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Analyse asymptotique Indications

1 Etudier la limite du quotient f
g dans chaque cas.

Réponses à trouver :
a) f (x) =

x→+∞
o
(
g(x)

)
b) f (x) =

x→+∞
o
(
g(x)

)
c) g(x) =

x→+∞
o
(
f (x)

)

2 Etudier la limite de
f (x)
xα

et de
(lnx)α

f (x)
en revenant à l’expo-

nentielle.

3 Réponses à trouver
a) Faux b) Faux c) Vrai

4 1. Appliquer le TVI strictement monotone.

2. a) En appliquant le logarithme à l’égalité : f (W (x)) = x,
on obtient : W (x) + ln

(
W (x)

)
= lnx.

Reste à montrer que : ln
(
W (x)

)
=

x→+∞
o
(
W (x)

)
(étudier le quotient) pour obtenir :

lnx =
x→+∞

W (x) + o(W (x)).

b) Etudier la limite du quotient
lnW (x)
lnln(x)

en écrivant

W (x) =
W (x)
ln(x)

ln(x) au numérateur.

5 On peut « deviner » l’équivalent en simplifiant l’hypothèse en

f (x)− f ( x2 )
√
x

= 1

Sous cette hypothèse simplificatrice, on peut exprimer f (x) à
l’aide des f ( x

2k
)− f ( x

2k+1 ) en écrivant

f (x)− f
( x

2n

)
=

n−1∑
k=0

f
( x

2k

)
− f

( x

2k+1

)
=
√
x
n−1∑
k=0

( 1
√

2

)k
Ainsi pour tout n ≥ 1 : f (x)− f

( x

2n

)
=
√
x ×

1− ( 1√
2

)n

1− 1√
2

Par passage à la limite, sachant que f (t) −→
t→0

0 on obtient

f (x) =
1

1− 1√
2

√
x

Dans le cas général : f (x) ∼
x→0

C
√
x où : C =

1

1− 1√
2

Pour établir ce résultat, on peut adapter le raisonnement

et revenir à la définition pour montrer que :
f (x)
√
x
−→
x→0

C.

Pour cela, constater que l’hypothèse peut s’écrire

f (x)− f
(x

2

)
=
√
x
(
1 + r(x)

)
où : r(x) −→

x→0
0

En procédant comme ci-dessus, on obtient pour tout n ≥ 1 :

f (x)− f
( x

2n

)
=
√
x ×

1− ( 1√
2

)n

1− 1√
2

+
√
x
n−1∑
k=0

r
( x

2k

)
× 1
√

2
k︸              ︷︷              ︸

Rn(x)

En fixant ε > 0, l’hypothèse r(x) −→
x→0

0 fournit un α tel que

−ε ≤ r(x) ≤ ε pour tout x ∈ [−α ,α] \ {0}.
En sommant ces inégalités puis en faisant tendre n vers +∞
on obtient :

C
√
x(1− ε) ≤ f (x) ≤ C

√
x(1 + ε)

6 Réponses à trouver

a)
√
x b) x2 c)

π

n2 d) 9 e) 1 f) ln5

g) lnx h)
√
n
n i)

x − a
1 + a2 j)

π − x
√
π

7 Réponses à trouver

a)
1
√
n

b)
lnn

n
c) e1−n d)

nk

k!
e)

1
n2

f)
e
√
n

2
√
n

g)
lnn

n
h) − lnn

i)
lnn

2n2 j) n3 ln
(
lnn

)
8 Réponses à trouver

a) −1 + x − x2

2
+

13
6
x3 + o(x3)

b)
1
4
x4 − 1

24
x6 + o(x6)

c) 1− 5
2
x2 +

65
24

x4 + o(x4)

d) −10
3
x3 + 6x5 + o(x5)

9 Réponses à trouver

a) 1− x+ x2 − 11
6
x3 + o(x3)

b) x − x2

2
+

1
6
x3 + o(x3)

c) x − x3

3
+ o(x3)

d) e − e

4
x2 + o(x2)

e) ln2 +
x

2
+
x2

8
+ 0 + o(x3)

f) 2 +
4
3
x − 1

9
x2 + o(x2)

g) 1 +
1
2
x+

1
8
x2 − 7

48
x3 + o(x3)

h)
1
6
x − 2

9
x2 +

1
3
x3 + o(x3)

10 Réponses à trouver

a)
π

2
− x − 1

6
x3 − 3

40
x5 + o(x5)

b)
π

4
+
x

2
− 1

12
x3 + o(x3)

c) ex+
e

4
x2 + 0 + o(x3)

11 Réponses à trouver

a)
√

2
2

+

√
2

2

(
x− π

4

)
−
√

2
4

(
x− π

4

)2
−
√

2
12

(
x− π

4

)3
+o

((
x− π

4

)3)
b)
√

2 +

√
2

4

(
x − 2

)2
−
√

2
32

(
x − 2

)3
+ o

((
x − 2

)3)
c) (x − 1)− 3

2
(x − 1)2 +

11
6

(x − 1)3 + o
((
x − 1

)3)
d) e − e

2

(
x − π

2

)2
+ o

((
x − π

2

)2)



12 1. Avec le DL de exp à l’ordre n + 1 on peut écrire :

1 + x+ · · ·+ xn+1 = ex +u(x) où u(x) = o(xn+1).
Ceci permet d’écrire f (x) = ln(ex +u(x)).
Factoriser par ex pour se ramener au DL de ln(1 + v).
Réponse : f (x) =

x→0
x+ o(xn)

2. Par théorème de primitivation, un DLn de f ′ suffit.

Or : f = ln(w) donc : f ′ =
w′

w
.

En remarquant que : w′(x) = w(x)− xn

n!

on trouve : f ′(x) =
x→0

1− xn

n!
+ o(xn)

d’où (primitivation) : f (x) =
x→0

0 + x − xn+1

(n+ 1)!
+ o(xn+1)

13 1. C’est (1 + x)α avec α = −1
2

.

2. Utiliser le théorème de primitivation.

14 1. • Première méthode : A l’aide de l’équivalent de ex − 1

en 0 on obtient f (x) =
x→0

xn + o(xn)

• Deuxième méthode : Avec la formule du binôme

f (x) =
n∑

k=0

(−1)n−k
(
n

k

)
ekx

En développant les ekx à l’ordre n puis en intervertis-
sant les sommes, on obtient

f (x) =
x→0

n∑
ℓ=0

(−1)n

ℓ!
Sn,ℓx

ℓ + o(xn)

Utiliser ensuite l’unicité de la liste des coefficients d’un
DL

2. Dans la méthode 2, on peut obtenir un DL à l’ordre n+ 1
en développant les ekx à l’ordre n+ 1.

Le coefficient de xn+1 est alors
(−1)n

(n+ 1)!
Sn,n+1.

On peut affiner la méthode 1 en écrivant

ex − 1 =
x→0

x+
x2

2
+ o(x2) = x

(
1 +

x

2
+ o(x)︸   ︷︷   ︸
=u(x)

)
= x

(
1 +u(x)

)

puis en élevant à la puissance n et en développant (1+u)n

à l’ordre 1.
Identifier enfin les coefficients de xn+1.

15 • f possède en 0 le développement limité à l’ordre 2 :

f (x) =
x→0

x+ o(x2)

car x3 sin
1
x2 =

x→0
o(x2) (revenir à la limite du quotient)

• La fonction f n’est pas deux fois dérivable en 0
La fonction f est dérivable sur R. En effet :

• Elle l’est sur R∗ (par composition puis produit ...)

• On constate que
f (x)− f (0)

x
−→
x→0

0.

La fonction f est donc dérivable sur R tout entier et pour
tout x ∈R :

• Si x = 0 : f ′(0) = 0

• Si x , 0 : f ′(x) = 1 + 3x2 sin
1
x2︸      ︷︷      ︸

−→
x→0

0

− 2cos
1
x2︸   ︷︷   ︸

pas de limite en 0

.

En particulier f ′ n’est pas continue en 0 donc n’est pas
non plus dérivable en ce point.

16 La formule de Taylor-Young donne

f (x) =
x→0

f (0) + f ′(0)x+
f ′′(0)

2
x2 + · · ·+

f (n)(0)
n!

xn + o(xn)

L’équivalence demandée découle de l’unicité de la liste des
coefficients du DLn de f .

17 En revenant à l’exponentielle, remarquer qu’il suffit de dé-

terminer un équivalent de lnf
( a
√
x

)
.

Pour cela essayer d’écrire f
( a
√
x

)
sous la forme 1 +u(x) avec

u(x) −→
x→+∞

0 afin d’utiliser l’équivalent de ln(1 +u) en 0.

La formule de Taylor-Young en 0 et les hypothèses faîtes sur

f conduisent à : f (u) =
u→0

1− u2

2
+ o(u2).

Il suffit ensuite de substituer u par
a
√
x

.

On trouve : lnf
( a
√
x

)
∼

x→+∞
− a

2

2x
.

Réponse : f
( a
√
x

)x
−→

x→+∞
e−

a2
2

18 1. Appliquer le TVI strictement monotone.

2. Il y a une méthode classique (savoir-faire SF 8 ) qu’il
suffit de suivre à la lettre . Réponse :

f −1(y) =
y→1

0 + (y − 1) +
1
2

(y − 1)2 +
1
3

(y − 1)3 + o
(
(y − 1)3

)
19 1. Appliquer le TVI strictement monotone pour prouver

l’existence de f −1.
Ensuite l’existence du DL découle de la formule de
Taylor-Young.
L’imparité de f −1 fait que le DL ne comporte que des
puissances impaires.

2. Suivre le savoir-faire SF 8 .

Réponse : f −1(y) =
y→0

y −
y3

2
+

17
24

y5 + o
(
y5

)
20 Procéder par analyse-synthèse. Dans l’analyse, si f est so-

lution du problème :

• Montrer que f (0) = 0 ou 1

• Se ramener en 0 en remarquant que f (x) = f
( x
√

2
n

)2n
pour

tout n ∈N.

• Si f (0) = 0, montrer que f est nulle en exploitant sa conti-

nuité en 0 pour la majorer par
1
2

au voisinage de 0 (par

exemple).

• Si f (0) = 1, montrer que f ′(0) = 0 puis former un DL2
de f en 0 à l’aide de la formule de Taylor-Young pour

montrer que f
( x
√

2
n

)2n
−→

n→+∞
eax

2
où a = f ′′(0).

2



Réponse. Les solutions sont la fonction nulle et les fonctions
x 7→ eax

2
.

21

22 Réponses à trouver
a) −∞ en 0+ et +∞ en 0− donc pas de limite en 0

b)
1
3

c) −∞ en 0+ et +∞ en 0− donc pas de limite en 0
d) 1.

e) e
1
2

f) 1.

23 Réponses à trouver
a) −1

b) − e
2

c) e−
1
6

d)
8
9

e) −1
4

24 Réponses à trouver

a)
3

2n
3
2

.

Commencer par montrer que

√
n+ 1
n

=
1
√
n

+
1

2n
3
2

+o
( 1

n
3
2

)
et :

√
n

n+ 1
=

1
√
n
− 1

n
3
2

+ o
( 1

n
3
2

)
pour en déduire un équivalent de vn =

√
n+ 1
n

−
√
n

n+ 1
puis de Arctanvn.

b)
√
n lnn

4
.

Commencer par montrer que
lnn
√
n+ 1

=
lnn
√
n
− lnn

2n
√
n

+ o
( lnn

n
√
n

)
et :

ln(n+ 1)
√
n

=
lnn
√
n

+ o
( lnn

n
√
n

)
pour en déduire un

équivalent de vn =
ln(n+ 1)
√
n

− lnn
√
n+ 1

puis de sinvn.

25 Commencer par montrer que :⌊
n

n+1
n

⌋
∼ n et vn =

(n3 + 6n2)
1
6 −
√
n

nα
∼ 1

nα+ 1
2

puis en déduire un équivalent de : un =
⌊
n

n+1
n

⌋
thvn

(distinguer les cas : α < −1
2 α = −1

2 et α > −1
2 )

Réponse.

• Si α < −1
2

: un ∼ n

• Si α = −1
2

: un ∼ n th1

• Si α > −1
2

: un ∼
1

nα−
1
2

26 1. En réduisant au même dénominateur

f (x) =
ln(1 + x)(ex − 1) + ax(ex − 1) + bx ln(1 + x)

x ln(1 + x)(ex − 1)
=
N (x)
D(x)

Vu que D(x) ∼
x→0

x3 : f (x) −→
x→0

ssi N (x) = o(x3).

Il suffit de faire un DL3 de N (x) et de chercher pour
quelles valeurs de a et b les coefficients sont nuls.
On trouve :

N (x) = (1 + a+ b)x2 +
a− b

2
x3 + o(x3)

Ainsi

f (x) −→
x→0

0⇔

1 + a+ b = 0

a− b = 0
⇔ a = b = −1

2

2. Chercher C tel que f (x) ∼
x→0

Cx2. L’équivalent de D(x)

exige un DL5 de N (x) pour a = b = −1
2 , (le terme en x4

doit lui aussi s’annuler), on trouve

N (x) = − 1
48

x5 + o(x5)

Donc C = − 1
48

.

27 Il s’agit d’utiliser le DL pour étudier la fonction, méthode

classique (voir savoir faire SF 12 )
1. Il convient de développer le numérateur à l’ordre 4, on

obtient

f (x) = −1
2

+
x

3
− 1

4
x2 + o(x2)

2. Exploiter le DL :

• f (x) ∼
x→0
−1

2 −→x→0
−1

2

•
f (x) + 1

2
x

=
1
3
− 1

4
x+ o(x1) ∼

x→0

1
3
−→
x→0

1
3

• f (x)−
(
−1

2 +
x

3

)
= −1

4
x2 + o(x2) ∼

x→0
−1

4
x2 ≤ 0

Au voisinage de 0, la courbe est en dessous de sa tan-
gente en 0.

28 Il s’agit d’utiliser un DL d’ordre au moins 2 pour étudier la

fonction, méthode classique (voir savoir faire SF 12 )

1. On trouve : f (x) = 1− x+
2
3
x2 + o(x2),

on conclut en suivant le savoir-faire SF 12 .

2. On trouve : f (x) = 1 +
x

2
+

1
8
x2 + o(x2),

on conclut en suivant le savoir-faire SF 12 .

3. On trouve : f (x) = −x
6

+
7

360
x3 + o(x3),

on conclut en suivant le savoir-faire SF 12 .

29 Poser x = 1 + h puis revenir à l’exponentielle

f (1 + h) = e
2+h
1+h ln(1+h)

Faire un DL3 de u(h) = 2+h
1+h ln(1 + h) puis composer avec un

DL3 de exp.
On trouve :

f (x) = 1 + 2(x − 1)︸       ︷︷       ︸
eqn. de la tgte

−1
2

(x − 1)3︸      ︷︷      ︸
pt. d’inflexion

+o
(
(x − 1)3

)

3



30 1. On trouve :

f (x) = ax −
(
a+

a2

2

)
x2 +

(a3

3
+
a2

2
+ a

)
x3 + o(x3)

2. Il y a un point d’inflexion ssi le coefficient de x2 est nul
i.e. a = −2 (car le coef de x3 n’est pas nul pour cette
valeur).

31 Suivre le savoir faire SF 11 : il s’agit surtout de calculer les
limites de f et f ′ en 0.
Pour calculer ces limites, il n’est pas utile de chercher un
DL de f , il s’agit seulement de trouver un équivalent du
numérateur et du dénominateur pour f et f ′ puis de faire
le quotient des équivalents (éventuellement utiliser les DL
pour trouver un équivalent du numérateur).
1. On trouve

f (x) ∼
x→0

x

x
= 1 −→

x→0
1 et f ′(x) ∼

x→0

− x2

2

x2 = −1
2
−→
x→0
−1

2
2. On trouve

f (x) ∼
x→0

− x3

6

x2 = −x
6
−→
x→0

0 et f ′(x) ∼
x→0

− x4

6

x4 = −1
6
−→
x→0
−1

6

32 On fait un DL en 0+ de g(h) = hf
(1
h

)
puis on revient à x via

x =
1
h

.

a) f (x) = x+
1
2︸︷︷︸

eqn. asymp.

+
3
8
× 1
x︸︷︷︸

au-dessus

+o
(1
x

)

b) f (x) = 2x︸︷︷︸
eqn. asymp.

+ −4
3
× 1
x︸  ︷︷  ︸

en dessous

+o
(1
x

)

c) f (x) =
π

2
x − π

2
− 1︸       ︷︷       ︸

eqn. asymp.

+
(π

2
+ 1

)
× 1
x︸        ︷︷        ︸

au-dessus

+o
(1
x

)

33 Il s’agit de déterminer le signe de

f (x)− f (0) = f (x)− 1.

Il suffit donc de chercher un équivalent de f (x)− 1.
(autre façon de voir les choses, f a un extremum local ssi
elle possède un tangente horizontale en 0 et ne traverse pas
sa tangente ce que l’on peut voir sur un DL en 0).

En faisant des DL3 on trouve f (x) = 1− 2
3
x3 + o(x3).

Donc : f (x)− 1 ∼
x→0
−2

3
x3.

En particulier f (x)−1 change de signe en 0 donc il n’y a pas
d’extremum local en 0

34 Suivre le savoir faire SF 11 : il s’agit surtout de calculer les
limites de g et g ′ en 0.
La limite de g ne pose pas problème : g(x) −→

x→a
f ′(a).

Pour calculer la limite de

g ′(x) =
(x − a)f ′(x)− f (x)

(x − a)2 =
N (x)

(x − a)2

il s’agit de trouver un équivalent du numérateur N (x) =
(x − a)f ′(x)− f (x).
Pour cela utiliser le formule de Taylor-Young pour obtenir :
• Un DL à l’ordre 2 pour f

• Un DL à l’ordre 1 pour f ′

On obtient : N (x) =
1
2
f ′′(a)(x − a)2 + o

(
(x − a)2

)
et : g ′(x) −→

x→a

1
2
f ′′(a).

35 1. a) Calculer u1 puis procéder par récurrence sur n ∈N∗.

b) Utiliser : un − 1 =
un−1

n
. (la question a) assure que

(un−1) est bornée).

2. un−1 ∼ 1 donc un − 1 ∼ 1
n

.

La conclusion est une simple reformulation de l’équi-
valent en terme de négligeabilité (un ∼ vn si et seulement
si un = vn + o(vn))

3. Procéder « pas à pas » :

• Déterminer d’abord b en développant un à la précision
1
n2

En utilisant un−1 = 1 +
1

n− 1
+ o

(1
n

)
:

un = 1 +
1
n

+
1

n(n− 1)
+ o

( 1
n2

)
Puis noter que

1
n(n− 1)

=
1
n2 + o

( 1
n2

)
.

• Déterminer ensuite c en développant un à la précision
1
n3

En utilisant un−1 = 1 +
1

n− 1
+

1
(n− 1)2 o

( 1
n2

)
un = 1 +

1
n

+
1

n(n− 1)
+

1
n(n− 1)2 + o

( 1
n3

)
Montrer alors que :

•
1

n(n− 1)
=

1
n2 +

1
n3 + o

( 1
n3

)
•

1
n(n− 1)2 =

1
n3 + o

( 1
n3

)
Réponse : un = 1 +

1
n

+
1
n2 +

2
n3 + o

( 1
n3

)
36 1. A n fixé, appliquer le TVI strictement monotone à fn sur

R
∗
+.

2. La suite (un) est décroissante.
Pour cela calculer fn+1(un), on trouve fn+1(un) = un.
Donc fn+1(un) > 0 = fn+1(un+1).
La suite u converge donc vers ℓ ≥ 0.
Montrer que ℓ = 0 en prenant la limite dans l’égalité
u5
n +nun − 1 = 0.

3. a) un =
1
n
− u5

n

n
=

1
n

+ o
(1
n

)
.

b) Montrer que un −
1
n
∼ − 1

n6 , utiliser un −
1
n

= −u
5
n

n
et

l’équivalent de u5
n .

37 1. A n fixé, appliquer le TVI strictement monotone à

fn : x 7→ xn −nx+ 1 sur [0 ,1].
2. La suite (xn) est décroissante. Pour cela calculer fn+1(xn)

et montrer : fn+1(xn) ≤ 0 = fn+1(xn+1).
Conclure à l’aide de la stricte décroissance de fn+1.
La suite (xn) converge donc vers ℓ ≥ 0.
Montrer que ℓ = 0 en prenant la limite dans l’égalité
xnn −nxn + 1 = 0.

4



3. a) Vu que xnn −→n→+∞
0 : xn =

1
n
− xnn

n
=

1
n

+ o
(1
n

)
.

b) Calculer nxnn en revenant à l’exponentielle.

c) Il suffit de montrer que xnn ∼
1
nn

(il est bien sûr inter-

dit d’élever à la puissance n l’équivalent xn ∼ 1
n ). Pour

cela revenir à l’exponentielle : xnn = exp(n lnxn) puis
montrer que n lnxn = −n lnn+o(1) en commençant par

utiliser xn =
1
n

(
1 + xnn

)
puis le résultat de la question

b).

38 1. A n fixé, former le tableau de variation de fn (dériver

deux fois).
L’égalité demandée est donnée par la relation f ′n(xn) = 0.

2. La suite (xn) est croissante.
Pour cela calculer f ′n+1(xn), on trouve f ′n+1(xn) = −1.
Donc fn+1(xn) < 0 = fn+1(xn+1).

La suite (xn) tend vers l’infini ou possède une limite finie
ℓ.
Procéder par l’absurde en prenant la limite dans l’égalité
exn + 2xn = n.

3. a) n = exn + 2xn et 2xn = o(exn).
b) exn = n− 2xn donc :

xn = ln(n− 2xn) = lnn+ ln
(
1− 2

xn
n

)
= lnn+ εn

Il suffit de montrer que εn = o(lnn). En fait on peut
montrer que εn→ 0 à l’aide de l’équivalent de ln(1+u)

c) Il s’agit de montrer que xn − lnn ∼ −2 lnn
n .

Or : xn − lnn = ln
(
1− 2 xn

n

)
Utiliser alors l’équivalent de ln(1 +u) et celui de xn.

4. a) mn = fn(xn) = exn + x2
n −nxn.

Il suffit de comparer chacun des trois termes i.e. de
trouver « le plus gros » des trois entre exn , x2

n et −nxn.
Les équivalents trouvés permettent de voir que exn et
x2
n sont des o(n lnn) et que −nxn ∼ −n lnn.

b) Il s’agit de montrer que mn +n lnn = n+ o(n).
Pour cela : mn+n lnn = fn(xn) = exn +x2

n−n(lnn−xn).
Il suffit de comparer chacun des trois termes i.e.
de trouver « le plus gros » des trois entre exn , x2

n et
−n(lnn− xn). Les équivalents trouvés permettent de
voir que x2

n et −n(lnn−xn) sont des o(n) et que exn ∼ n.
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