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Fractions rationelles Indications

1 a) On cherche les racines complexes de A puis on regroupe

les facteurs conjugués :
• Racines complexes de A : Ce sont les racines sixièmes de
−27 à savoir :

√
3e±i

π
6 , ±
√

3i et
√

3e±i
5π
6

• Factorisation A = (X2 − 3X + 3)(X2 + 3)(X2 + 3X + 3).
b) On cherche les racines complexes de B puis on regroupe

les facteurs conjugués :

• Racines complexes de B : e±i
π
3 , et −e±i

π
3

• Factorisation B = (X2 −X + 1)(X2 +X + 1).
c) Utiliser l’identité remarquable a2 − b2 :

C = (X2 −X + 1)2 − i2 =
(
X2 −X + (1− i)

)
(X2 −X + 1 + i)

Il suffit alors de chercher les racines de chacun des deux
trinôme du second degré.
Factorisation. C = (X2 − 2X + 2)(X2 + 1)

2 a) On cherche les racines complexes de A puis on regroupe

les facteurs conjugués :
• Racines complexes de A : Ce sont les racines 2ne de

l’unité à savoir les eik
π
n pour k ∈ ⟦0 ,2n− 1⟧.

• Factorisation A = (X − 1)(X + 1)
n−1∏
k=1

(X2 − 2cos kπ
n X + 1)

b) On cherche les racines complexes de B puis on regroupe
les facteurs conjugués :
• Racines complexes de B : Ce sont les racines 2n+1e de −1

à savoir les eiθk avec θk = π
2n+1 + 2ikπ

n+1 pour k ∈ ⟦0 ,2n⟧.

• Factorisation B = (X + 1)
n−1∏
k=0

(X2 − 2cosθkX + 1)

c) On cherche les racines complexes de C puis on regroupe
les facteurs conjugués :
• Racines complexes de C : Ce sont les racines ne de e±iθ à

savoir les e±i
θ
n + 2ikπ

n pour k ∈ ⟦0 ,n− 1⟧.

• Factorisation C =
n−1∏
k=0

(X2 − 2cos θ+2kπ
n X + 1)

3 Constater que i est racine double.
P est à coefficients réels donc −i est aussi racine double.
Ainsi P est divisible par (X − i)2(X + i)2 = (X4 + 2X2 + 1).
En posant la division
P = (X4 + 2X2 + 1)(X2 +X + 1) = (X − i)2(X + i)2(X2 +X + 1)

4 Calculer P ′′ : ses racines sont ±2i.
On constate que 2i est aussi racine de P et P ′ .
La forme scindée de P est P = (X −2i)3(X − z) et on peut uti-
liser les relations entre coefficients et racines pour calculer
z (la somme des racines est nulle). On obtient z = −6i.

5 1. On cherche les racines complexes de P puis on regroupe

les facteurs conjugués :

• Racines complexes de P : e±2i π9 , e±8i π9 et e±4i π9

• Factorisation
P = (X2−2cos

2π
9

X+1)(X2−2cos
4π
9

X+1)(X2−2cos
8π
9

X+1)

2. Notant α = cos
2π
9

, β = cos
4π
9

et γ = cos
8π
9

Q = (X −α)(X − β)(X −γ)

= X3 − (α + β +γ)X2 + (αβ +αγ + βγ)X −αβγ

Il s’agit de calculer explicitement les valeurs de :
σ1 = α + β +γ , σ2 = αβ +αγ + βγ et σ3 = αβγ
Pour cela, développer le membre de droite dans l’égalité :
X6 +X3 + 1 = (X2−2αX + 1)(X2−2βX + 1)(X2−2γX + 1)
et exprimer les coefficients de X5, X4 et X3 en fonction
de σ1, σ2 et σ3.

6 1. P est de degré 6.

2. Utiliser 1 + j + j2 = 0. et j aussi.
3. On constate que j est racine double.

P est à coefficients réels donc j2 est aussi racine double.
On constate que 0 et −1 sont aussi racines.
On dispose des 6 racines de P , son coefficient dominant
vaut 7 :
P = 7X(X + 1)(X − j)2(X − j2)2 = 7X(X + 1)(X2 +X + 1)2

7 Par l’algorithme d’Euclide : A∧B = X − 2.

8 Par l’algorithme d’Euclide étendu on trouve :

A
X + 2

5
+B
−X2 − 2X + 1

5
= 1

9 • Si A∧B = 1, montrer que A+B est premier avec A et avec

B (pour l’une des trois méthodes usuelles).

• Si (A + B)∧AB = 1, on peut montrer que A∧ B = 1 par
exemple à l’aide du théorème de Bézout ou en montrant
que A∧B divise 1.

10 Ecrire C = QB puis utiliser le lemme de Gauss pour mon-
trer que A divise Q.

11 1. Par contraposition, si α ∈ C est racine de P d’ordre au

moins deux alors X −α divise P et P ′ .
2. Par contraposition : si P ∧ P ′ , 1, alors ils possèdent un

diviseur commun R ∈C[X] de degré au moins 1.
Une racine complexe de R (il en existe d’après
d’Alembert-Gauss) est une racine de P d’ordre au moins
2.

12 Supposer que P divise AB et ne divise pas A et montrer que
P divise alors B en appliquant le lemme de Gauss.

13 • i) =⇒ ii) Factoriser A et B par D = A∧B puis former une

combinaison linéaire nulle à partir de ces factorisations.

• ii) =⇒ i) Procéder par l’absurde et utiliser le lemme de
Gauss pour montrer que A | V .

14 Factoriser A et B par A∧B puis diviser la relation de Bézout
par A∧B.

15 1. Comme pour l’arithmétique dans Z, il y a trois possibi-

lités :

• Option 1. Ecrire une relation de Bézout entre P et Q
pour en déduire une relation de Bézout entre P + iQ
et P − iQ.

• Option 2 A l’aide de la propriété de conservation :
« A ∧ B = B ∧ A − BQ » on parvient à transformer
P − iQ∧ P + iQ en P ∧Q.

• Option 3 On pose D = P + iQ∧P − iQ et on montre que
D | P et D |Q par combinaisons linéaires.



2. Par hypothèse, (X − a)2 divise P 2 +Q2 = (P + iQ)(P − iQ).
Utiliser alors le lemme de Gauss puis utiliser le lien
entre multiplicité et racine des polynômes dérivés.

16 1. Factoriser P dans C[X] : P = λ
k∏

i=1

(X−zi)mi et observer

que P ∧ P ′ =
k∏

i=1

(X − zi)mi−1

2. Les deux ensembles sur lesquels P et Q coïncident sont
disjoints, montrer que la somme de leurs nombres d’élé-
ments est strictement supérieure à degP (et à degQ).

17 Réponses

a) F1 = 1− 8
X − 1

+
13

X − 2

b) F2 =
−1

X + 1
+

X + 3
X2 + 2X + 3

c) F3 = 4X − 4 +
7

X + 1
− 2

(X + 1)2 +
1

X − 1

d) F4 =
2
X
− 1
X2 +

−3
2

X + 1
− 1

(X + 1)2 +
−1

2X + 1
2

X2 + 1
.

e) F5 =
3

X2 + 4
+

7X − 11
(X2 + 4)2 .

18 Réponse : F =
n∑

k=0

(−1)k
(n
k

)
X + k

.

19 1 est pôle double, les autres pôles sont les ωk = e
2ikπ
n pour

k ∈ ⟦0 ,n− 1⟧.
La DES est de la forme :

F =
α1

X − 1
+

α2

(X − 1)2 +
n−1∑
k=1

βk
X −ωk

• La formule du cours « α = P ′(a)
Q(a) » pour les pôles simples

donne βk =
ωk

n(ωk − 1)
.

• Le cache en (X − 1)2 donne α2 =
1
n

.

• Pour α1, en multipliant la DES par (X − 1) puis en retran-

chant
1
n

X − 1
on constate que

α1 = lim
x→1

( 1
xn − 1

−
1
n

x − 1

)
Or pour x , 1 :

1
xn − 1

−
1
n

x − 1
=

1
x − 1

 1
n−1∑
k=0

xk
− 1
n

 =
f (x)− f (1)

x − 1

où f : x 7→ 1
n−1∑
k=0

xk
.

Ainsi α1 = f ′(1) =
1−n
2n

.

20 F est la D.E.S. de
P

Q
où :

• Q =
n−1∏
k=0

X −ωk = Xn − 1

• degP ≤ n− 1

Pour trouver P utiliser le fait que
P (ωk)
Q′(ωk)

=
ω2
k

n
pour tout

k ∈ ⟦0 ,n− 1⟧.
On trouve que P (ωk) = ωk pour tout k ∈ ⟦0 ,n − 1⟧, ce qui
assure que P = X (raisonner sur le nombre de racines de
P −X).

Réponse F =
X

Xn − 1
.

21 1. La fraction F =
1

XP (X)
. La DES de F =

1
XP (X)

est de la

forme :
1

XP (X)
=
α0

X
+

n∑
i=1

αi

X − ai
.

• Calculer α0 par la méthode du cache.
• Calculer les αi pour i ∈ ⟦1 ,n⟧ en utilisant la for-

mule du cours pour les pôles simples : αi =
1

Q′(ai)
où Q(X) = XP (X).

2. Le résultat découle de ce que xF(x) −→
x→+∞

0.

22 Considérer la fraction F =
Xk

P
.

Sa DES est donnée par :
Xk

P
=

n∑
i=1

αi

X − zi
où αi =

zki
P ′(zi)

.

Le résultat découle de ce que xF(x) −→
x→+∞

0.

23 1. La résolution de l’équation cos(nθ) = 0 d’inconnue

θ ∈R permet de trouver n racines distinctes de la forme
cos(θ0), . . . ,cos(θn−1) pour Tn. Ce sont les seules puisque
degTn = n.

2. La DES est donnée par :

1
Tn

=
n−1∑
k=0

αk

X − cosθk

où αk =
1

T ′n(cosθk)
.

Pour calculer T ′n(cosθk), dériver la relation vérifiée par
Tn.

Solution :
1
Tn

=
1
n

n−1∑
k=0

(−1)k sin (2k+1)π
2n

X − cos (2k+1)π
2n

.

24

25 a) Utiliser la DES
2

X2 − 1
=

1
X − 1

+
1

X + 1

On trouve : Sn =
3
2
− 1
n
− 1
n+ 1

b) Utiliser la DES
2

X(X + 1)(X + 2)
=

1
X
− 2
X + 1

+
1

X + 2
:

On trouve : Tn =
1
2
− 1
n+ 1

+
1

n+ 2

26

a) Utiliser la DES
1

(X − a)(X − b)
=

1
a− b

( 1
X − a

− 1
X − b

)
On trouve : f (n) = x 7→ (−1)nn!

a− b

( 1
(x − a)n+1 −

1
(x − b)n+1

)
b) Arctan′ = f où f : x 7→ 1

(x − i)(x+ i)
.

Il suffit d’appliquer le résultat de la première question
avec a = i, b = −i au rang n− 1

2



Arctan(n) : x 7→ (−1)n−1(n− 1)!
2i

( 1
(x − i)n

− 1
(x+ i)n

)
c) On cherche les racines complexes de P :

Ce sont les solutions de l’équation (z+ i)n = (z − i)n, exer-
cice classique sur les nombres complexes.

Les racines sont les zk =
cos kπ

n

sin kπ
n

pour k ∈ ⟦1 ,n− 1⟧.

les racines sont toutes réelles donc P est scindé sur R :

P = λ
n∏

k=1

(X − zk)

où λ est le coefficient dominant de P , à savoir le coeffi-
cient de Xn−1.
En développant (X + i)n et (X − i)n on trouve λ = 2ni.

d) Il suffit de réduire au même dénominateur dans l’expres-
sion trouvée au b) :

Arctan(n)(x) =
(−1)n−1(n− 1)!

2i
P (x)

(x2 + 1)n
il reste alors à injecter la factorisation de P .

27 Réponses

a)• D.E.S :
10

(X2 + 9)(X + 1)
=

1
X + 1

+
−X + 1
X2 + 9

.

• Intégrale. I(x) = ln(1 +x)− 1
2

ln(x2 + 9) + ln3 +
1
3

Arctan
x

3

• Limite. I(x) −→
x→+∞

π

6
− ln3.

b)• Intégrale. En posant u = t2 dans l’intégrale :

I(x) = ln
(x2 − 1
x2 + 1

)
− ln

3
5

• Limite. I(x) −→
x→+∞

− ln
3
5

.

c)• D.E.S :
2X + 1

(X2 + 1)(X2 +X + 1)
=
−X + 2
X2 + 1

+
X − 1

X2 +X + 1
.

• Intégrale.

I(x) = −1
2

ln(1 + x2) + 2Arctanx+
1
2

ln(1 + x+ x2)

−
√

3Arctan
(2x+ 1
√

3

)
+
√

3
π

6

• Limite. I(x) −→
x→+∞

π − π
√

3
.

d)• D.E.S :
25

(X + 1)2(X2 − 2X + 2)
=

4
X + 1

+
5

(X + 1)2 +
−4X + 7

X2 − 2X + 2
• Intégrale.

I(x) = 4ln(1 + x)− 5
1 + x

− 2ln(x2 − 2x+ 2) + 2ln2

+ 3Arctan(x − 1) +
3π
4

• Limite. I(x) −→
x→+∞

2ln2 +
9π
4

.

28 Réponses

a)• D.E.S :
X4

X2 + 2X + 5
= X2 − 2X − 1 +

12X + 5
X2 + 2X + 5

.

• Primitive. x 7→ x3

3
−x2−x+6ln(x2+2x+5)−7

2
Arctan

x+ 1
2

b)• D.E.S :
6

X4 +X2 − 2
=

1
X − 1

− 1
X + 1

− 2
X2 + 2

.

• Primitive. x 7→ ln
∣∣∣∣∣x − 1
x+ 1

∣∣∣∣∣−√2Arctan
x
√

2

c)• D.E.S :
3X

X3 + 1
= − 1

X + 1
+

X + 1
X2 −X + 1

.

• Primitive.
x 7→ − ln |1 + x|+

1
2

ln(x2 − x+ 1) +
√

3Arctan
2x − 1
√

3
d)• D.E.S

X3

(X2 − 1)2 =
1
2

1
X − 1

+
1
4

1
(X − 1)2 +

1
2

1
X + 1

− 1
4

1
(X + 1)2

• Primitive.
x 7→ 1

2
ln

∣∣∣x2 − 1
∣∣∣− 1

4
1

x − 1
+

1
4

1
x+ 1

e) –

29 Réponses

a)• Changement de variable : I =
∫ cosx

0

dt
t2 − 1

• D.E.S :
1

X2 − 1
=

1
2

1
X − 1

− 1
2

1
X + 1

.

• Intégrale. I =
1
2

ln
(1− cosx

1 + cosx

)
b)

c)• Changement de variable : I =
∫ 1

2

0

4dt
(1− t2)2

• D.E.S :
4

(1−X2)2 = − 1
X − 1

+
1

(X − 1)2 +
1

X + 1
+

1
(X + 1)2 .

• Intégrale. I = ln3 +
4
3

30 1. Ecrire P 2(t) =
n∑

k=0

akt
kP (t) dans l’intégrale.

2. Remarquer que F(i) =
∫ 1

0
tiP (t)dt pour tout i ∈ ⟦1 ,n⟧.

3. Vu les pôles, le degré et les zéros trouvés pour F, sa mise
au même dénominateur est de la forme

F =
λ(X − 1) . . . (X −n)

(X + 1) . . . (X +n+ 1)
Par la méthode du cache : a0 = (−1)nλ(n+ 1).

Reste à exprimer λ en fonction de
∫ 1

0
P (t)dt.

Pour cela, remarquer que
∫ 1

0
P (t)dt = F(0).

31 Considérer P =
n−1∑
k=0

Xk et calculer
P ′(1)
P (1)

.

Réponse :
n− 1

2
.

32 Si a1, . . . , ak sont les racines (toutes réelles) de P de multi-

plicités m1, . . . mk le cours donne :
P ′

P
=

k∑
i=1

mi

X − ai

En dérivant :
P ′′P − (P ′)2

P 2 = −
k∑

i=1

mi

(X − ai)2 .

Il suffit d’évaluer l’expression en x ∈ R (en traitant à part
le cas où x est une racine de P , cas pour lequel le résultat
demandé est immédiat)

33 Procéder par l’absurde. En évaluant
P ′

P
en 0 il est possible

de montrer que
a1

a0
≤ −n.

3


