
16
Fractions rationelles Exercices

■ Factorisations

1 SF 7 Factoriser dans R[X] les polynômes :
a) A = X6+27. b) B = X4+X2+1 c) C = (X2−X+1)2+1

2 SF 7 Pour n ∈N∗, factoriser dans R[X] :

a) A = X2n − 1 b) B = X2n+1 + 1

c) C = X2n − 2cos(θ)Xn + 1 où θ ∈ ]0 ,π[

3 SF 7 Factoriser X6 +X5 +3X4 +2X3 +3X2 +X+1 dans R[X]
Indication : Commencer par vérifier que i est racine.

4 SF 7 Montrer que P = X4 + 24X2 − 64iX − 48 possède une
racine triple et le factoriser dans C[X].

5 SF 6 SF 7 1. Factoriser P = X6 +X3 + 1 dans R[X].

2. En déduire, explicitement, le polynôme Q unitaire ad-

mettant pour racines cos
2π
9

, cos
4π
9

et cos
8π
9

.

6 SF 7 1. Quel est le degré de P = (X + 1)7 −X7 − 1?
2. a) Vérifier que j est racine de P .

b) Déterminer la factorisation de P dans R[X]

■ Arithmétique des polynômes

7 SF 9 Calculer A∧B où A = X5 + 3X4−4X3−12X2−7X + 14
et B = X4 + 4X3 −X2 − 13X − 18.

8 SF 10 Trouver une relation de Bézout entre les polynômes

A = X3 + 2 et B = X2 + 1

9 Soit A,B ∈ K[X]. Montrer que A et B sont premiers entre
eux si, et seulement si, A+B et AB le sont.

10 Soit A,B,C ∈K[X]. A l’aide du théorème de Gauss, montrer
que si A | C et B | C et si A∧B = 1, alors AB | C.

11 1. Soit P ∈K[X]. Montrer que si P et P ′ sont premiers
entre eux, alors P n’a que des racines simples dansK.

2. Montrer que la réciproque est vraie siK =C.

12 Soit P ∈K[X] irréductible et soient A,B ∈K[X].
Montrer que si P | AB alors P | A ou P | B.

13 Soient A,B ∈K[X], non nuls. Montrer qu’il y a équivalence
entre :

i) A et B ne sont pas premiers entre eux.

ii) Il existe U,V ∈K[X], non nuls tels que

AU +BV = 0, degU < degB et degV < degA

14 Soient A,B ∈K[X], non nuls.
Soient U,V ∈K[X] tels que : AU +BV = A∧B.
Montrer que U et V sont premiers entre eux.

15 SF 4 Soit a ∈C et soient P ,Q ∈C[X], premiers entre eux.
On suppose que a est racine double de P 2 +Q2.
1. Montrer que P + iQ et P − iQ sont premiers entre eux.
2. En déduire que a est racine de (P ′)2 + (Q′)2.

16 SF 9 Soient P ,Q ∈C[X], non constants.
1. Montrer que P possède exactement deg(P )−deg(P ∧ P ′)

racines distinctes dans C.
2. On suppose que :

• {z ∈C | P (z) = 0} = {z ∈C | Q(z) = 0}
• {z ∈C | P (z) = 1} = {z ∈C | Q(z) = 1}
Montrer que P = Q

■ Décompositions en éléments simples

17 SF 11 SF 12 Décomposer en éléments simples dans R(X) :

a) F1 =
X2 + 2X + 5
X2 − 3X + 2

b) F2 =
2X

(X + 1)(X2 + 2X + 3)

c) F3 =
4X4

(X + 1)(X2 − 1)
d) F4 =

X3 − 1
X2(X2 + 1)(X + 1)2

e) F5 =
3X2 + 7X + 1

(X2 + 4)2

18 SF 11 SF 12 Soit n ∈N.
Décomposer en éléments simples la fraction rationnelle :

F =
n!

X(X + 1)(X + 2) . . . (X +n)
On fera apparaître des coefficients du binôme.

19 SF 11 SF 12 Soit n ∈N∗. Décomposer en éléments simples

dans C(X) la fraction
1

(X − 1)(Xn − 1)
.

■ Formule « P (a)
Q′(a) » pour les pôles simples

20 SF 12 Soit n ≥ 2. On note ω0, . . . ,ωn−1 les racines ne de

l’unité. Réduire sous la forme
P

Q
la fraction

1
n

n−1∑
k=0

ω2
k

X −ωk
.

21 SF 11 SF 12 Soit P ∈ R[X] de degré n ≥ 1 possédant n ra-
cines distinctes a1, . . . , an ∈R non nulles.

a) Décomposer
1

XP (X)
en éléments simples dans R(X)

b) En déduire l’égalité :
n∑

k=1

1
akP ′(ak)

= − 1
P (0)

.

22 SF 11 SF 12 Soit P ∈ C[X] de degré n ≥ 2 scindé à racines

simples z1, ..., zn. Montrer : ∀k ∈ ⟦0 ,n− 2⟧,
n∑
i=1

zki
P ′(zi)

= 0

23 SF 6 SF 11 SF 12 Soit n ∈ N∗. On admet l’existence d’un
polynôme Tn ∈R[X] de degré n et pour lequel :

∀θ ∈R, Tn(cosθ) = cos(nθ)

1. Déterminer les racines réelles de Tn.

2. Décomposer
1
Tn

en éléments simples dans R(X)



24 SF 12 Soit n ≥ 2.
Soient x1, . . . ,xn ∈R∗ tous distincts et q ∈R \ {−1,0,1}.

1. Montrer que :
n∑

k=1

∏
1≤j≤n
j,k

ωxk − xj
xk − xj

= 0

pour tout ω ∈Un \ {1}

2. En déduire que :
n∑

k=1

∏
1≤j≤n
j,k

qxk − q−1xj
xk − xj

=
qn − q−n

q − q−1

■ Applications en analyse

25 SF 11 Soit n ≥ 1. Calculer :

a) Sn =
n∑

k=2

2
k2 − 1

b) Tn =
n∑

k=1

2
k(k + 1)(k + 2)

26 SF 11 SF 6 1. Soit n ∈N et a,b ∈C tels que a , b.

Calculer la dérivée d’ordre n de f : x 7→ 1
(x − a)(x − b)

.

2. En déduire une expression de Arctan(n) pour n ∈N∗.
3. Soit n ∈N∗. Factoriser P = (X + i)n − (X − i)n dans C[X].
4. Montrer que pour tout n ∈N∗ et tout réel x :

Arctan(n)(x) =
(−1)n−1n!
(x2 + 1)n

n−1∏
k=1

(
x −

cos kπ
n

sin kπ
n

)

27 SF 14 Calculer I(x) pour x > 1 puis étudier lim
x→+∞

I(x) :

a) I(x) =
∫ x

0

10
(t2 + 9)(t + 1)

dt b) I(x) =
∫ x

2

4t
t4 − 1

dt

c) I(x) =
∫ x

0

2t + 1
(t2 + 1)(t2 + t + 1)

dt d) I(x) =
∫ x

0

25 dt
t4 − t2 + 2t + 2

28 SF 14 Déterminer les primitives de chacune des fonctions :

a) x 7→ x4

x2 + 2x+ 5
b) x 7→ 6

x4 + x2 − 2
c) x 7→ 3x

x3 + 1

d) x 7→ x3

(x2 − 1)2 . e) x 7→ x4 + x3 − 1
x3 + x2 + x

.

29 SF 14 Calculer les intégrales suivantes à l’aide des change-
ments de variable proposés :

a) Pour x ∈ ]0 ,π[,
∫ x

π
2

dθ
sinθ

(poser t = cosθ)

b)
∫ x

0

cos3θ

4 + sin2θ
dθ (poser t = sinθ)

c)
∫ π

6

0

4
cos3θ

dθ (poser t = sinθ)

30 SF 12 Soit P ∈R[X] de degré n tel que :

∀k ∈ ⟦1 ,n⟧,
∫ 1

0
tkP (t)dt = 0

On note a0, . . . , an les coefficients de P : P =
n∑

k=0

akX
k .

1. Montrer que :
∫ 1

0
P 2(t)dt = a0

∫ 1

0
P (t)dt

2. On pose : F =
n∑

k=0

ak
X + k + 1

.

Montrer que les entiers 1,2, . . . ,n sont des zéros de F.

3. En déduire que :
∫ 1

0
P 2(t)dt = (n+ 1)2

(∫ 1

0
P (t)dt

)2
.

Indication : On pourra commencer par réduire F au même déno-
minateur.

■ Décomposition en éléments simples de P ′
P

31 SF 13 Soit n ∈N∗. On pose ω = e
2iπ
n . En utilisant la décom-

position en éléments simples de
P ′

P
pour un polynôme P

bien choisi , calculer :
n−1∑
k=1

1
1−ωk

32 SF 13 Soit P ∈R[X] un polynôme scindé sur R.
Montrer que pour tout x ∈R : P (x)P (x)′′ − P ′(x)2 ≤ 0.

33 SF 13 Existe-t-il une suite (ak)k∈N de réels non nuls tels que

pour tout n ∈N, le polynôme P =
n∑

k=0

akX
k soit scindé sur R

à racines dans [0 ,1] ?

2


