
13
Groupes et Anneaux Exercices
■ Groupes

1 SF 1 Soit (G,⋆) un groupe.
1. Soit H,K deux sous-groupes d’un groupe G. Montrer

que H ∩K est un sous-groupe de G.
2. Trouver deux sous-groupes de (R∗,×) dont la réunion

n’est pas un sous-groupe de R∗.

2 SF 1 Soit (G,⋆) un groupe. On définit le centre de G par

Z(G) = {a ∈ G | ∀x ∈ G, a ⋆ x = x ⋆ a}
Montrer que Z(G) est un sous-groupe de G.

3 Soit H un sous-groupe de (Z,+), non réduit à {0}. On note
p le plus petit entier strictement positif appartenant à H .
1. Montrer que pZ ⊂H où : pZ = {kp ; k ∈Z}.
2. Montrer que H ⊂ pZ.
3. Que peut-on en déduire sur les sous-groupes de Z ?

4 Soient a,b ∈Z, on pose : aZ+ bZ = {ka+ ℓb ; k,ℓ ∈Z}.
Déterminer un entier d pour lequel : aZ+ bZ = dZ.

5 Soit H un sous-groupe borné de (C∗,×) i.e. pour lequel il
existe M ∈R∗+ tel que : |z| ≤M pour tout z ∈H .
Montrer que H ⊂U. Indication : Raisonner par l’absurde.

6 1. Soit G un groupe commutatif fini de cardinal n et g ∈ G.
a) Montrer que ϕ : x 7→ g ⋆ x est une permutation de G.
b) Montrer que gn = e en calculant de deux manières le

produit :
∏
x∈G

(g ⋆ x).

2. Déterminer tous les sous-groupes finis de C∗.

7 Soit (G,⋆) un groupe fini et H un sous-groupe de G.
On note p le cardinal de H et n le cardinal de G
1. On définit sur G la relation ∼ par

x ∼ y ⇐⇒ ∃h ∈H, y = x ⋆ h

Montrer que ∼ est une relation d’équivalence sur G.
2. En déduire que p divise n.

8 SF 1 Soient (G,⋆) un groupe et H une partie finie et non
vide de G stable par ⋆.
1. Soit a ∈H . Pourquoi f : k 7→ ak n’est pas injective surN ?
2. En déduire que H est un sous-groupe de G.

■ Morphismes de groupes

9 SF 2 Dans chacun des cas, montrer que f est un mor-
phisme de groupe et déterminer son noyau et son image.
a) f : R∗+ ×R −→ C

∗

(r,θ) 7−→ reiθ
b) f : C∗ −→ C∗

z 7−→ z

|z|

c) f : Z −→ C∗
k 7−→ ωk

où ω = e
2iπ
n (n ≥ 1)

10 SF 1 SF 2

1. Soient (G, ·) un groupe et f une bijection de G sur un
ensemble E. Pour tous x,y ∈ E, on pose :

x ⋆ y = f
(
f −1(x) · f −1(y)

)
Montrer que (E,⋆) est un groupe.

2. Montrer que f est un isomorphisme de (G, ·) sur (E,⋆).

3. a) Etablir : ∀x,y ∈R, th(x+ y) =
thx+ thy

1 + thx thy
.

b) Pour tous x,y ∈ ]−1 ,1[, on pose : x⊥y =
x+ y

1 + xy
.

Montrer que
(
]−1 ,1[ ,⊥

)
est un groupe.

11 SF 1 SF 2

1. Soit (G,⋆) un groupe et g ∈ G. On pose ⟨g⟩ =
{
gk ; k ∈Z

}
.

a) Vérifier que ⟨g⟩ est un sous-groupe de G.
b) Montrer que les morphismes de ⟨g⟩ dans ⟨g⟩ sont les

applications x 7→ xp avec p ∈Z.
2. Déterminer tous les morphismes de groupe bijectifs de :

a) (Z,+) sur (Z,+) b) (Q,+) sur (Q,+)

c) (Un,×) sur (Un,×) (où n ∈N∗).

12 SF 1 SF 2 Soit (G,⋆) un groupe. Pour tout g ∈ G on note τg
l’application x 7→ g ⋆ x ⋆ g−1 de G dans G.
1. Montrer que pour tout g ∈ G, τg est un isomorphisme de

G sur lui-même.
2. Montrer que ϕ : g 7→ τg est un morphisme de (G,⋆) dans(

SG , ◦
)

et déterminer son noyau.

3. On pose IG =
{
τg ; g ∈ G

}
. Montrer que

(
IG , ◦

)
est un

groupe.

13 SF 2 SF 3 Soit G un groupe.
Montrer que G est isomorphe à un sous-groupe de SG.

14 SF 1 Soit (G,⋆) un groupe commutatif. On suppose qu’il
existe n ∈N∗ tel que pour tout g ∈ G : gn = e.
1. On suppose que n = ab où a et b sont premiers entre eux.

On pose : Ga = {ga ; g ∈ G} et Gb =
{
gb ; g ∈ G

}
.

a) Montrer que Ga et Gb sont des sous-groupes de G.
b) Montrer que pour tout x ∈ G, il existe un unique

couple (y,z) ∈ Ga ×Gb tel que : x = yz.
2. Soit k ∈N, premier avec n. Montrer que ϕ : x 7→ xk est

un isomorphisme de G sur lui-même.

15 Soit (G,⋆) un groupe fini et ϕ un automorphisme de G dont
le seul point fixe est e.
1. Soit n le plus petit entier non nul tel que ϕn = IdG.

Montrer que x ⋆ ϕ(x) ⋆ · · · ⋆ ϕn−1(x) = e pour tout x ∈ G.
2. Si n = 2, montrer que G est commutatif.
3. Si n = 3 montrer que x ⋆ ϕ(x) = ϕ(x) ⋆ x pour tout x ∈ G
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■ Anneaux

16 Soit (A,+,×) un anneau. Un élément a ∈ A est dit nilpotent
s’il existe n ∈N∗ tel que : an = 0A.
1. Soient a,b ∈ A tels que : ab = ba. Montrer que si a et b

sont nilpotents, alors ab et a+ b sont nilpotents.
2. Soit a ∈ A, nilpotent. Montrer que 1A − a est inversible et

exprimer (1A − a)−1.

17 Soit (A,+,×) un anneau tel que pour tout a ∈ A : a2 = a.
1. Montrer que pour tous a,b ∈ A : 2a = 0A et ab = −ba
2. En déduire que A est commutatif.

18 SF 5 On note Z[i] = {a+ ib ; a,b ∈Z}.
1. Montrer que Z[i] est un sous-anneau de C.
2. Vérifier que pour tout z ∈Z[i] : |z|2 ∈N.

3. En déduire U
(
Z[i]

)
.

19 SF 7 Montrer que Q[
√

2] =
{
a+ b
√

2 ; a,b ∈Q
}

est un corps.

■ Morphismes d’anneaux

20 SF 3 Soit K,L des corps et f : K → L un morphisme d’an-
neau. Montrer que f est injectif.

21
1. Soit ϕ un morphisme d’anneau de C (R,R) dans

C 1(R,R).
a) Montrer que pour toute fonction positive f ∈ C (R,R),

la fonction ϕ(f ) est aussi positive.

b) En déduire que ϕ
(
|f |

)
= |ϕ(f )| pour toute f ∈ C (R,R).

2. En déduire que les anneaux C (R,R) et C 1(R,R) ne sont
pas isomorphes.

22 Soit f un morphisme d’anneau de R dans lui-même.
Montrer que f = Id

R
.

23 Soit K un corps, on pose K∗ = K \ {0K }.
On note f l’application x 7→ x2 de K∗ dans K∗.
1. Montrer que f est un morphisme de groupe.
2. On pose C = Imf . On appelle racine carrée tout mor-

phisme de groupe r : C→ K∗ tel que f ◦ r = IdC .
a) Montrer que si K =R, il y a une seule racine carrée.
b) Montrer que si K =C, il n’existe pas de racine carrée.
c) Montrer que si K =Q, il existe une infinité de racines

carrées.

24 On appelle valuation sur un anneau A toute application ν
de A dans R∪ {+∞} telle que pour tous x,y ∈ A :

• ν(xy) = ν(x) + ν(y)

• ν(x+ y) ≥min(ν(x),ν(y))

• ν(x) = +∞ ⇐⇒ x = 0

(en convenant que x+∞ = +∞ et +∞≥ x pour toutR∪{+∞})
1. Donner des exemples de valuations sur Z, sur Q.
2. Déterminer toutes les valuations sur Q.
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