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Calcul Matriciel

1. Vérifier que A est un sous-anneau de .#,(RR) c’est a dire :

i) A possede I,
ii) A est un sous-groupe de (.#,(RR),+), précisément
que pour tous M,N € A :
* M+ N € A (stabilité par +)
* —M € A (stabilité par passage a l'opposé).
iii) A est stable par produit.

2. 1l s’agit de trouver chercher les matrices M = (8 Z)

tellesque: M € GL,(R)et M~! € A.
, {1 B\ (-1 b\
Réponse. U(A) = {( 0 1),( 0 _1) ;be Z}.

1. Vérifier que A est un sous-anneau de .#5(IR) c’est a dire :

i) A possede I,
ii) A est un sous-groupe de (#;(RR),+), précisément
que pour tous M,N € A :
* M+ N € A (stabilité par +)
* —M € A (stabilité par passage a I'opposé).
iii) A est stable par produit.
Vérifier ensuite que toute matrice M € A non nulle est
inversible et que M~! € A.

2. Vérifier que ¢ est un morphisme d’anneaux i.e. :
cp(l)=1
* ¢(z+2') =@(2) + @(z’) pour tous z,z’ € C
* ¢(zz') = (z) x (z’) pour tous z,z" € C
Ensuite montrer que ¢ est un bijectif. Pour cela montrer
que @ est surjectif puis montrer que ¢ est injectif (en
montrant que Ker ¢ est réduit a 0).

3. M = ¢(z) et procéder par équivalence dans les deux cas
en utilisant l'injectivité de ¢ pour traduire I’équation
sur M en une équation sur z.

a) On trouve que M? = I, équivaut a z> = —1. Il suffit
de résoudre cette derniere équation et de calculer les
matrices M qui correspondent aux solutions.

Solutions : + (? _01 )

b) On trouve que M" =1, équivaut a z" = 1.

g2k _gip 2kn
Solutions : | ., 2kl | pour k e [0,n—1].
s == COS ==

1. Vérifier que A est un sous-anneau de .#>(IR) c’est a dire :

i) A possede I,
ii) A est un sous-groupe de (#;(RR),+), précisément
que pour tous M,N € A :
* M+ N € A (stabilité par +)
* —M € A (stabilité par passage a l'opposé).
iii) A est stable par produit.
Vérifier ensuite que MN = NM pour toutes M,N € A.

a

b
(i.e. (a,b) = (0,0)) et non inversible (i.e. a*> — nb? = 0).

* Si n=p? pour un certain p € N, il suffit de construire

2. A n’est pas un corps s’il existe M = ( nab) non nulle

4 | Vérifier que pour tous x,p € R :

Indications

* Pour la réciproque, si un tel couple (a,b) existe, alors
N a ’o s
Zoux= 5 € Q. 11 s’agit de montrer que x est

entier. Ecrire x sous forme irréductible x = g avec

n=xXx

pAgq=1.Le fait que x* € N assure que g° | p? mais on
sait aussi que p> A g% =1.

M(x)M(p) = M(x +).
En déduire que :

e pour tout x € R, M(x) € GL5(RR).
* @ : x> M(x)est un morphisme.

Cela prouvera que ¢4 = Im ¢ est un sous-groupe de GL3(IR).
Reste a vérifier que ¢ est injectif en montrant que Ker ¢ est
réduit a 0 pour assurer que x — @(x) est un isomorphisem
de Rsur ¥.

Attention : ici G n’est pas un sous groupe de GL,(IR) (au-
cune des matrices de G n’est d’ailleurs inversible). Il faut
donc revenir a la définition :

» Vérifier que x est une L.C.I. i.e. que si A,B € G alors Ax B
est un élément de G.

* L’associativité est déja acquise pour x donc n’est pas a
vérifier.

e Vérifier 'existence d’un élément neutre i.e. d’'une matrice
E de G pour laquelle AXE = E x A = A pour toute A € G.

e Vérifier 'existence d’un «inverse » pour toute matrice
A € Gi.e.une matrice Be G telleque AxB=BxA=E.

Utiliser les regles de calcul avec la transposée pour observer
que (AB)T = BA.

Etant données A, B € .#,(IR) stochastiques, utiliser la défi-
nition du produit pour montrer que si AB = (c; ;) :

* les coefficients ¢; ; sont positifs

n
* Y ¢;; =1 pourtoutie[l,n].
j=1

1. Utiliser la définition du coefficient du produit pour cal-
culer (DM); ; et (MD); ;.

2. La question 1 montre une inclusion. Pour l'inclusion
réciproque commencer par observer que (DM -MD); ; =
(di —dj)m;; et en déduire une matrice M pour que
DM -MD = A.

Procéder par analyse-syntheése :

* Pour l'analyse. Si A commute avec toutes les matrices
de #,(K), alors, en particulier AE;; = E; ;A pour tous
i,j €[[1,n]. Calculer AEi,j (la seule colonne éventuelle-
ment non nulle est en position j) et E; ;A (la seule ligne
éventuellement non nulle est en position 7). L'identifica-
tion du coefficient en position (7, j) impose a; ; = a;,; et les
autres coefficients montrent que la i¢ligne et la j¢ colonne
de A sont nulles en dehors des coefficients diagonaux. En
d’autres termes A= Al,ou A =a;; =--=a,,.

* Ne pas oublier la phase de synthése.

(en fonction de p) un couple (a,b) qui vérifie les deux | 10] 1. Pour toute matrice M € .7 et tous k,¢ € [1, ], montrer

conditions précédentes

que Ei’kMEg’]‘ = mk’gEi’]'.
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2. Toute matrice A € .#,(K) est combinaison linéaire des

Ejj: A= iia,,j E; ;.

i=1 j=1

1. Poser T = AB et montrer que t;; = 0 si j <i+p+gq. Utili-

ser la définition du produit pour calculer t; ; et séparer
la somme au niveau de I'indice k =i+ p.

. Itérer le résultat de1.: T> e A5, Ty € M5, ..., T, € N, et

comprendre concrétement la forme des matrices de .45,( 19| 1. Puissances de A. On écrit A=1I3+N ou N =

A5 et surtout de A7,.

12| Procéder par récurrence sur n.

Pour I'hérédité, étant donnée T de taille n + 1 triangulaire
supérieure, écrire T par blocs sous la forme
0
TT

x L X
T= =~ 1 TT =
(O T) alors (LT
ol L est une matrice ligne et T € .#,(IR) est triangulaire
supérieure Calculer TTT et TTT et observer les coefficients
« diagonaux ».

13| Plusieurs possibilités :

14

Méthode 1 : par récurrence. On montre par récurrence la
propriété « Il existe a,, 8, € R tels que A" = a, I3 + ,A. »
(pour I’hérédité constater que A% = A + 2I3.)

Méthode 2 : Avec la formule du bindme. On écrit A =J—I3ouJ
est la matrice pleine de 1 puis on obtient par la formule du
binéme une expression de A" de la forme A" = A, I3+ p,,]
qui donne le résultat demandé en utilisant | = A +I5.
Meéthode 3 : Avec un polyndme annulateur. Par le calcul on
voit que P(X) = X? — X — 2 annule A. Il suffit d’évaluer la
division euclidienne de X" par P pour obtenir le résultat.

Plusieurs possibilités :

Meéthode 1 : par récurrence. On montre par récurrence que
pour tout n€ N : AP = 2P~1(I, + A).

P
Z(Z)Ak puis sachant que A% = I, et A2(*1 = A, il suffit de
k=0
séparer la somme entre indices pairs et impairs.
Meéthode 3 : Avec un polynéme annulateur. Par hypothése
P(X) = X?—1 annule A et il suffit alors d’évaluer la division
euclidienne de (X + 1)” par P pour obtenir le résultat.

15 Procéder par récurrence.

16| A est diagonale par blocs: A = (M

17! OnécritA=I,+NouN = 4

On trouve a,,; = —2a, + 3 et donc (suite arithmético-
n
-1
1

géométrique), a, =1 —(=2)".

0\ .. (1
0 —M)OUM_(O

M" 0
n _

donc A" = 0 (—1)”M”)'

Il reste a calculer les puissances de M.
1 -n 0 0

p 0 1 0 0
. n _

Réponse : A" = 0 0 (1) (-1)™ln

0 0 0 (-1)"

_4) vérifie N2 = 0 donc la

b
formule du bindme se réduit a
A0 =1, + 100N = (401

—400
400

-399
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Meéthode 2 : Avec la formule du bindme. On écrit (A +1,)P = 1] Commencer par montrer que Bt =

22

24

0 1 0
Onécrit A=3I3+NouN=|0 0 l]vériﬁeN3:0puis
0 0
on utilise le formule du binéme.
3}1 n3r1—1 ”(”*1)3;1—2
Réponse : A" =| ¢ 31 n3n=1 |, pour n > 2 et on
0 0 3n

s’apercoit que la formule est encore vraie pour n=0et n =1

0 2 3

(003]

0 0 O
0 0 4

0 0 0} et N? = 0 puis on utilise le for-
0 0 O
mule du bindéme.
On trouve : A" = I3+ nN + Ml\ﬂ pour n > 2 et on
s’apercoit que la formule est encore vraie pour n =0 et
n=1
. Racine carrée de A. L'idée est de tester n = % dans la
formule trouvée ci-dessus. Précisément on prend B =
I3 + %N - %Nz et on constate par le calcul de B?> que
B> = A.
Racine éniéme de A.
De méme on vérifie que la matrice B =15+ %N - %Nz
convient. Pour le calcul de B", utiliser la formule du bi-
ndme constatant que M = £ N — 2= N2 vérifie M? = LM
et M3 =0.

vérifie N2 =

1. Utiliser la formule du bindme.

5 oan 1 471
Réponse : A" = b 3X4,1]

I; +
ul’l
vn
wn

2.

Les matrices colonnes X,, =

] vérifient X,,,; = AX,

d’ou l'on tire X, = A" X,,.

Réponse : u, =v, = “311—;}, et w, = %
(Ak kAk-1
our tout
0 Ak ) P
k e IN*.
1. P est de déterminant non nul.

4 0
On trouve D = (O 1).

4}’[

. n _
Sans calcul : D" = ( 0 1

) (matrice diagonale).

[ 3)

) vérifient X, = AX,

i (22
: _ -1 _4 1
Puis A" = PD"P~! = 5 (1 1)+§

. u
Les matrices colonnes X, = (v”
d’ou l'on tire X, = A" X,,.
4n+1_1
=73

n

_ 2x4"+1
- 3

Réponse : uy,

et vy,

1. A2—10A+211; =0.

Ax A0
P(X) = X?-10X + 21 est annulateur de A. I suffit d’éva-

luer en A la division euclidienne de X" par P(X).
Réponse : A" = T332 A 4 X337

Effectuer la division euclidienne de X° + X — 1 (qui annule

A) par X%+ X + 1 puis évaluer cette division euclidienne en
3_42

A. Réponse: B! = A=47h



25/ Montrer que A est inversible et exprimer A~! en fonction
de B. Utiliser alors AA™! = A7 A.

26 1. (I,+M)(M?>~M?3) = 0 impose M2~M?> = 0 en multipliant

par (I, + M)~! & gauche.

2. On trouve (X+ 1)(5 =X+ 1)+ (X3 + X)x L = 1.
11 suffit d’évaluer en M.

35

27| Réponses

7 -1 2
a) Al=|-4 1 -1 36
2 1 0

b) B n’est pas inversible.

1 -1 0 0
0o 1 -1 0
0 0 1 -1
0 0 0 1

d) D est inversible ssi aucun des réels a,  ou ¥ nest nul et
1 1

c) Cl=

1 11 1
1+ 2 +IE t3 —la 5 Ty
-1 L 9 o
dans ce cas D! = 7 ®
-1 o L 0
! 01
-1 o o 1
/ ’
28| Chercher M’ sous la forme M’ = 1?) B’) telle que MM’ =

I, en faisant le produit par blocs.

, (A7t —-ATlcB!
On trouve M :( 0 Bl

og| 1. Si A était inversible le cours nous apprend que AP le
serait aussi.

2. Penser a la factorisation géométrique de I — AP.
30 1. M(a)=M(1)+(a—1)I,.
2. M(1)?> = nM(1), il suffit alors de calculer M(a)? & partir
de I'égalité de la question 1.

3. L'égalité de la question 2 permet d’écrire
M(a)x(M(a)—(Za—ZJrn)In) =Al, avec A=(a-1)(1-n-a)

31 1. Avec la définition du produit on obtient :  (AA),, =
" S%p — 1 ie. AA=nl,.
0 sipzg
-1_17
2. A71=17

32| Le calcul pour des petites valeurs de p semble montrer que
MP + M™P = A, I,
On peut le montrer par récurrence double sur p en utilisant :
MP + M7 = (MPH 4 M~P~1) 4 (MP~1 4+ M~(P-1))
Réponse : MP + M™P = 2cos 1,

33| Commencer par le cas ou AB est nilpotente.

34| 1.a) MA=M?3et AM = M3.
b) M*=0.
2. Par analyse-syntheése.

SiM = (a ‘le.# alors I'égalité MA = AM et le fait que

b d
ad—bc=01imposea=b=d =0.

00
On constate qu’ils ne sont jamais solutions : .7 = @.

Les seuls candidats solutions sont les M = (O C).

1. Al = AP-L,

. (P"1AP)P = P71 APP.
. Procéder par double inclusion en commencant dans

chaque cas par traduire explicitement quelle est I’hy-
pothese de départ sur A et ce que l'on cherche a montrer.

. * Il n'est pas difficile de vérifier que toute matrice anti-

symétrique est solution.
* Réciproquement si M est solution d’(x) :

* Dans le cas o s(A) = 2.
Appliquer s a I’égalité M + M T = s(A)M pour mon-
trer que s(M) = 0.

* Dans le cas ou A est antisymétrique.
Procéder par l'absurde : si s(M) = 0, on peut expri-
mer A en fonction de M.

. » Commencer par vérifier que toute matrice de la forme

N + AA est solution.
* Réciproquement si M est solution d’(%).
Poser N = M — AA et chercher A tel que N+ NT =0.
s(N)

On trouve que A = 5 convient.



