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Polynômes Indications

1 Identifier le coefficient de Xn de chaque membre de l’éga-
lité : (X + 1)n(X + 1)2n = (X + 1)3n.

2 1. Faire apparaître une somme télescopique en écrivant

X = (X + 1)− 1.

2. Identifier le coefficient de Xk+1 de chaque membre de
l’égalité. Pour le membre de gauche commencer par dé-
velopper (X + 1)i avec la formule du binôme puis inter-
vertir les deux sommes obtenues.

3 Procéder par analyse-synthèse pour trouver les solutions
non nulles :

• Dans l’analyse, poser n = degP puis identifier les degrés de
chaque membre afin d’obtenir une équation sur n.

• Pour la synthèse, utiliser les équations pour former un
système sur les coefficients du polynômes.

a) Réponses : Vect(X2 − 1).

b) Réponses : Les polynômes constants et le polynôme X.

4 a) Procéder par analyse-synthèse pour trouver les solutions

non nulles :

• Dans l’analyse, noter a le coefficient dominant de P et
n = degP puis identifier les coefficients dominants de
chaque membre afin d’obtenir une équation sur n.

• Pour la synthèse, utiliser les équations pour former un
système sur les coefficients du polynômes.

Réponses : Vect(X3 +X).

b) Déterminer une solution particulière puis montrer que
les solutions sont la somme d’une solution particulière
et des solutions de l’équation homogène résolue au a).
Réponses : 1 + Vect(X3 +X).

5 1. En écrivant P =
n∑

k=0

akX
k , multiplier P

(a
b

)
par bn puis

raisonner modulo a.

2. Appliquer le résultat de la question 1. à Q(X) = P (X + k).

6 Deux méthodes possibles :

• Méthode 1. On pose la division euclidienne et on cal-
cule le couple (Q,R) de la division euclidienne de A =
X4 +X4 +λX2 +µX + 2 par B = X2 + 2.
On cherche ensuite pour quelles valeurs de λ et µ tous les
coefficients du reste R sont nuls.

• Méthode 2. Vu que B = (X −
√

2i)(X +
√

2i), B divise A ssi
A(
√

2i) = 0 et A(−
√

2i) = 0. Ces deux conditions fournissent
un système d’inconnue (λ,µ).

Réponse : λ = 3 et µ = 2.

7 Suivre la méthode classique (cf savoir faire SF 2 ).
Réponses :
1. 2X − 1.

2. 100X − 99.

3. 50X2 +X − 50.

4. cos(nθ)X + sin(nθ).

5. (−1)n(−nX2 + 1−n).

8 Plusieurs possibilités :

• Première possibilité : à l’aide de la factorisation géométrique .
Utiliser X2n+1 − 1 = (X − 1)P (X) et substituer X par X2.

• Deuxième possibilité : avec la factorisation de P .

Utiliser la forme factorisée de P à savoir P =
2n+1∏
k=1

(X −ωk)

où les ωk sont les racines (2n+ 1)e de l’unité autre que 1.
Il s’agit donc de montrer que pour tout k ∈ ⟦1 ,2n + 1⟧,
P (ω2

k ) = 0. Dit autrement il s’agit de montrer que pour
tout k ∈ ⟦1 ,2n+ 1⟧ : ω2

k ∈U2n+1 et ω2
k , 1

9 On note P = X311 +X82 +X15.
a) Vu que Q = (1 + X + X2) = (X − j)(X − j) et que P est à

coefficients réels, Q divise P ssi P (j) = 0.
On constate par le calcul que P (j) = 0 en utilisant les
propriétés usuelles sur j à savoir j3 = 1 et 1 + j + j2 = 0.

b) (X−j)2(X−j)2 divise P ssi P (j) = 0 et P ′(j) = 0. On constate
ici que P ′(j) , 0.

10 1. Ecrire a = bq et écrire Xa − 1 = (Xb)q − 1 puis utiliser la

factorisation de aq − 1.
2. Ecrire a = bq+ r puis montrer que Xa − 1 se met sous la

forme (Xb − 1)Q+Xr − 1.
Pour cela, faire apparaître Xr − 1 dans Xa − 1 :

Xa − 1 = (Xb)qXr − 1 =
(
(Xb)q − 1

)
Xr +Xr − 1

Factoriser (Xb)q−1 par Xb−1 comme à la première ques-
tion.

11 Traduire l’hypothèse ainsi que la conclusion à établir en
terme de racines. Posant Q(X) = P (Xn) :

• L’hypothèse X − 1 divise Q signifie que Q(1) = 0.

• montrer que Xn − 1 divise Q équivaut à montrer que
Q(ωk) = 0 pour tous les ωk ∈Un.

Il suffit alors de calculer Q(ωk) (utiliser le lien avec P ).

12 P = X2n +Xn + 1 est divisible par X2 +X + 1 = (X − j)(X − j)
ssi P (j) = 0 i.e. ssi j2n + jn+ 1.
Raisonner alors modulo 3 pour n en utilisant le fait que si
n ≡ r [3] alors jn = jr .
On trouve que X2 +X+1 divise P ssi n n’est pas un multiple
de 3.

13 Utiliser les dérivées de P = nXn+1 − (n+ 1)Xn + 1 :
on trouve : P (1) = P ′(1) = 0 et P ′′(1) , 0.

14 Avec le cours il suffit de s’assurer que
P = nXn+2 − (n+ 2)Xn+1 + (n+ 2)X −n

vérifie P (1) = P ′(1) = P ′′(1) = 0.

15 Procéder par l’absurde : si a ∈ C est une racine multiple de
P , alors : P (a) = 0 et P ′(a) = 0.

Obtenir une contradiction en exploitant : P =
Xn

n!
+ P ′

16 Ecrire P à l’aide de la formule de Taylor au point a puis
évaluer en x ≥ a.



17 1. Notant m la multiplicité de a dans P , exprimer la multi-

plicité de a dans chacun des deux membres (P ′)n et P n−1

puis identifier ces multiplicités.
2. Procéder par analyse-synthèse.

Dans l’analyse traiter à part le cas des polynômes
constants.
Pour les polynômes non constant P solutions, l’identifi-
cation des degrés de chaque membre permet de montrer
qu’ils sont de degré n. Avec la question 1. cela signifie
qu’ils sont de la forme λ(X − a)n. Déterminer λ à l’aide
de l’équation.

Solutions : Le polynôme nul et
(X − a)n

nn
.

18 Procéder par analyse-synthèse.
Dans l’analyse traiter à part le cas des polynômes constants.
Pour un polynômes non constant P solution, en notant
a1, . . . , ak les racines distinctes de P ′ et m1, . . . ,mk leurs mul-
tiplicités montrer que k = 1 en comparant les multiplicités
de a1, . . . , ak dans P et son degré.
On trouve que P est de la forme : P = λ(X − a)n.

19 a) Procéder par l’absurde. Si P convient, le polynôme

R = P − X possèderait une infinité de racines donc se-
rait le polynôme nul et P = X.

b) Procéder par l’absurde. Si P convient, poser n = degP et
dériver n+ 1 fois.

20 1. Exploiter la factorisation : Xn − 1 =
n−1∏
k=0

X −ωk .

2. Compter le nombre de racines du polynôme

R(X) = P n −Qn −
n−1∏
k=0

(P −ωkQ)

21 Procéder par analyse-synthèse.
Dans la phase d’analyse, si P convient : P (0) = 0.
En évaluant P (X2 + 1) = P (X)2 + 1 en 0 on obtient P (1) = 1.
En évaluant P (X2 + 1) = P (X)2 + 1 en 1 on obtient P (2) = 2.
En évaluant P (X2 + 1) = P (X)2 + 1 en 2 on obtient P (5) = 5.
En évaluant P (X2 + 1) = P (X)2 + 1 en 3 on obtient P (9) = 9.
Il s’agit alors de montrer que P (X) = X en montrant que le
polynôme R = P (X)−X possède une infinité de racines.
Pour cela, définir une suite par u0 = 0 puis un+1 = u2

n + 1
pour tout n ∈N et montrer par récurrence que P (un) = un
pour tout n ∈N. Il reste à montrer que {un ; n ∈N} est infini.
Ne pas oublier la synthèse.

22 Trouver un polynôme Q tel que P (z)Q(z) = zn pour tout
z ∈U.

23 1. Ecrire P sous la forme P =
n∑

k=0

akX
k pour certains

a0, . . . , an ∈Z et calculer P
(
n+ P (n)

)
modulo P (n).

2. Noter que l’hypothèse, appliquée à l’entier n+ P (n), as-
sure en particulier que P

(
n+ P (n)

)
est aussi un nombre

premier pour tout n ∈N. Exploiter alors la question 1.
pour montrer que P (n) = P

(
n + P (n)

)
pour tout n ∈ N

puis que P = P (X + P (X)).

Trouver une contradiction en considérant les degrés.

24 a) On sait déjà que P ′ a au plus n− 1 racines (complexes).

Il s’agit de montrer que P ′ a au moins n−1 racines réelles :
appliquer le théorème de Rolle.

b) Montrer que P ′ possède au moins n − 1 racines réelles
comptées avec leur multiplicités. En notant a1 < · · · < ak
les racines réelles de P et m1, . . . ,mk leurs multiplicités :
• D’une part, en adaptant la stratégie de la question pré-

cédente, montrer que P ′ possède k − 1 racines réelles
distinctes et distinctes de a1, . . . , ak

• D’autre part le cours assure que a1, . . . , ak sont aussi
racines de P ′ de multiplicités m1 − 1, . . . ,mk − 1.

25 a) A partir de la forme factorisée

Li =
∏
j,i

X − j
i − j

=
1∏

j,i
i − j

∏
j,i

(X − j)

Le coefficient dominant vaut
1

(i − 1)(i − 2) . . .1× (−1)× (−2)× (i −n)

Il reste à simplifier l’expression. Réponse : (−1)n−i
i

n!
(n
i

)
.

b) Poser : P =
n∑

k=1

kn−1Lk et R = P −Xn−1.

Noter que degR ≤ n − 1, il suffit de montrer que R a n
racines pour montrer que R est nul.
Pour cela évaluer en les xi .

c) Identifier le coefficient de Xn−1 dans :
n∑

k=1

kn−1Lk = 1.

Réponse : n!.

26 Exprimer P en fonction des polynômes de Lagrange
L0, . . . ,Ln associés aux points 0, . . . ,1.

27 Ecrire P sous la forme P (X) = λ
n∏
i=1

(X − ai) puis calculer f ′′ .

28 Par définition des zk : P (X) =
100∏
k=1

(X − zk)

Calculer alors le produit
100∏
k=1

(z3
k + 1) en utilisant la factorisa-

tion X3 + 1 = (X + 1)(X + j)(X + j2). On obtient :
100∏
k=1

(z3
k + 1) = P (−1)P (−j)P (−j2)

Il reste à calculer P (−1), P (−j) et P (−j2) à l’aide de l’expres-
sion explicite de P donnée par l’énoncé.

29 Calculer A et B en utilisant les formes scindées :

P =
m∏
k=1

(X − ak) et Q =
n∏

k=1

(X − bk)

On obtient : A = (−1)nmB.

30 • Si P est scindé surR. Ecrire P sous la forme P =
n∏
i=1

(X−ai)

pour certains réels a1, . . . , an et vérifier que pour tout réel
a et tout z ∈C : |z − a| ≥ |Imz|.
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• S |P (z)| ≥ |Imz| pour tout z ∈ C. Sachant que P est scindé
sur C, il s’agit de montrer que les racines de P sont toutes
réelles. Utiliser pour cela l’hypothèse vérifiée par P .

31 1. Dériver l’égalité (X − 1)P = Xn − 1 puis évaluer en ωk .

2. Evaluer l’égalité
n∏

k=1

(X −ωk) = P (X) en 1 et en 0 pour

calculer les produits qui apparaissent dans le calcul.

32 a) Pour z ∈ C résoudre l’équation P (z) = 0 c’est à dire

(z+ 1)n = e2ina.
Réponse. Les racines sont les zk = e2ia+ 2ikπ

n − 1 pour
k ∈ ⟦0 ,n− 1⟧.

b) P est de degré n et on a trouvé n racines distinctes, il est
scindé sur C et

(X + 1)n − e2ina =
n−1∏
k=0

(X − zk)

Evaluer cette égalité en 0 puis utiliser la transformation
de 1− eiθ pour simplifier −zk dans le produit.

Réponse :
n−1∏
k=0

sin
(
a+

kπ

n

)
=

sin(na)
2n−1 .

33 Procéder par l’absurde et factoriser P − a.

34 Procéder par récurrence sur n.

35 1. a) Les relation entre coefficients et racines donnent

a+ b+ c = 0 et ab+ ac+ bc = −2.
Il suffit alors de développer 0 = (a+ b+ c)2.
Réponse. S1 = 4.

b) Effectuer la division euclidienne de X4 par P . On
trouve X4 = XP + 2X2 − 5X.
Evaluer successivement cette égalité en a, b et c et
sommer les trois égalités.
Réponse. S2 = 8.

2. Le polynôme Q = (X − a2)(X − b2)(X − c2) convient.
Reste à calculer explicitement ses coefficients.
En développant on obtient
Q = X3 − (a2 + b2 + c2)X2 + (a2b2 + a2c2 + b2c2)X − (abc)2

Le coefficient de X2 a déjà été calculé.
La valeur de abc est donnée par les relations entre coeffi-
cients et racines sur le polynôme P .
Pour calculer a2b2 + a2c2 + b2c2, utiliser S2 et S2

1 .
Réponse : Q = X3 − 4X2 + 4X − 25.

36 a) Si (x,y,z) est solution alors x,y,z sont les racines de

P = X3 − (x+ y + z)X2 + (xy + xz+ yz)X − xyz

Avec le système on obtient


x+ y + z = 1
xyz = −4

xy + yz+ xz = −4
Ainsi (x,y,z) sont les racines de P = X3 −X2 − 4X + 4.
Réponse. {x,y,z} = {1,2,−2}.

b) Si (x,y,z) est solution alors x,y,z sont les racines de
P = X3 − (x+ y + z)X2 + (xy + xz+ yz)X − xyz

il suffit de même de déterminer les valeurs de x + y + z,
xy + yz+ xz et xyz.

• x+ y + z = 1 par la première équation : x+ y + z = 1.
• La valeur de xy + yz + xz s’obtient en développant

(x+y + z)2 et en utilisant les deux premières équations.
On trouve : xy + yz+ xz = 0.

• Pour trouver xyz on peut évaluer P = X3 − X2 − xyz
en les racines x, y et z de P puis sommer les égalités
obtenues.
On trouve : xyz = −2.

Ainsi (x,y,z) sont les racines de P = X3 −X2 + 2.
Réponse. {x,y,z} = {−1,1 + i,1− i}.

37 x+ y + z = xy + xz+ yz = 0 donc, d’après les relations entre
coefficients et racines, x, y et z sont les racines de P = X3 − a
avec a = xyz.
Les complexes x, y et z sont donc les racines cubiques de a.
Vu que x3 = a, les trois racines cubiques de a sont x, jx et
j2x.
Ainsi (y,z) = (jx, j2x) ou (y,z) = (j2x, jx).

38 a) On sait déjà que P a au plus 3 racines réelles.

Il suffit donc de montrer que P a au moins 3 racines
réelles : utiliser le TVI en évaluant en −4, −3, 1, 2 et 3.

b) Poser α = Arctana, β = Arctanb et γ = Arctanc.
Il suffit de montrer que

(a) tan(α + β +γ) = 1
(b) α + β +γ ∈ ]−π

2 , π2 [.

(a) A l’aide de la formule pour tan(a+b) (avec b = β+γ)

on obtient tan(α + β +γ) =
a+ b+ c − abc

1− (ab+ ac+ bc)
Il suffit d’utiliser les relations entre coefficients et
racines.

(b) Encadrer α, β et γ à l’aide des encadrements de a, b
et c trouvés en a) et de la croissance de Arctan.

39 Echelonner le système. On constate que le système possède

une unique solution et on obtient z =
(1−α)(1− β)
(γ −α)(γ − β)

.

L’expression demandée pour z s’obtient en utilisant les rela-
tions entre coefficients et racines qui permettent de calculer
les quantités α + β +γ , αβ +αγ + βγ et αβγ .
Les expressions demandées pour x et y s’obtiennent en uti-
lisant la symétrie des rôles joués par x,y et z.

40 En posant Z1 = z1 + z2, Z2 = z2 + z3 et Z3 = z3 + z1 et :
S1 = Z1 +Z2 +Z3

S2 = Z1Z2 +Z2Z3 +Z1Z3

S3 = Z1Z2Z3

on sait que le polynôme Q = X3 − S1X
2 + S2X − S3 convient.

il s’agit d’expliciter Q en fonction de a,b,c.
Pour cela exprimer S1,S2,S3 en fonction de

z1 + z2 + z3 = −a
z1z2 + z2z3 + z1z3 = b

z1z2z3 = c

On obtient : S1 = −2a S2 = a2 + b S3 = −ab+ c
N.B. : Pour le calcul de S3 on peut développer le pro-
duit mais on peut aussi utiliser astucieusement le fait que
P = (X − z1)(X − z2)(X − z3) pour obtenir S3 = P (−a).
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