que: f = f(a)ed.

Soit f : Ry — R, une fonction continue.
flx+1)
f(x)

On note F une primitive de f sur R,.
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On suppose que

—> (¢ pour un certain ¢ € [0, 1].
X—>+00

Montrer que la suite (F(n))nEIN est convergente
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m Intégration par parties

A Taide d’une ou plusieurs intégrations par
parties, déterminer une primitive des fonctions :

a) x> xshx b) x> xArctanx €) x> Arcsinx

e) x—x’Inx f) x> shxsinx

h) x — x(Inx)?

Arcsin x

d) x> x%e*

g) x—In(1+x?) i) X 30
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X k) x>e
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J) x> xsin

I) x> x?cosx et x> x?sinx
On utilisant les nombres complexes, calculer

une primitive de t > tefsint.

ATaide d'une intégration par parties, déterminer
1

costx’

m Changement de variable

Déterminer une primitive de chacune des
fonctions a I'aide des changements de variables proposés
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Pour tout x €e R, on pose: F(x) = J
0
1.a) Pour x € ]-5, 5[, calculer F(x)
e T T
b) En déduire : F(E) et F(—z)
2.a) Montrer que pour tout k € Z, il existe une constante
CreRtelleque: VxeR, F(x)=F(x—kmn)+Cy.
b) Calculer Cy pour tout k € Z.

c) En déduire, pour tout k € Z, une expression de F(x)
pour tout x € |-5 + kmt, =5 + k.



15 Soit a € R.
% On note f la fonction 6 > acosO +sin6 + 2 de R dans R.
1. Montrer que f ne s’annule pas ssi |a| < V3.
Y1

2. On suppose que |a| < V3 et on pose F(x) = J md@
0

pour tout x € R.

6
a) Soit x € |-m, 7t[. En posant ¢t = tan > calculer F(x) en

fonction de la constante w =

3-a2
e | " Ldo=o
b) En déduire : ——dO =2wn
— f(0)
16 Calculer les intégrales suivantes a ’aide des

¥ changements de variables proposés :

s
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a) I= J e dO, (poser x =cos0).
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c) K :J 2V1 —t2dt (poser t = sin6).
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17 Calculer I = j In(1+tant)dt en effectuant un

ok 0
changement de variable affine échangeant ses bornes

18 Soit f : R — R, continue. Montrer que
Hokok

1
g:x +—>J f(x+t)costdt est dérivable et calculer sa dérivée
0

19 En combinant éventuellement
B intégration par partie et changement de variable,
déterminer une primitive des fonctions suivantes

a) t > chtlin(cht). b) t — %




