
3
Nombres complexes Indications

1 Utiliser le conjugué du dénominateur.
Réponses : a) z = i b) u = −1− i c) v = −3 d) w = 1

5 + i 2
5

2 a) L’équation équivaut à |z+ 1|2 = 2 |z − 2|2.

Ecrire z sous la forme z = x + iy puis calculer |z+ 1|2 et
|z − 2|2 en fonction de x et y en écrivant z + 1 et z − 2 sous
forme algébrique puis en utilisant la définition du mo-
dule.
On obtient l’équation d’un cercle en utilisant la forme
canonique : Réponse : Cercle de centre (5,0) et de rayon
3
√

2.
b) Commencer par écrire z sous la forme z = x+iy puis écrire

z+1
z−2 sous forme algébrique (multiplier par le conjugué
du dénominateur). On obtient que l’équation équivaut à
x = 2.

3 1. Utiliser |z|2 = zz pour développer |a+ b|2 et |a− b|2.

2. Calculer
(
|a+ b|+ |a− b|

)2
−
(
|a|+ |b|

)2
en utilisant 1.

4 Développer le carré au numérateur (z + |z|)2 puis utiliser
|z|2 = zz et z+ z = 2Rez

5 1. Poser Z = z2

z+i : z ∈ A ssi Z = −Z.

En éliminant les quotients puis en passant tout à gauche
et en factorisant on obtient que Z = −Z équivaut à
(z+ z)(|z|2 + 2Imz) = 0.

2. Pour reconnaître géométriquement l’ensemble des z tels
que |z|2 + 2Imz écrire z sous la forme z = x + iy, puis
utiliser la mise sous forme canonique.
Réponse : A est la réunion de l’axe des imaginaires purs
(privé de −i) et du cercle de centre −i et de rayon 1.

3. Il n’est pas nécessaire de calculer les racines. Vérifier que
−i n’est jamais racine puis utiliser le fait qu’une racine
de z2 + 2iaz−2a = 0 vérifie z2 = −2iaz+ 2a pour observer
que le quotient z2

z+i est imaginaire pur.

6 Combiner les deux idées très très importantes des savoirs
faire :

• Pour montrer que z est réel montrer que z = z.

• Vu que u ∈U on a : u =
1
u

, de même pour v.

7 Poser Z = z+1
z−1 . Il s’agit de montrer que Z = −Z.

Calculer Z en utilisant le fait que z = 1
z puisque z ∈U.

8 Utiliser l’expression du module avec le conjugué : |Z |2 = ZZ.
Calculer |a− b|2 en prenant Z = a− b puis calculer |1− ab|2
en prenant Z = 1− ab.
On obtient |1− ab|2 − |a− b|2 = 1 + |a|2 |b|2 − |a|2 − |b|2.
Factoriser au maximum cette quantité pour montrer qu’elle
est positive en utilisant le fait que, par hypothèses, 1− |a|2 ≥
0 et 1− |b|2 ≥ 0.

9 Mettre a
|a|2
− b
|b|2

au même dénominateur puis factoriser en
utilisant les propriétés |z|2 = zz et |z̄| = |z|.

10 Utiliser l’expression du module avec le conjugué |Z |2 =
ZZ pour développer |a− b|2.
Développer aussi (1 + |a|2)(1 + |b|2) puis factoriser alors au
maximum la différence, on trouve au final

(1 + |a|2)(1 + |b|2)− |a− b|2 = |1 + ab|2

11 a) Utiliser 1
u = u, 1

v = v et 1
w = w car u,v,w ∈U.

b) Reprendre l’égalité du a) et réduire 1
u + 1

v + 1
w au même

dénominateur puis utiliser le fait que |u| = |v| = |w| = 1.

12 Analyse. z = 0 est solution. Montrer que si z , 0 est solution,
alors |z| = 1.
Synthèse. Reste à tester quels z ∈U sont solutions.
Pour z ∈U, on peut résoudre par équivalence en utilisant
z = 1

z .
(On peut aussi résoudre l’équation par équivalence en po-
sant z = eiθ puis en utilisant la transformation de 1− eiθ).
Solutions z = 0, z = 1, z = i et z = −i.

13 Les zi étant tous de même module, onpeut les écrire sous
la forme zi = rui avec ui ∈U.
En factorisant tous les r on obtient

Z =
1
rn

(u1 +u2)(u2 +u3) . . . (un +u1)
u1 . . .un︸                                ︷︷                                ︸

=U
Reste à montrer que U est réel. Pour cela calculer U en
utilisant ūi = 1

ui
.

14 a) Factoriser z3 + 2iz = z(z2 + 2i) puis majorer
∣∣∣z2 + 2i

∣∣∣ à

l’aide de l’inégalité triangulaire.
b) Il y a égalité ssi toutes les inégalité sont des égalités i.e.

ssi : |z| = 1 et
∣∣∣z2 + 2i

∣∣∣ =
∣∣∣z2

∣∣∣+ |2i|.
L’égalité dans l’inégalité triangulaire impose

∣∣∣z2
∣∣∣ = k2i

pour un certain k ∈R+ que l’on détermine via
∣∣∣z2

∣∣∣ = 1.

Solutions : ±
(√

2
2 + i

√
2

2

)
15 1. Ecrire astucieusement z − 4 =

(
z − (1 + i)

)
+ (−3 + i) puis

utiliser les inégalités triangulaires
|a| − |b| ≤ |a+ b| ≤ |a|+ |b|

2. L’implication du 1) prouve qu’un certain disque est in-
clus dans une certaine couronne.

16 Utiliser la factorisation astucieuse : ab−cd = (a−c)b+c(b−d)
puis l’inégalité triangulaire.

17 Appliquer la technique du cours pour linéariser

18 Appliquer la technique du cours pour « délinéariser »

19 Appliquer la technique du cours pour calculer ce type de
somme.

20 a) Puisque |cosx| ≤ 1 : |cosx| ≥ cos2 x.

b) A l’aide de la minoration du a) :
n∑

k=1

|cosk| ≥
n

2
+
n

2
Sn où Sn =

n∑
k=1

cos(2k).

Calculer la somme trigonométrique Sn en utilisant les
complexes puis montrer que |Sn| ≤ 1

sin1 .

21 1. Réponses

a) z1 = 2
√

3ei
π
6 b) z2 = 4

√
2ei

π
4 c) z3 = 2ei

π
2 d) z4 = 5eiπ

2. On met numérateur et dénominateur sous forme trigo-
nométrique puis on fait le quotient des formes trigono-
métriques en profitant des propriétés de l’exponentielle
imaginaire.
On obtient : 1−i

1−i
√

3
= 1√

2
ei

π
12 .



On met ensuite Z = 1−i
1−i
√

3
sous forme algébrique (avec

le conjugué du dénominateur) ce qui donne la forme
algébrique de ei

π
12 =
√

2Z. On identifie ensuite :

• Les parties réelles : cos π
12 = 1+

√
3

2
√

2

• Les parties imaginaires : sin π
12 =

√
3−1

2
√

2

22 a) On peut écrire 1 + eiθ + e2iθ = Reiθ avec R = 1 + 2cosθ

en utilisant la factorisation par l’angle moitié sur 1 + e2iθ

puis en factorisant par eiθ .
Il reste un peu de travail pour obtenir la forme trigono-
métrique car R n’est pas forcément positif.
Distinguer :

• les valeurs de θ pour lesquelles R > 0
• celles pour lesquelles R < 0 (on écrit alors R = −Reiπ).

b) Reconnaître des exponentielles imaginaires au numéra-
teur et au dénominateur, puis utiliser les transformations
de 1± eiθ .

Le module est
∣∣∣∣∣ 1
tan θ

2

∣∣∣∣∣ et un argument π
2 ou 3π

2 selon le

signe de tan θ
2

23 Dans les deux cas, commencer par utiliser la forme trigo-
nométrique du complexe pour en calculer la puissance.
Réponses : a) z1 = 26(−

√
3 + i) b) z2 = −2999(1 + i

√
3).

24 Ecrire (1 + i)n sous forme trigonométrique (1 + i)n = reiθ

puis le complexe (1 + i)n est réel ssi θ ≡ 0 [π]

25 L’intervention de puissances de z favorise la recherche de z
sous forme trigonométrique.
Commencer par vérifier si z = 0 est solution.
Chercher ensuite les solutions z ∈ C∗ sous la forme z = reiθ

où r > 0 et θ ∈R.
a) A partir de z = reiθ , écrire z et jz2 sous forme trigono-

métrique puis identifier les modules et les arguments
(modulo 2π), on obtient deux équations : une équation
sur r et une équation sur θ.
Solutions z = 0, z = e−2i π9 , z = e4i π9 et z = e10i π9

b) A partir de z = reiθ , écrire z3 et −16z16 puis identifier les
modules et les arguments (modulo 2π), on obtient deux
équations : une équation sur r et une équation sur θ.
Solutions pour r et θ On trouve r = 1

2 et θ ≡ π
10

[
π
5

]
.

Complexes z solutions. On obtient dix complexes solutions,
les z = 1

2e
i π

10 +k π
5 où k décrit ⟦0 ,9⟧.

26 L’intervention de puissances de z favorise la recherche de z
sous forme trigonométrique.
Commencer par vérifier si z = 0 est solution.
Chercher ensuite les solutions z ∈ C∗ sous la forme z = reiθ

où r > 0 et θ ∈R.
A partir de z = reiθ , écrire z3 sous forme trigonométrique
puis calculer Re(z3) et Im(z3) en fonction de r et θ.
On obtient une équation trigonométrique sur θ (pas de
condition sur r), que l’on peut par exemple résoudre en se
ramenant à l’équation cosα = cosβ.
Solutions pour r et θ On trouve θ ≡ π

12

[
π
3

]
et r est arbitraire.

Complexes z solutions : les complexes z = λei
π
12 , z = λe5i π

12 ,
z = λe3i π4 avec λ ∈R quelconque (géométriquement c’est la
réunion de trois droites passant par 0).

27 L’intervention de puissances de z favorise la recherche de z
sous forme trigonométrique.

Commencer par vérifier si z = 0 est solution.
Chercher ensuite les solutions z ∈C∗ sous la forme z = reiθ

où r > 0 et θ ∈R.
Solutions : les complexes z = λ, z = λe2i π3 , z = λe−2i π3 avec
λ ∈ ]−∞ ,2] quelconque (géométriquement c’est la réunion
de trois demi-droites passant par 0).

28 Utiliser dans chaque cas la technique du savoir faire SF 10

: on cherche z sous la forme z = x + iy on a directement ez

sous forme trigonométrique : ez = exeiy .
On met le second membre sous forme trigonométrique lui
aussi et on identifie :

• les modules – en général une équation du type ex = . . .

• les arguments – en général une équation du type y ≡
. . . [2π]

Solutions
a) z = i π2 + 2ikπ avec k ∈Z.

b) z = −1
4 + 2k − i ln2

2π avec k ∈Z.

c) z = ln(2
√

3) + i π3 + 2ikπ avec k ∈Z.
d) Aucune

29 Construire u1, . . . ,un ∈ U tels que |uk −uℓ | ∈ Q∗ puis
prendre zk = Ruk où R est un dénominateur commun aux
|uk −uℓ |.

30 a) zk−1 = e
2ikπ
n −1, utiliser alors la transformation de 1−eiθ

puis prendre le module.
Réponse :

∣∣∣zk − 1
∣∣∣ = sin kπ

n .
b) Utiliser le résultat du 1 pour se ramener à une somme

trigonométrique que l’on calcule en suivant à la lettre
la méthode usuelle (savoir faire SF 8 ). Penser à la fin
à factoriser le dénominateur à nouveau à l’aide de la
transformation de 1− eiθ .

31 On applique la méthode du cours (savoir faire SF 13 ).
Réponses pour les racines cinquièmes de j :
e2i π

15 , e8i π
15 , e14i π

15 , j, e−4i π
15

Réponses pour les racines cinquièmes de Z = 2
√

2
1−i :

Mettre d’abord Z sous forme trigonométrique.
2

1
5 ei

π
20 , 2

1
5 e9i π

20 , 2
1
5 e17i π

20 , 2
1
5 e−3i π4 , 2

1
5 e−7i π

20

32 a) Calculer les racines cubiques z0, z1 et z2 de Z = 8i.

Les solutions sont les zk − i pour k = 0,1,2.
Solutions :

√
3, −
√

3, −3i
b) Calculer les racines quatrièmes z0, z1, z2 et z3 du com-

plexe Z = 4
√

2.
Les solutions sont les zk − 2 pour k = 0,1,2,4.
Solutions : 8

1
4 ei

π
16 −2, 8

1
4 e9i π

16 −2, −8
1
4 ei

π
16 −2, −8

1
4 e9i π

16 −2.
c) Les solutions sont les racines sixièmes de Z = 1 + i.

Solutions : 2
1

12 e
iπ
24 , 2

1
12 e

3iπ
8 , 2

1
12 e

17iπ
24 , −2

1
12 e

iπ
24 , −2

1
12 e

3iπ
8 ,

−2
1

12 e
17iπ

24

33 1. Z = 1 n’est pas solution et pour Z ∈C\{1} , 1+Z+Z2+Z3

est une somme géométrique de raison Z.
En appliquant la formule donnant cette somme, on ob-
tient que Z est solution ssi Z4 = 1 (et Z , 1).
Solutions : −1, i, −i.

2. z , i est solution ssi Z = z+i
z−i est solution de l’équation du

1 i.e. ssi Z = −1, Z = i ou Z = −i.
Il suffit donc de résoudre z+i

z−i = 1, z+i
z−i = i et z+i

z−i = −i.
Solutions 1, −1 et −i.

2



34 1. z = 1 n’est pas solution puis pour z , 1, z est solution ssi
z+1
z−1 est une racine ne de l’unité.
Solutions : z = −1+ωk

1−ωk
pour k ∈ ⟦1 ,n− 1⟧

En utilisant les transformations 1± eiθ , on trouve finale-

ment z =
−i cos kπ

n

sin kπ
n

pour k ∈ ⟦1 ,n− 1⟧

2. Les solutions sont les racines ne de Z = −1.
3. Commencer par vérifier si z = 0 est solution.

Puis chercher les solutions z ∈ C∗ sous la forme z = reiθ

où r > 0 et θ ∈R. A partir de z = reiθ , écrire z et zn sous
forme trigonométrique puis identifier les modules et les
arguments (modulo 2π), on obtient deux équations : une
équation sur r et une équation sur θ.
Solutions : z = e

2ikπ
n+1 pour k ∈ ⟦0 ,n⟧.

35 a) Utiliser les propriétés deU7 :

• u7 = 1, u8 = u, u9 = u2 . . .
• 1 +u +u2 + · · ·+u6 = 0

Solutions : A+B = −1 et AB = 2.
b) A et B sont les racines de : z2 + z+ 2 = 0.

Les racines sont : z1 = −1−i
√

7
2 et z2 = −1+i

√
7

2 .
Il reste à savoir si A = z1 (et donc B = z2) ou si A = z2 (et
donc B = z1).
Examiner le signe de ImA = sin 2π

7 + sin 4π
7 + sin 8π

7 pour
montrer que ImA > 0.

36 1. Utiliser les règles de calculs avec les puissances :

ω0 ×ω1 × · · · ×ωn−1 = ω0+1+···+n−1

Réponse : (−1)n−1.
2. Développer (1 +ωp)n à l’aide de la formule du binôme

puis intervertir les deux symboles
∑

. La somme inté-
rieure (somme en p) est une somme géométrique de
raison q = ωk . Calculer cette somme en distinguant les
indices k tels que q = 1 et ceux tels que q , 1.
Réponse : 2n.

37 1. Ecrire a = eiθ puis exprimer les zk en fonction de θ (avec

la formule pour les racines ne).
Ensuite utiliser la transformation de 1 + eiθ pour factori-
ser 1 + zk .
On obtient (1 + zk)n = (−1)k2n cosn

(
θ
2n + kπ

n

)
ei

θ
2 .

2. L’angle θk trouvé en 1. ne dépend pas de k.

38 Réponses pour vérifier les calculs.
a) Le discriminant ∆ vaut : ∆ = −8− 6i.

Une racine carrée de ∆ est : δ = 1− 3i.
Les solutions sont : z1 = 2i et z2 = 1+i

2 .

b) Le discriminant ∆ vaut : ∆ = −8i = 8e−i
π
2 .

Une racine carrée de ∆ est : δ = 2− 2i.
Les solutions sont : z1 = 1 et z2 = −1 + 2i.

c) Le discriminant ∆ vaut : ∆ = −3− 4i.
Une racine carrée de ∆ est : δ = 1− 2i.
Les solutions sont : z1 = −1− i et z2 = −3− 2i.

d) Le discriminant ∆ vaut : ∆ = −3a2.
Une racine carrée de ∆ est : δ = i

√
3a.

Les solutions sont : z1 = aei
π
3 et z1 = ae−i

π
3 .

39 Le discriminant ∆ de l’équation s’écrit sous la forme d’un
carré : ∆ = (a− i)2.

Solutions : −1 + i

2
et

−a
1 + i

.

40 L’équation équivaut à (ez)2 − 2iez + 1 = 0.

• On trouve les racines Z1 et Z2 de Z2 − 2iZ + 1 = 0.
• On résout les deux équations ez = Z1 et ez = Z2 (méthode

du savoir faire SF 10 ).
Solutions : Les complexes z de la forme

z = ln(1 +
√

2) + i
π

2
+ 2ikπ ou z = ln(

√
2− 1)− i π

2
+ 2ikπ

où k décrit Z.

41 On sait d’après le cours que les solutions sont les racines
de l’équation z2 − 3iz − 1− 3i = 0.
Le discriminant ∆ vaut : ∆ = −5 + 12i.
Une racine carrée de ∆ est : δ = 2 + 3i.
Les solutions sont : −1 et 1 + 3i.

42 Se ramener à un système somme-produit en mettant au
même dénominateur dans la deuxième équation.
Réponse x = 1 + i et y = 1− i ou x = 1− i et y = 1 + i.

43 z est solution de l’équation ssi Z = z3 vérifie l’équation du
second degré : Z2 − 2cosθZ + 1 = 0.
• On trouve les racines Z1 et Z2 de Z2 − 2cosθZ + 1 = 0.
• On calcule les racines cubiques de Z1 et Z2.
Solutions : eiθ , jeiθ , j2eiθ , e−iθ , je−iθ , j2e−iθ

44 1. Utiliser la traduction de l’alignement. Il s’agit de savoir

si Z =
z2 − 1
z − 1

est réel.

La condition est z ∈R
2. Utiliser de même la traduction de l’alignement.

Ce n’est jamais le cas (sauf pour z = i, cas dans lequel ils
sont confondus)

3. Utiliser la traduction de l’othogonalité. Il s’agit de savoir

si Z =
z3 − z2

z − z2 est imaginaire pur.

La condition est z ∈R

45 Utiliser la traduction de l’alignement. Il s’agit de savoir si

Z =
z − jz
j − jz

est réel.

Simplifier d’abord Z en utilisant les propriétés de j puis
étudier l’égalité Z = Z.
Après calculs on obtient : Z = Z ssi |z|2 + jz+ j2j = 0.
Comparer enfin avec l’équation du cercle de centre −j2 et
de rayon 1

46 Deux possibilités :
1. Utiliser la caractérisation avec le quotient de l’orthogo-

nalité et des distances : il s’agit de savoir si Z =
i − iz
i − z

est imaginaire pur et de module 1. Il n’y a que deux
valeurs possibles : Z = ±i (intersection de l’axe iR et
du cercleU)
On trouve que Z = i est impossible, l’autre permet de
trouver que z = 1+i

2 .
2. Le triangle est rectangle isocèle en i ssi iz est l’image

de z par la rotation de centre i et d’angle ±π
2 i.e. ssi

iz − i = ±(z − i).

47 Utiliser la traduction de l’alignement. Il s’agit de savoir si

Z =
1
z − z
z2 − z

est réel.

Simplifier d’abord Z puis étudier l’égalité Z = Z.
Après calculs on obtient : Z = Z ssi (z− z)(|z|2 + z+ z) = 0.
Revenir à la forme algébrique de z : il s’agit de la réunion

3



de l’axe des réels et du cercle de centre (−1,0) et de rayon 1,
(privés de 0 et de 1 par l’énoncé).

48 Donner un nom aux racines carrées de z, par exemple δ et
−δ (avec δ2 = z).
Ensuite utiliser la traduction de l’orthogonalité avec le quo-

tient. Il s’agit de savoir si Z =
z − δ
z+ δ

est imaginaire pur.

Après calculs on trouve que l’égalité Z = −Z équivaut à
|z| = 1.

49 1. Suivre la méthode du savoir faire SF 17 .

a) Réponse : Similitude de centre ω = 1, de rapport 2 et
d’angle π

3 .
b) Réponse :

• Si α = 0, f est la translation de vecteur
√

2(1− i)

• Si α , 0, f est la similitude de centre

√
2(1 + i)
tanα

, de

rapport
1

cosα
et d’angle α.

2. Par définition t est l’application t : z 7→ z− 1 et r : z 7→ iz.
Il suffit de calculer les composées.
Réponses.
• t ◦ r ◦ t : z 7→ iz − i − 1, c’est la rotation de centre −i de

d’angle π
2 .

• r ◦ t ◦ r : z 7→ −z − i, c’est l’homothétie de centre − i
2 de

de rapport −1.

50 En notant c et d les affixes des deux autres sommets on
peut par exemple exploiter le fait que b est l’image de a par
la rotation d’angle π

2 et de centre l’un des deux sommet,
disons c et qu’alors b est l’image de a par la rotation de
centre d et d’angle −π

2 .
Réponses : dans la configuration ci-dessus on obtient :

c =
1− i

2
a+

1 + i

2
b et d =

1 + i

2
a+

1− i
2

b

51 Il s’agit de savoir si A est l’image de C par la rotation de

centre B et d’angle π
3 i.e. si a− b = ei

π
3 (c − b).

On simplifie les calculs en se rappelant que ei
π
3 = −j2 puis

en utilisant les propriétés de j.

52 1. En notant H le point d’affixe h = a + b + c, il s’agit de

montrer que sur H est sur chacune des trois hauteurs.
Par exemple, H est sur la hauteur issue de A si (AH)
est perpendiculaire à (BC) c’est à dire si le complexe

Z =
h− a
c − b

est imaginaire pur.

On peut montrer que Z +Z = 0 en réduisant au même
dénominateur puis en simplifiant compte-tenu de ce que
|b| = |c| (B et C sont sur un même cercle de centre O).

2. En considérant un repère orthonormé direct d’origine
le centre du cercle circonscrit, on est ramené à la situa-
tion de la question 1 i.e. celle d’un triangle ABC dont
l’origine O est le centre du cercle circonscrit. Ainsi :
• L’orthocentre de ABC est le point d’affixe h = a+ b+ c.

• Le centre de gravité de ABC a pour affixe g =
a+ b+ c

3
• Le centre du cercle circonscrit est le point O.

Il suffit par exemple de vérifier que
h− 0
g − 0

est réel.

53 Commencer par montrer que
n∑
i=1

∣∣∣∣z(k+1)
i − z(k)

i

∣∣∣∣2 −→
k→+∞

0 à

l’aide notamment de l’identité du parallélogramme.
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