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Fonctions usuelles Indications

1 a) Utiliser les proprités du logarithme.

Solutions : −1+
√

5
2 et −1−

√
5

2
b) Passer au logarithme.

Solutions : 0 et ln5
ln7 .

c) Traiter x = 0 à part. Pour les solutions dans R∗+, passer au
logarithme.
Solutions : 0, 1 et 4.

d) Faire passer les puissances de 3 à gauche et les puissances
de 2 à droite puis factoriser au maximum et passer enfin
au logarithme.
Solution : 3

2 .
e) En mutipliant par ex l’équation équivaut à :

(ex)2 − (e+ 1)ex + e = 0
Il s’agit d’une équation du second degré en ex.
Solutions : 1 et e.

2 1. Comparer les logarithmes en utilisant la concavité de

ln.
2. Appliquer 1. à ai et bi et sommer pour i ∈ ⟦1 ,n⟧.
3. Appliquer 2. avec ai =

xi
n∑
j=1

x
p
j

et bi =
xi
n∑
j=1

y
p
j

3 1. Appliquer le résultat de l’exercice précédent à chacune

des sommes
n∑
i=1

(ai + bi)p−1ai et
n∑
i=1

(ai + bi)p−1bi

2. Utiliser l’inégalité de Jensen.

4 1. Revenir à l’exponentielle pour dériver.

2. Trouver une solution et montrer qu’il n’y en a qu’une au
moyen du théorème des valeurs intermédiaires stricte-
ment monotone appliqué à f : x 7→ 2x + 3x.

5 1. Dériver deux fois f : x 7→ ax.

2. Par factorisation géométrique :
an − 1
n

= (a− 1)× 1
n

n−1∑
k=0

ak

Minorer
1
n

n−1∑
k=0

ak =
1
n

n∑
k=0

f (k) à l’aide de l’inégalité de Jen-

sen

6 a) Utiliser un argument de concavité.

b) La question a) permet de minorer « l’intérieur du pro-

duit » : 1 +
α

k
≥
(
1 +

1
k

)α
Utiliser ceci pour minorer le produit puis faire apparaître
un produit télescopique.

7 Revenir à l’exponentielle pour xα , l’équation ex = xα équi-
vaut, pour x , 1, à x

lnx = α. Etudier les variations de x 7→ x
lnx .

Réponses :

• Si α < 0 ou α = e, il y a une unique solution.

• Si 0 ≤ α < e, il n’y a aucune solution.

• Si α > e il y a deux solutions.

8 Transformer xx(1− x)1−x en revenant à l’exponentielle puis
tout passer au logarithme. On trouve que l’inégalité équi-
vaut à x lnx+ (1− x) ln(1− x) ≥ − ln2.

Etudier alors la fonction f : x 7→ x lnx+ (1− x) ln(1− x) sur
]0 ,1[.

9 Si g est convexe montrer que f α est convexe en revenant

à la définition de la convexité. Majorer f α
(
(1− t)a+ tb

)
en

revenant à l’exponentielle puis en utilisant successivement
la convexité de g, la croissance et la convexité de exp.
Pour l’implication réciproque, étant fixé t ∈ [0 ,1], l’hypo-
thèse de convexité des f α permet d’écrire :

(⋆) ∀α > 0, eαg((1−t)a+tb)︸        ︷︷        ︸
ϕ(α)

≤ (1− t)eαg(a) + teαg(b)︸                   ︷︷                   ︸
ψ(α)

Remarquer que :
g
(
(1− t)a+ tb

)
= ϕ′(0) et (1− t)g(a) + tg(b) = ψ′(0)

Utiliser (⋆) et la définition du nombre dérivé pour montrer
que ϕ′(0) ≤ ψ′(0).

10 Suivre la méthode du savoir faire SF 2 .

Solutions : a) 0 et ln7 b) ln
(

2+
√

7
3

)
.

11 Etant donné λ ∈ R, appliquer l’inégalité des cordes à la
fonction convexe x 7→ eλx

12 x = 0 est solution. Pour x , 0, on montre en isolant α que
l’équation équivaut à x

thx = α.
Etudier alors la fonction f : x 7→ x

thx sur R∗ (le signe de f ′

est celui de son numérateur, redériver ce dernier pour le
trouver).
Solutions :

• Si α > 1 il y a deux solutions sur R∗, donc en tout trois
solutions avec 0.

• Si α ≤ 1 il n’y a pas de solution sur R∗, donc seul 0 est
solution.

13 a) Procéder par analogie avec les sommes trigonométriques.

Remplacer ch par sa forme exponentielle puis calculer
les deux sommes géométriques.

Réponse : An =

1−e(n+1)x

1−ex si x , 0
n+ 1 si x = 0

b) Transformer 1− e(n+1)x et 1− ex en adaptant la technique
permettant de transformer 1− eiθ .

Réponse : An = ch(nx2 )
sh(n+1

2 x)
sh x

2

14 Etudier les fonctions ϕ : x 7→ x − thx et ψ : x 7→ shx − x sur
R+ (0 compris pour pouvoir comparer les valeurs sur R∗+
avec les valeurs en 0).

15 Considérer la fonction f : x 7→ chx − x
2

2
.

16 1. Revenir aux expressions avec les exponentielles.

2. Faire apparaître un produit télescopique en remplaçant

ch
x

2k
avec la formule de la question 1 (en prenant a = x

2k
).

On obtient :
n∏
k=1

ch
x

2k
=

1
2n

shx
sh x

2n
=

shx
x
×

x
2n

sh x
2n

.

Il s’agit pour finir de montrer que :
sh x

2n
x

2n
−→
n→+∞

1.



V que tn =
x

2n
−→
n→+∞

0, il suffit de montrer que
sh t
t
−→
t→0

1.

Utiliser la définition du nombre dérivé de sh en 0.

17 a) On se ramène à Arccoscosθ avec θ ∈ [0 ,π] en utilisant

la 2π-périodicité de cos.
Réponse : 2π

3 .
b) On se ramène à Arcsinsinθ avec θ ∈ [−π2 ,

π
2 ] en utilisant

la 2π-périodicité de sin et la propriété sin(π − x) = sinx.
Réponse : π

6 .
c) On se ramène à Arctantanθ avec θ ∈ ]−π2 ,

π
2 [ en utilisant

la π-périodicité de tan. Réponse : π
4 .

d) Utiliser Arcsin = π
2 −Arccos.

Réponse : π
4 .

e) Utiliser Arccos = π
2 −Arcsin.

Réponse : 9π
10 .

18 Suivre la méthode du savoir faire SF 5

19 1. Poser x = π+α avec α ∈ [0 ,π] puis utiliser cos(π+α) =

cos(π −α).
Réponse : 2π − x.

2. Arccoscosx = x pour x ∈ [0 ,π].
Pour simplifier Arccoscos(2x) distinguer le cas où x ∈
[0 , π2 ] et celui où x ∈ [π2 ,π], dans le second cas utiliser la
question 1.
Solution : 5π

6

3. La fonction f : x 7→ Arccoscosx − 1
2 Arccoscos(2x) est

paire et 2π-périodique.
On déduit donc toutes les solutions de celle trouvée sur
[0 ,π].

20 a) Poser θ = Arctan 1
2 + Arctan 1

3 .

Il suffit de montrer que :

(a) tanθ = 1.
(b) θ ∈ ]−π2 ,

π
2 [.

b) On peut adapter la méthode du a) (en changeant l’inter-
valle) ou utiliser la propriété liant Arctan 1

x et Arctanx
ainsi que le résultat du a).

c) Posant α = 2Arccos
3
4

et β = Arccos
1
8

il suffit de montrer
que

(a) cosα = cosβ.
(b) α,β ∈ [0 ,π].

21 On peut simplifier les calculs en réorganisant les termes.
a) On peut par exemple poser α = π

4 − Arctan 1
2 et β =

Arctan 1
5 + Arctan 1

8 et montrer que

(a) tanα = tanβ.
(b) α,β ∈ ]−π2 ,

π
2 [.

b) On peut par exemple poser α = Arctan3 − π
4 et β =

Arcsin 1√
5

et montrer que

(a) tanα = tanβ.
(b) α,β ∈ ]−π2 ,

π
2 [.

22 1. Montrer que f : x 7→ Arctanshx + Arccosthx est

constante en dérivant, puis déterminer la valeur de la
constante en calculant f en une valeur bien choisie.
Réponse : Arctanshx+ Arccosthx = π

2 pour tout x ∈R.

2. Remplacer thx par une de ses expressions avec l’expo-
nentielle.
Solution : x = ln 3

2 .
3. Evaluer l’égalité : Arctanshx+ Arccosthx = π

2 .

23 On procède dans chaque cas par analyse-synthèse (savoir

faire SF 7 ).
a) Analyse. Si x est solution, appliquer sin à l’égalité

Arcsin x
2 = Arcsinx − π

3 .

on obtient x = 0 ou x = ±
√

3
2 .

Synthèse. On teste directement −1 et 1, on constate que
seul 1 est solution.

b) Analyse.Si x est solution, appliquer sin à l’égalité
Arcsinx = 2Arccosx.
on obtient x = ±1.
Synthèse. On teste directement les trois candidats, on

constate que seul
√

3
2 est solution.

c) Analyse. Si x est solution, appliquer cos à l’égalité
Arccosx2 = π

2 −Arccos(1− x2).
on obtient x = 0 ou x = ±1.
Synthèse. On teste directement les trois candidats, on
constate qu’ils sont tous trois effectivement solutions.

d) Analyse. Si x est solution, appliquer sin à l’égalité
Arcsin(2x) = 2Arccosx.
on obtient x = ± 1√

5
.

Synthèse. On montre par des considérations de signe que
− 1√

5
n’est pas solution.

On ne peut pas tester directement le candidat 1√
5
i.e. cal-

culer Arcsin 2√
5

et Arccos 1√
5

.
Deux possibilités :

• Première possibilité. Poser α = Arcsin 2√
5

et β =

Arccos 1√
5

puis assurer que α = β en vérifiant que

cosα = cosβ et α,β ∈ [0 ,π].
• Deuxième possibilité. On montre que l’équation pos-

sède une unique solution en appliquant le théorème
des valeurs intermédiaires strictement monotone à
f : x 7→ Arcsin2x −Arccosx, l’étape d’analyse montre
alors que la solution est 1√

5
.

24 L’équation est définie sur [−1 ,1] (ceci exige une vérification
pour le membre de droite). De plus, étant donné x ∈ [−1 ,1],
on constate que α = 2Arcsinx et β = Arcsin(2x

√
1− x2) ont

le même sinus et que β ∈ [−π2 ,
π
2 ].

Ainsi α = β ssi α ∈ [−π2 ,
π
2 ].

Solutions : tous les éléments de [− 1√
2
, 1√

2
].

25 Nécessairement, a ≥ 0 et a ≤ 1.Il s’agit ensuite de détermi-
ner les valeurs de a ∈ [0 ,1] pour lesquelles

−π
2
≤ 2Arcsin(

√
a)− π

6
≤ π

2
Reste à résoudre l’inéquation (en utilisant la stricte crois-
sance de Arcsin).
Réponse : a ∈ [0 , 3

4 ].

26 a) Par analyse-synhèse :

• Analyse : Si x est solution, en appliquant tan à l’égalité,

on obtient x = −3±
√

17
4 .

2



• Synthèse On peut montrer que l’équation a une unique
solution α ∈ R en appliquant le théorème des va-
leurs intermédiaires strictement monotone à f : x 7→
Arctan2x+ Arctanx. L’étape d’analyse assure que α =
−3±
√

17
4 , on élimine −3−

√
17

4 par des considérations de
signe.

b) Par analyse-synhèse :

• Analyse : Si x est solution, x , 0 et en appliquant tan à
l’égalité Arctan(x−1) + Arctan(x+ 1) = π

2 −Arctanx, on

obtient x = ±
√

2
3 .

• Synthèse On peut montrer que l’équation a une unique
solution α ∈ R en appliquant le théorème des va-
leurs intermédiaires strictement monotone à f : x 7→
Arctan(x−1)+Arctan(x+1)+Arctanx. L’étape d’analyse

assure que α = ±
√

2
3 , on élimine −

√
2
3 en montrant que

f (−
√

2
3 ) ≤ π

4 .

27 On peut par exemple poser α = π
4 + Arctan 1

239 et β =
4Arctan 1

5 et montrer que

1. tanα = tanβ.

2. α,β ∈ ]−π2 ,
π
2 [.

Pour calculer tanβ, commencer par poser β = 2a avec
a = 2Arctan 1

5 puis appliquer deux fois de suite la formule
donnant tan2θ en fonction de θ.

28 On peut procéder par récurrence (double), en exprimant
fn+1 + fn−1 en fonction de fn.
Une autre possibilité est de délinéariser cos(nθ) avec θ =
Arccosx :
cos(nθ) = Re

(
einθ

)
= Re

(
(cosθ+i sinθ)n

)
= Re

(
(x+i
√

1− x2)n
)

On développe (x+ i
√

1− x2)n avec le binôme, la partie réelle
est constituée des termes d’indice pair de la somme, il suffit
de vérifier que chacun de ces termes est polynomial en x.

29 1. On vérifie que tanθk = 1
1+k+k2 mais ne pas conclure trop

vite que θk = Arctan 1
1+k+k2 , il convient de vérifier que

θk ∈ ]−π2 ,
π
2 [.

2. Faire apparaître un télescopage en remplaçant
Arctan 1

1+k+k2 avec la question 1.
Réponse : π

2 .

30 1. Utiliser : cos2θ =
1

1 + tan2θ
et sinθ = tanθ cosθ

Réponses : cosθ =
1

chx
et sinθ = thx.

2. En remplaçant thx par une de ses expressions avec l’ex-

ponentielle on obtient : e2x =
1 + sinθ
1− sinθ

.

Utiliser alors la formule : sinθ =
2tan θ

2

1 + tan2 θ
2

.

3


