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Calcul Matriciel Indications

1 1. Vérifier que A est un sous-anneau de M2(R) c’est à dire :

i) A possède I2
ii) A est un sous-groupe de (M2(R),+), précisément

que pour tous M,N ∈ A :

• M +N ∈ A (stabilité par +)
• −M ∈ A (stabilité par passage à l’opposé).

iii) A est stable par produit.

2. Il s’agit de trouver chercher les matrices M =
(
a b
0 a

)
telles que : M ∈GL2(R) et M−1 ∈ A.

Réponse. U (A) =
{(

1 b
0 1

)
,

(
−1 b
0 −1

)
; b ∈Z

}
.

2 1. Vérifier que A est un sous-anneau de M2(R) c’est à dire :

i) A possède I2
ii) A est un sous-groupe de (M2(R),+), précisément

que pour tous M,N ∈ A :

• M +N ∈ A (stabilité par +)
• −M ∈ A (stabilité par passage à l’opposé).

iii) A est stable par produit.

Vérifier ensuite que toute matrice M ∈ A non nulle est
inversible et que M−1 ∈ A.

2. Vérifier que ϕ est un morphisme d’anneaux i.e. :

• ϕ(1) = I2
• ϕ(z+ z′) = ϕ(z) +ϕ(z′) pour tous z,z′ ∈C
• ϕ(zz′) = ϕ(z)×ϕ(z′) pour tous z,z′ ∈C
Ensuite montrer que ϕ est un bijectif. Pour cela montrer
que ϕ est surjectif puis montrer que ϕ est injectif (en
montrant que Kerϕ est réduit à 0).

3. M = ϕ(z) et procéder par équivalence dans les deux cas
en utilisant l’injectivité de ϕ pour traduire l’équation
sur M en une équation sur z.
a) On trouve que M2 = −I2 équivaut à z2 = −1. Il suffit

de résoudre cette dernière équation et de calculer les
matrices M qui correspondent aux solutions.

Solutions : ±
(
0 −1
1 0

)
.

b) On trouve que Mn = In équivaut à zn = 1.

Solutions :
(
cos 2kπ

n −sin 2kπ
n

sin 2kπ
n cos 2kπ

n

)
pour k ∈ ⟦0 ,n− 1⟧.

3 1. Vérifier que A est un sous-anneau de M2(R) c’est à dire :

i) A possède I2
ii) A est un sous-groupe de (M2(R),+), précisément

que pour tous M,N ∈ A :

• M +N ∈ A (stabilité par +)
• −M ∈ A (stabilité par passage à l’opposé).

iii) A est stable par produit.

Vérifier ensuite que MN = NM pour toutes M,N ∈ A.

2. A n’est pas un corps s’il existe M =
(
a nb
b a

)
non nulle

(i.e. (a,b) , (0,0)) et non inversible (i.e. a2 −nb2 = 0).

• Si n = p2 pour un certain p ∈N, il suffit de construire
(en fonction de p) un couple (a,b) qui vérifie les deux
conditions précédentes

• Pour la réciproque, si un tel couple (a,b) existe, alors

n = x2 où x =
a

b
∈ Q. Il s’agit de montrer que x est

entier. Ecrire x sous forme irréductible x = p
q avec

p∧ q = 1. Le fait que x2 ∈N assure que q2 | p2 mais on
sait aussi que p2 ∧ q2 = 1.

4 Vérifier que pour tous x,y ∈R : M(x)M(y) = M(x+ y).
En déduire que :

• pour tout x ∈R, M(x) ∈ GL3(R).

• ϕ : x 7→M(x) est un morphisme.

Cela prouvera que G = Imϕ est un sous-groupe de GL3(R).
Reste à vérifier que ϕ est injectif en montrant que Kerϕ est
réduit à 0 pour assurer que x 7→ ϕ(x) est un isomorphisem
de R sur G .

5 Attention : ici G n’est pas un sous groupe de GLn(R) (au-
cune des matrices de G n’est d’ailleurs inversible). Il faut
donc revenir à la définition :

• Vérifier que × est une L.C.I. i.e. que si A,B ∈ G alors A×B
est un élément de G.

• L’associativité est déjà acquise pour × donc n’est pas à
vérifier.

• Vérifier l’existence d’un élément neutre i.e. d’une matrice
E de G pour laquelle A×E = E ×A = A pour toute A ∈ G.

• Vérifier l’existence d’un « inverse » pour toute matrice
A ∈ G i.e. une matrice B ∈ G telle que A×B = B×A = E.

6 Utiliser les règles de calcul avec la transposée pour observer
que (AB)⊤ = BA.

7 Etant données A,B ∈Mn(R) stochastiques, utiliser la défi-
nition du produit pour montrer que si AB = (ci,j ) :

• les coefficients ci,j sont positifs

•
n∑

j=1
ci,j = 1 pour tout i ∈ ⟦1 ,n⟧.

8 1. Utiliser la définition du coefficient du produit pour cal-

culer (DM)i,i et (MD)i,i .
2. La question 1 montre une inclusion. Pour l’inclusion

réciproque commencer par observer que (DM−MD)i,j =
(di − dj )mi,j et en déduire une matrice M pour que
DM −MD = A.

9 Procéder par analyse-synthèse :

• Pour l’analyse. Si A commute avec toutes les matrices
de Mn(K), alors, en particulier AEi,j = Ei,jA pour tous
i, j ∈ ⟦1 ,n⟧. Calculer AEi,j (la seule colonne éventuelle-
ment non nulle est en position j) et Ei,jA (la seule ligne
éventuellement non nulle est en position i). L’identifica-
tion du coefficient en position (i, j) impose ai,i = aj,j et les
autres coefficients montrent que la ie ligne et la je colonne
de A sont nulles en dehors des coefficients diagonaux. En
d’autres termes A = λIn où λ = a1,1 = · · · = an,n.

• Ne pas oublier la phase de synthèse.

10 1. Pour toute matrice M ∈I et tous k,ℓ ∈ ⟦1 ,n⟧, montrer

que Ei,kMEℓ,j = mk,ℓEi,j .



2. Toute matrice A ∈Mn(K) est combinaison linéaire des

Ei,j : A =
n∑
i=1

n∑
j=1

ai,j Ei,j .

11 1. Poser T = AB et montrer que ti,j = 0 si j < i +p+ q. Utili-

ser la définition du produit pour calculer ti,j et séparer
la somme au niveau de l’indice k = i + p.

2. Itérer le résultat de 1. : T 2 ∈N2, T3 ∈N3, . . ., Tn ∈Nn et
comprendre concrètement la forme des matrices de N2,
N3 et surtout de Nn.

12 Procéder par récurrence sur n.
Pour l’hérédité, étant donnée T de taille n+ 1 triangulaire
supérieure, écrire T par blocs sous la forme

T =
(
x L
0 T̃

)
alors T ⊤ =

(
x 0
L⊤ T̃ ⊤

)
où L est une matrice ligne et T̃ ∈Mn(R) est triangulaire
supérieure Calculer T ⊤T et T T ⊤ et observer les coefficients
« diagonaux ».

13 Plusieurs possibilités :
• Méthode 1 : par récurrence. On montre par récurrence la

propriété « Il existe αn,βn ∈ R tels que An = αnI3 + βnA. »
(pour l’hérédité constater que A2 = A+ 2I3.)

• Méthode 2 : Avec la formule du binôme. On écrit A = J−I3 où J
est la matrice pleine de 1 puis on obtient par la formule du
binôme une expression de An de la forme An = λnI3 +µnJ
qui donne le résultat demandé en utilisant J = A+ I3.

• Méthode 3 : Avec un polynôme annulateur. Par le calcul on
voit que P (X) = X2 −X − 2 annule A. Il suffit d’évaluer la
division euclidienne de Xn par P pour obtenir le résultat.

14 Plusieurs possibilités :
• Méthode 1 : par récurrence. On montre par récurrence que

pour tout n ∈N : Ap = 2p−1(In +A).
• Méthode 2 : Avec la formule du binôme. On écrit (A+ In)p =

p∑
k=0

(n
k

)
Ak puis sachant que A2ℓ = In et A2ℓ+1 = A, il suffit de

séparer la somme entre indices pairs et impairs.
• Méthode 3 : Avec un polynôme annulateur. Par hypothèse
P (X) = X2−1 annule A et il suffit alors d’évaluer la division
euclidienne de (X + 1)n par P pour obtenir le résultat.

15 Procéder par récurrence.
On trouve an+1 = −2an + 3 et donc (suite arithmético-
géométrique), an = 1− (−2)n.

16 A est diagonale par blocs : A =
(
M 0
0 −M

)
où M =

(
1 −1
0 1

)
donc An =

(
Mn 0
0 (−1)nMn

)
.

Il reste à calculer les puissances de M.

Réponse : An =


1 −n 0 0
0 1 0 0
0 0 (−1)n (−1)n+1n
0 0 0 (−1)n


17 On écrit A = I2 +N où N =

(
4 −4
4 −4

)
vérifie N2 = 0 donc la

formule du binôme se réduit à

A100 = I2 + 100N =
(
401 −400
400 −399

)

18 On écrit A = 3I3 +N où N =

0 1 0
0 0 1
0 0 0

 vérifie N3 = 0 puis

on utilise le formule du binôme.

Réponse : An =


3n n3n−1 n(n−1)

2 3n−2

0 3n n3n−1

0 0 3n

, pour n ≥ 2 et on

s’aperçoit que la formule est encore vraie pour n = 0 et n = 1

19 1. Puissances de A. On écrit A = I3 +N où N =

0 2 3
0 0 3
0 0 0


vérifie N2 =

0 0 4
0 0 0
0 0 0

 et N3 = 0 puis on utilise le for-

mule du binôme.
On trouve : An = I3 + nN + n(n−1)

2 N2 pour n ≥ 2 et on
s’aperçoit que la formule est encore vraie pour n = 0 et
n = 1

2. Racine carrée de A. L’idée est de tester n = 1
2 dans la

formule trouvée ci-dessus. Précisément on prend B =
I3 + 1

2N −
1
8N

2 et on constate par le calcul de B2 que
B2 = A.

3. Racine énième de A.
De même on vérifie que la matrice B = I3 + 1

nN −
n−1
2n2 N

2

convient. Pour le calcul de Bn, utiliser la formule du bi-
nôme constatant que M = 1

nN −
n−1
2n2 N

2 vérifie M2 = 1
n2 M

et M3 = 0.

20 1. Utiliser la formule du binôme.

Réponse : An = 1
4n I3 + 4n−1

3×4n J

2. Les matrices colonnes Xn =

unvn
wn

 vérifient Xn+1 = AXn

d’où l’on tire Xn = AnX0.
Réponse : un = vn = 4n−1

3×4n et wn = 4n+2
3×4n

21 Commencer par montrer que Bk =
(
Ak kAk−1

0 Ak

)
pour tout

k ∈N∗.

22 1. P est de déterminant non nul.

On trouve D =
(
4 0
0 1

)
.

2. Sans calcul : Dn =
(
4n 0
0 1

)
(matrice diagonale).

Puis An = PDnP −1 = 4n
3

(
2 2
1 1

)
+ 1

3

(
1 −2
−1 2

)
3. Les matrices colonnes Xn =

(
un
vn

)
vérifient Xn+1 = AXn

d’où l’on tire Xn = AnX0.
Réponse : un = 4n+1−1

3 et vn = 2×4n+1
3

23 1. A2 − 10A+ 21I3 = 0.

2. A× −A+10I3
21 = I3

3. P (X) = X2 − 10X + 21 est annulateur de A. Il suffit d’éva-
luer en A la division euclidienne de Xn par P (X).
Réponse : An = 7n−3n

4 A+ 7×3n−3×7n
4 I3

24 Effectuer la division euclidienne de X5 +X − 1 (qui annule
A) par X2 +X + 1 puis évaluer cette division euclidienne en

A. Réponse : B−1 = A3−A2+I3
2

2



25 Montrer que A est inversible et exprimer A−1 en fonction
de B. Utiliser alors AA−1 = A−1A.

26 1. (In+M)(M2−M3) = 0 impose M2−M3 = 0 en multipliant

par (In +M)−1 à gauche.

2. On trouve (X + 1)(X
2

2 −X + 1) + (−X3 +X)× 1
2 = 1.

Il suffit d’évaluer en M.

27 Réponses

a) A−1 =

 7 −1 2
−4 1 −1
−2 1 0


b) B n’est pas inversible.

c) C−1 =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


d) D est inversible ssi aucun des réels α, β ou γ n’est nul et

dans ce cas D−1 =


1 + 1

α + 1
β + 1

γ − 1
α − 1

β − 1
γ

− 1
α

1
α 0 0

− 1
β 0 1

β 0

− 1
γ 0 0 1

γ


28 Chercher M ′ sous la forme M ′ =

(
A′ C′

0 B′

)
telle que MM ′ =

I2n en faisant le produit par blocs.

On trouve M ′ =
(
A−1 −A−1CB−1

0 B−1

)
29 1. Si A était inversible le cours nous apprend que Ap le

serait aussi.
2. Penser à la factorisation géométrique de I −Ap.

30 1. M(a) = M(1) + (a− 1)In.

2. M(1)2 = nM(1), il suffit alors de calculer M(a)2 à partir
de l’égalité de la question 1.

3. L’égalité de la question 2 permet d’écrire
M(a)×

(
M(a)−(2a−2+n)In

)
= λIn avec λ = (a−1)(1−n−a)

31 1. Avec la définition du produit on obtient : (AA)p,q =n si p = q

0 si p , q
i.e. AA = nIn.

2. A−1 = 1
nA.

32 Le calcul pour des petites valeurs de p semble montrer que
Mp +M−p = λpIn.
On peut le montrer par récurrence double sur p en utilisant :
Mp +M−p = (Mp+1 +M−p−1) + (Mp−1 +M−(p−1))
Réponse : Mp +M−p = 2cos pπ

3 In

33 Commencer par le cas où AB est nilpotente.

34 1. a) MA = M3 et AM = M3.

b) M4 = 0.
2. Par analyse-synthèse.

Si M =
(
a c
b d

)
∈S alors l’égalité MA = AM et le fait que

ad − bc = 0 impose a = b = d = 0.

Les seuls candidats solutions sont les M =
(
0 c
0 0

)
.

On constate qu’ils ne sont jamais solutions : S = ∅.

35 1. A−1 = Ap−1.

2. (P −1AP )p = P −1ApP .
3. Procéder par double inclusion en commençant dans

chaque cas par traduire explicitement quelle est l’hy-
pothèse de départ sur A et ce que l’on cherche à montrer.

36 1. • Il n’est pas difficile de vérifier que toute matrice anti-

symétrique est solution.
• Réciproquement si M est solution d’(⋆) :

• Dans le cas où s(A) = 2.
Appliquer s à l’égalité M +M⊤ = s(A)M pour mon-
trer que s(M) = 0.

• Dans le cas où A est antisymétrique.
Procéder par l’absurde : si s(M) , 0, on peut expri-
mer A en fonction de M.

2. • Commencer par vérifier que toute matrice de la forme
N +λA est solution.

• Réciproquement si M est solution d’(⋆).
Poser N = M − λA et chercher λ tel que N + N⊤ = 0.

On trouve que λ =
s(N )

2
convient.

3


