Analyse asymptotique

1 | Etudier la limite du quotient Jé dans chaque cas.
Réponses a trouver :

a)f(x) = o(g() b)f(x) = ofglx)) e)gt) =

X—+00

1 a
o | Etudier la limite de fx(:f) et de (;(i)) en revenant a l’expo-
nentielle.
3 | Réponses a trouver
a) Faux b) Faux c) Vrai

4 | 1. Appliquer le TVI strictement monotone.

2. a) Enappliquant le logarithme a ’égalité :
on obtient: W(x)+ ln(W(x)) =Inx.
Reste a montrer que : ln(W(x)) =

X—+o00
(étudier le quotient) pour obtenir :

W (x)+ o(W(x)).

f(W(x)) = x,
o(W(x))
Y

InW
b) Etudier la limite du quotient nWix en écrivant

Inln(x)
W (x)

) In(x) au numérateur.

W(x) =

5 | On peut « deviner » I'’équivalent en simplifiant I'hypotheése en
f)-f(3)
Vx

Sous cette hypothése simplificatrice, on peut exprimer f(x) a
Paide des f(zx—k) — f(5&7) en écrivant

=1

2k+1
Xy & x X LRI
70 =1(35) = LA 50) =) = VL[5
.o X 1_(‘%)”
Ainsi pour tout n>1: f(x)—f(ﬁ):\/)_cx—1
'V

1
flx) = — V&
V2
1
Dans le cas général:  f(x) ~ Cy/x ou: C= T
x—0 1- \/_E
Pour établir ce résultat, on peut adapter le raisonnement
fx)

et revenir a la définition pour montrer que : —
\/} x—0
Pour cela, constater que I’hypothese peut s’écrire

F(x) —f(g) = VA(1+r() o r¥) —

En procédant comme ci-dessus, on obtient pour tout n >1:

x L-(g)" &y 1
- e :\/_)(—\/E \/_ 7" — | X ——
fx)=f(57) =V -5 ' x;(zk) Vv2'

Ry(x)
En fixant € > 0, I'hypotheése r(x) N~ 0 fournit un a tel que
x—
—& <r(x) < ¢ pour tout x € [-a,a]\ {0}
En sommant ces inégalités puis en faisant tendre n vers +oco
on obtient :

CVx(1-¢) < f(x) < CVx(1 +¢)

o(f(x))

Indications

6 | Réponses a trouver

b) x?
h) va" i) —

a) Vx
g) Inx

e)1 f)1In5

7 | Réponses a trouver

1 Inn
A s P i

eV
g)
24/n n

i) IZHTZ j) n? ln(lnn)

Inn

f)

8 | Réponses a trouver
2
X 13
a) —1+x- 7+ ?X?) +O(X3)

1 1
b) —x*— —x0+0(x%
c) 1—§x2+—5x +o(x

d)

9 | Réponses d trouver

3

11
a) 1—x+x2—?x +0(x3)

2

X 1
b )3
) x 2+6x

+o(x?)
x3 5
c) x-3 +o0(x”)

d) e— %xz +o(x?)

2
e) 1n2+;+%+0+o(x3)

2

4 1
f) 2+ =-x-—= 2
) +3x 3% +0(x°)

1 1 7
14+ = 223 3
g) +2x+8x T +0(x?)
1 2 1
h) gx—§x2+§x3+o(x3)

10| Réponses a trouver

c) ex+ Exz +0+0(x?)

11| Réponses a trouver

) L o 5)- -3 - - B el (5 ))

2 4] g 4 4 4
b) \/§+g(x—2)2—§(x—2)3+0 x—2)3)

c) (x—l)—é(x—1)2+—(x—1)3+0((x—1)3)

N
(o)}



12

13

14

15

1. Avec le DL de exp a l'ordre n + 1 on peut écrire :

L+x+-+x™ =¥+ u(x) ot u(x) = o(x™1).

Ceci permet d’écrire f(x) =1In(e* + u(x)).

Factoriser par e* pour se ramener au DL de In(1 +v).
Réponse : f(x) = x+o(x")

x—0

2. Par théoreme de primitivation, un DL, de f” suffit.
7

Or: f=In(w) donc: f’:w; 16
n
En remarquant que : w’(x) = w(x)— %
1
ontrouve: f’(x) = 1- i o(x")
x—0 n!
X”+1
d’ou (primitivation) :  f(x) = 0+x-— (n+—1)' +o(x™) 17

1
1. Clest (1 +x)% avec a = ~5-

2. Utiliser le théoreme de primitivation.

1.  Premiére méthode : A l'aide de I’équivalent de e* -1
en 0 on obtient f(x) = x"+o0(x")
X—
e Deuxiéeme méthode : Avec la formule du bindOme
n
_ =k [T kx
=) (1)

En développant les e5¥ a l'ordre n puis en intervertis-
sant les sommes, on obtient

n
(-1)"
a ot o

N
x:>0 — +0(A ) 18

Utiliser ensuite 'unicité de la liste des coefficients d’un
DL

2. Dans la méthode 2, on peut obtenir un DL a l'ordre n+ 1
en développant les e*¥ a l'ordre n + 1.

(=1)"

: i 1+l
Le coefficient de x"*" est alors (e 1] Snn+l-

19

On peut affiner la méthode 1 en écrivant
2
- i 2) = d -
= x+?+o(x )—x(1+ 7 +o(x))—x(1+u(x))

x—0

et -1
~——
=u(x)
puis en élevant a la puissance n et en développant (1+u)"
alordre 1.
Identifier enfin les coefficients de x"*1.

e f posséde en 0 le développement limité a l'ordre 2 :

flx) = x+o(x?)

x—0

20

.1 . e .
3sin— = o(x?) (revenir a la limite du quotient)

car x 5
X< x—0

* La fonction f n’est pas deux fois dérivable en 0
La fonction f est dérivable sur R. En effet :

* Elle l'est sur R* (par composition puis produit ...)

x)—f(0
* On constate que M = 0.
( X—

La fonction f est donc dérivable sur R tout entier et pour
tout x eR:

«Six=0: f/(0)=0

1 1
* Six=0: f’(x):1+3xzsin—2— 2¢cos —
X

x2
—_ —_——
—0 pas de limite en 0

x—0
En particulier f’ nest pas continue en 0 donc n’est pas
non plus dérivable en ce point.

La formule de Taylor-Young donne

F) = 0+ 705+ L0y LU0

L’équivalence demandée découle de 'unicité de la liste des
coefficients du DL,, de f.

x"+o0(x")

En revenant a I’exponentielle, remarquer qu’il suffit de dé-

terminer un équivalent de In f(%)
x

s . a
Pour cela essayer d’écrire f(—) sous la forme 1 + u(x) avec
X

u(x) = 0 afin d’utiliser I’équivalent de In(1 + u) en 0.
X—+00

La formule de Taylor-Young en 0 et les hypothéses faites sur

Flu) = 1- ’“‘7 +o(u?).

f conduisent a :
u—0

Vr

I1 suffit ensuite de substituer u par
On t . Inf(—=) z
ntrouve: In Vi) e T2
; a \x iy
Réponse : f(—) — ¢ 2

Vx/ x—teo

1. Appliquer le TVI strictement monotone.

2. Il y a une méthode classique (savoir-faire
suffit de suivre a la lettre . Réponse :

f*l(y)yi1 O+(y—1)+%(y—1)2+%(y—1)3+0((y—1)3)

) qu’il

1. Appliquer le TVI strictement monotone pour prouver

l'existence de f~1.

Ensuite l'existence du DL découle de la formule de
Taylor-Young.

L'imparité de f~! fait que le DL ne comporte que des
puissances impaires.

2. Suivre le savoir-faire .
Ré .f*l()_ p3+17 5+ 5)

éponse : v 2o VSt o(;u

Procéder par analyse-syntheése. Dans l'analyse, si f est so-
lution du probleme :

* Montrer que f(0)=0ou 1

n

* Seramener en 0 en remarquant que f(x) = f( pour

x

%)
tout n € IN.

* Si f(0) =0, montrer que f est nulle en exploitant sa conti-
nuité en 0 pour la majorer par % au voisinage de 0 (par
exemple).

* Si f(0) = 1, montrer que f’(0) = 0 puis former un DL,
de f en 0 a l'aide de la formule de Taylor-Young pour

e ota= £(0).

\/En n—+o0o

montrer que f(



Réponse. Les solutions sont la fonction nulle et les fonctions [ 26| 1. En réduisant au méme dénominateur

2
X — e,

21

29| Réponses d trouver
a) —ooen 0% et +o0 en 0~ donc pas de limite en 0

1
b) 3
c) —coen 0% et +oo0 en 0~ donc pas de limite en 0
d) 1.
e) 03
f) 1.

23| Réponses a trouver

24| Réponses a trouver
3
a)——g
2n2

Commencer par montrer que =—+

Vn 2n2
\n 1

1 N 1)
= — = — 0_
n+l \n n% n%

Ly .. Vn+1
pour en déduire un équivalent de v, = 1

n n
puis de Arctanv,,.

Vnlnn

b) 1
Commencer par montrer que
Inn _Inn_ Inn +0(1nn)
Vn+1 n 2nmyn \nyn
In(n+1) Inn Inn P
et: ——— = + 0(—) pour en déduire un
nn

S yn

In(n+1) Inn

\M Vn+1
25 Commencer par montrer que :

3 2\+
1 n°+6n<)s —\n 1
{nn;van ot Vn:( a) Vn
n

NG

équivalent de v, =

puis de sinv,,.

puis en déduire un équivalent de: u, = [nTJth v,
1

g;i/istinguerlescas: a<-% a=-% et a>-1)
éponse.
. 1
‘SlO(<—§Z U, ~n
. 1
°Sla:—§: u, ~nthl
1 1
°Sia>—§: U~ —
n 2

Vn+1 1 1 (1 )
+ol —

3 3

n2

_In(T+x)(e*=1)+ax(e*—1)+bxIn(l +x) _
flx)= xIn(1+x)(e¥-1) B

Vu que D(x) o 3 f(x) s ssi N(x)=o(x3).

X— A
I1 suffit de faire un DL; de N(x) et de chercher pour
quelles valeurs de a et b les coefficients sont nuls.
On trouve :

N(x):(1+a+b)x2+a_bx3+0(x3)
Ainsi
f(x)—>0<:>{1+a+b:0 (:)a:b:—l
x—0 a-b=0 2

2. Chercher C tel que f(x) ~ Cx?. L’équivalent de D(x)
X

exige un DL5 de N(x) poura=1b = —%, (le terme en x*
doit lui aussi s’annuler), on trouve
1 - -
N(x)= —Ex:’ +o(x°)

1
D C=—-—.
onc 13

27! 1l s’agit d’utiliser le DL pour étudier la fonction, méthode

classique (voir savoir faire )
1. Il convient de développer le numérateur a 'ordre 4, on
obtient

2. Exploiter le DL :
t 0,

1
. —f(xl-’- 2 = %— i}(ﬁ-O(Xl)

. (-1 f__l2 2y o 2
Fx)=( 2+3)_ T o) ~ -t <0
Au voisinage de 0, la courbe est en dessous de sa tan-

gente en 0.

1
~ — —>
x—0 3 x—0

—_ W=

og!| 1l s’agit d’utiliser un DL d’ordre au moins 2 pour étudier la
fonction, méthode classique (voir savoir faire )
1. Ontrouve: f(x)=1-x+ %xz +o(x?),
on conclut en suivant le savoir-faire
2. Ontrouve: f(x)=1+ % + éxz +o(x?),
on conclut en suivant le sav7oir-faire
X
fx)= ~2 + %ﬁ +o(x?),

on conclut en suivant le savoir-faire

3. On trouve :

29| Poser x = 1+ h puis revenir a I'exponentielle

ﬂ1+mze%$mum

Faire un DL; de u(h) = %hn(l + h) puis composer avec un
DLj de exp.
On trouve :

fx)=1+2(x-1) —%(x— 1)3 +0((x— 1)3)

| —

eqn. de la tgte pt. d’inflexion



30/ 1. On trouve:

2 613 2

e a2 (4 4T 3 3

f(x)=ax (a+ 5 )x +( 3 + 7 +a)x +o0(x7)
2. Tl'y a un point d’inflexion ssi le coefficient de x? est nul
ie.a = -2 (car le coef de x* n’est pas nul pour cette

valeur).

31| Suivre le savoir faire

limites de f et f"en 0.
Pour calculer ces limites, il n’est pas utile de chercher un
DL de f, il s’agit seulement de trouver un équivalent du
numérateur et du dénominateur pour f et f’ puis de faire
le quotient des équivalents (éventuellement utiliser les DL
pour trouver un équivalent du numérateur).

1. On trouve

:il s’agit surtout de calculer les

X 1 1
~ Z=1—01 et flx) ~ —2=—2——=
f(X x—0 X x——>(>) ¢ f (}L) x—0 x?2 2 \?0 2
2. On trouve
X3 ,\'4 1
_6 , ~ 6
~ 5 -_Z 0 et ~ 0 —_-
f(X) x—0 X2 6 \_—>()J € f (X) x—0 X4 6 x—0
1
32| On fait un DL en 0% de g(h) = hf(E) puis on revient a x via
1
N a 3 1 1
a) f(x)= x+= + —x— +o(-—
) f)= x+5 + ox— o()
—— ——
eqn. asymp. au-dessus
4 1 1
b ()= 2x 4+ —-=x— +o|—
) flo= 2x +-gx (D)
eqn.asymp.
en dessous
T e T 1 1
C) f(X) = EX—E—1+(E+1)X;+O(;)
—_————— e ——
eqn. asymp. au-dessus

33| Il s’agit de déterminer le signe de

f(x)=£(0) = fx)-1.
I1 suffit donc de chercher un équivalent de f(x)—1.
(autre fagon de voir les choses, f a un extremum local ssi
elle posséde un tangente horizontale en 0 et ne traverse pas
sa tangente ce que l'on peut voir sur un DL en 0).

2
En faisant des DLj3 on trouve f(x)=1- §x3 +o(x3).

2
flx)=1 ~ —=x3,
x—0

3
En particulier f(x)—1 change de signe en 0 donc il n’y a pas

d’extremum local en 0

Donc :

Suivre le savoir faire

limites de g et ¢’ en 0.

La limite de ¢ ne pose pas probleme : g(x) — f’(a).
X—a

34 :il s’agit surtout de calculer les

Pour calculer la limite de
, x—a)f’(x)—f(x N(x
gy = GOS0 N
(x—a) (x-a)
il s’agit de trouver un équivalent du numérateur N(x) =
(x—a)f'(x) = f(x).

Pour cela utiliser le formule de Taylor-Young pour obtenir :
* Un DL a l'ordre 2 pour f

* Un DL a l'ordre 1 pour f’

On obtient: N(x)= %f”(a)(x—a)2 + o((x—a)z)
et: g = 5f(a)

35| 1.a) Calculer u; puis procéder par récurrence sur n € IN*.

Up—1

b) Utiliser :

(u,—1) est bornée).

u,—1= . (la question a) assure que

2. u,_y~1ldoncu,—1~—.

La conclusion est une Zimple reformulation de 1’équi-
valent en terme de négligeabilité (u, ~ v, si et seulement
siu, =v,+0(v,))

3. Procéder « pas a pas» :

» Déterminer d'abord b en développant u,, d la précision

n2
1 1
En utilisant 4,y =1+ ——+o0(—):
n utilisant u,_; p— O(n)
1 1 1
1 Uy =1+—+ ol =
- " n nn-1) (nz)
1 1 1
Pui t =—+ol—)
uis noter que A1) 2 o(nz)
» Déterminer ensuite c en développant u, a la précision P
1 1 1
Enutilisant u, 1 =1+ —+ ——ol—
' nl n-1 (n-1)2 (;12)
u, =1+ L + ! + ! +o( ! )
" on(n-1) n(n-1)? nd
Montrer alors que :
1 1 N 1 N (1 )
L) = — JR— ol —
nin-1) n?2 nd n3
1 1
e = — 40o|—
n(n-1)> n3 (n3)
s 1 1 1
Reponse.un:1+;+§+m+o(ﬁ)
36! 1. Anfixé, appliquer le TVI strictement monotone a f,, sur

R%.

2. La suite (u,) est décroissante.
Pour cela calculer f,,1(uy), on trouve f,,1(u,) = u,.
Done fpi1(un) > 0= fry1(Ungr)-
La suite u converge donc vers ¢ > 0.
Montrer que ¢ = 0 en prenant la limite dans 1'égalité
u) +nu,—1=0.

1w 1 1
3.a) uy,=——-L=—+0[—).
) tn n o n n (n)
1 1 1 u>
b) Montrer que u, — — ~ ——, utiliser u,, - — = ——2 et
) q "y 16 1 nT n

’équivalent de u;).

37! 1. A n fixé, appliquer le TVI strictement monotone a

fnix> x"—nx+1sur[0,1]
2. La suite (x,) est décroissante. Pour cela calculer f,,1(x,)

et montrer :  f,11(x,) 0= fr1(xp41)
Conclure a l'aide de la stricte décroissance de f,,.
La suite (x,) converge donc vers ¢ > 0.
Montrer que ¢ = 0 en prenant la limite dans 1’égalité
xp—nx,+1=0.



1 x 1 1
n . v — __n_ _ _
3.a) quuexnn_)—frooo. Xp= = n+0(n)

b) Calculer nx}} en revenant a I'exponentielle.

L. . L
c) Il suffit de montrer que xj; ~ —- (il est bien str inter-
n

dit d’élever a la puissance n I’équivalent x,, ~ %) Pour
cela revenir a 'exponentielle :  xJ} = exp(nlnx,) puis
montrer que nlnx, = —nlnn+o(1) en commengant par
. 1 . . .
utiliser x,, = Z(l + xﬁ) puis le résultat de la question

b).

38 1. A n fixé, former le tableau de variation de f, (dériver

deux fois).

L'égalité demandée est donnée par la relation f,(x,) = 0.

2. La suite (x,) est croissante.
Pour cela calculer f, ,(x,), on trouve f, (x,)=—1.

Donc fuy1(x,) <0 = frpr (Xps1)-

La suite (x,) tend vers I'infini ou posséde une limite finie
L.
Procéder par 'absurde en prenant la limite dans ’égalité
etn 4+ 2x, =n.

3.a) n=e'+2x, et 2x, =o(e}).
b) e*n =n-2x, donc:

Xy, :1n(n—2xn):lnn+ln(1—2%”):lnn+en

Il suffit de montrer que ¢, = o(lnn). En fait on peut
montrer que ¢, — 0 a l'aide de I’équivalent de In(1+u)
c) Il s’agit de montrer que x, —Inn ~ —21“7”.
Or: x,-Ilnn= ln(l —2’%’)
Utiliser alors I’équivalent de In(1 + u) et celui de x,,.
4.a) my, = fy(x,) = e +x2 —nx,,.
Il suffit de comparer chacun des trois termes i.c. de
trouver « le plus gros » des trois entre €%, x2 et —nx,,.
Les équivalents trouvés permettent de voir que e* et
x2 sont des o(nlnn) et que —nx, ~ —nlnn.
b) 1l s’agit de montrer que m, + nlnn =n+ o(n).
Pourcela: my+nlnn= f,(x,) = e +x2—n(lnn-x,).
Il suffit de comparer chacun des trois termes i.e.
de trouver «le plus gros » des trois entre e*, x2 et
—n(lnn-x,). Les équivalents trouvés permettent de
voir que x2 et —n(Inn—x,) sont des o(n) et que e* ~ n.



