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Dérivation Indications

1 a) Faire apparaître f (a) au numérateur et utiliser

f (X)− f (a)
X − a

−→
X→a

f ′(a).

Réponse : 2f ′(a)
b) Factoriser astucieusement le numérateur :

f (x)g(a)− f (a)g(x) =
(
f (x)− f (a)

)
g(a)− f (a)

(
g(x)− g(a)

)
pour faire apparaître les taux d’accroissements de f et g
au point a.
Réponse : f ′(a)g(a)− f (a)g ′(a)

2 Par hypothèse : τ(x) =
f (2x)− f (x)

x
−→
x→0

0.

Exprimer f (x)− f (0) à l’aide des τ
( x

2k

)
par télescopage en

écrivant d’abord :

f (x)− f
( x

2n

)
=

n∑
k=1

f
( x

2k−1

)
− f

( x

2k

)
=

n∑
k=1

τ
( x

2k

)
× x

2k

Ainsi pour tout x , 0 :

(⋆) ∀n ∈N,
f (x)− f (0)

x
=

n∑
k=1

τ
( x

2k

)
× 1

2k
+
f
(
x

2n
)
− f (0)

x

Revenir à la définition pour montrer : f (x)−f (0)
x −→

x→0
0.

En fixant ε > 0, l’hypothèse τ(x) −→
x→0

0 fournit un α tel que

|τ(x)| ≤ ε pour tout x ∈ [−α ,α] \ {0}.
Prendre alors la valeur absolue dans (⋆), utiliser l’inégalité
triangulaire, calculer la somme géométrique qui apparaît

puis faire tendre n vers +∞ pour obtenir
∣∣∣∣ f (x)−f (0)

x

∣∣∣∣ ≤ ε

3 a) Par composition mais attention à la rédaction.

b) Etudier la limite de f (x)−f (0)
x−0 . On trouve : f (x)−f (0)

x−0 −→
x→0+

1.

c) La limite du taux d’accroissement est compliquée, il est
plus simple d’appliquer le théorème de la limite de la
dérivée.
On trouve ici : f ′(x) −→

x→1−
+∞

4 a) • f est définie sur [0 ,2].

• Dérivabilité sur ]0 ,2[ Par composition mais attention à
la rédaction.

• En 0. On trouve :
f (x)− f (0)

x − 0
−→
x→0

0.

• En 2. On trouve
f (x)− f (0)

x − 0
−→
x→2
−∞.

b) • f est définie sur [−1 ,1].
• Dérivabilité sur ]−1 ,1[ Par composition mais attention

à la rédaction.

• En 1. On trouve :
f (x)− f (1)

x − 1
−→
x→0

1.

• En −1. f est paire : utiliser l’étude en 1
c) • f est définie sur R.

• Dérivabilité sur R \ {0,2}. Par composition mais atten-
tion à la rédaction.

• En 0. On trouve :
f (x)− f (0)

x − 0
−→
x→0

0.

• En 2. On trouve
f (x)− f (2)

x − 2
−→
x→2−

−8 et
f (x)− f (2)

x − 2
−→
x→2+

8
d) • f est définie sur R.

• Dérivabilité sur R \ {0}. Par composition et produit.

• En 0. On trouve :
f (x)− f (0)

x − 0
−→
x→0

0.

5 a)

b)
c)
d) Df =R (tableau de signes).

Sur R∗, f est dérivable (appliquer le th. de dérivabilité
d’une composée).
En 0 on étudie la limite du taux d’accroissement : on
trouve que f est dérivable à gauche et à droite mais que
f ′g (0) = −1 , f ′d (0) = 1, donc f n’est pas dérivable.
Si x , 0 : f ′(x) = Arctanx+ x

1+x2 .
e) Df =R.

Sur R∗, f est dérivable (th.dérivabilité d’une composée).
En 0 f (x)−f (0)

x−0 n’a pas de limite : f n’est pas dérivable.
Si x , 0 : f ′(x) = sin 1

x −
1
x cos 1

x .
f) Df = [−1 ,1].

Sur ]−1 ,1[, f est dérivable th. de dérivabilité d’une com-
posée).
En ±1 on étudie la limite du taux d’accroissement : on
trouve que f (x)−f (1)

x−1 −→
x→1
−∞ et f (x)−f (−1)

x+1 −→
x→−1

+∞ donc f

n’est dérivable ni en 1 ni en −1.
Pour x ∈ ]−1 ,1[ : f ′(x) = −x√

1−x2
.

g) Df =R∗+.
Sur ]0 ,1[ ou ]1 ,+∞[ , f est dérivable (th. de dérivabilité
d’une composée).
En 1 on étudie la limite du taux d’accroissement : on
trouve que f est dérivable à gauche et à droite mais que
f ′g (1) = −1 , f ′d (1) = 1, donc f n’est pas dérivable.
Pour x ∈ ]0 ,1[, f ′(x) = −1

x et pour x > 1, f ′(x) = 1
x .

h) Df = R. Sur R∗, f est dérivable (quotient de fonctions
dérivables dont le dénominateur ne s’annule pas). En 0
on étudie la limite du taux d’accroissement : on trouve
que f (x)−f (0)

x−0 −→
x→0

1 donc f est dérivable en 0.

Pour x < 0, f ′(x) = 1
(1+x)2 et pour x > 0, f ′(x) = 1

(1−x)2 .

i) Df = [0 ,1] ∪ [2 ,+∞[ (tableau de signes). Sur ]0 ,1[ ou
]2 ,+∞[, f est dérivable (th. de dérivabilité d’une com-
posée). En 0 on trouve f (x)−f (0)

x−0 −→
x→0+

0, en 1 on trouve
f (x)−f (1)

x−1 −→
x→1−

−∞, en 2 on trouve f (x)−f (2)
x−2 −→

x→2+
+∞.

Pour x < {0,1,2} on trouve f ′(x) = 5x4−12x3+6x2

2
√
x5−3x4+2x3

.

j) Df =R+. Sur R∗+, f est dérivable (composée ...).

En 0 on trouve que f (x)−f (0)
x−0 −→

x→0+
+∞ : f n’est pas déri-

vable.
Si x > 0, f ′(x) = 1

2
√
x(1+x)

.

6 1. Etudier la limite de f en 0+ en revenant à l’exponentielle

puis en utilisant les croissances comparées.
2. • f est dérivable surR∗+ par composition (mais attention

à la rédaction)
• on montre que f n’est pas dérivable en 0 :

• ou bien en montrant que
f (x)− f (0)

x − 0
−→
x→0
−∞

• ou bien à l’aide du théorème de la limite de la déri-
vée.



7 En partant de m(x) ≤ f (x) ≤M(x), encadrer
f (x)− f (a)

x − a
par

m(x)−m(a)
x − a

et
M(x)−M(a)

x − a
(distinguer x→ a+ et x→ a−).

8 Pour tout a ∈ I utiliser l’hypothèse pour montrer :
f (x)− f (a)

x − a
−→
x→a

0

9 1. Appliquer le TVI strictement monotone.

2. Appliquer le théorème de dérivation des fonctions réci-
proque à g = f −1.

10 Considérer la fonction g : x 7→ f (x)
x et montrer que

1. g possède un minimum k sur ]0 ,1].

2. Ce minimum k est strictement positif

1. Utiliser le théorème des bornes atteintes. Pour cela
il convient de commencer par prolonger g par conti-
nuité sur [0 ,1] afin d’obtenir une fonction continue
sur un segment. Il s’agit donc d’étudier la limite de
f (x)
x

en 0.

2. Il suffit de montrer que g(x) > 0 pour tout x ∈ [0 ,1].
Distinguer x = 0 et x ∈ ]0 ,1].

11 Le graphe de f est situé au-dessus de sa tangente en a.

12 Utiliser :

• Le théorème de la limite monotone appliqué à f ′ pour
montrer que f ′ a des demi-limites finies en tout point
(intérieur) à I

• Le théorème de la limite de la dérivée pour montrer que
f ′ est continue à gauche et à droite en tout point (inté-
rieur) à I

13 Commencer par traiter le cas où f est continue.

14

15 Utiliser la formule de Leibniz dans chaque cas.

a) Réponse. f (n)(x) = ex
(
x2 + (2n+ 1)x+n2 + 1

)
.

b) Réponse. Pour n ≥ 1 : f (n)(x) =
2× (−1)nn!
(1 + x)n+1 .

c) Réponse. f (n)(x) = n!
(
x2 + 2nx(1 + x) +

n(n− 1)
2

(1 + x)2
)
.

16 Utiliser les nombres complexes : f (x) = Re
(
e(
√

3+i)x
)
.

Il suffit de dériver x 7→ eλx avec λ =
√

3 + i puis de mettre
(
√

3 + i)n sous forme trigonométrique.

Réponse : f (n)(x) = 2ne
√

3x cos
(
x+n

π

6

)
.

17 Utiliser la formule de Leibniz en écrivant fn = u × v où
u(x) = xn−1 et v(x) = lnx.

On obtient : f
(n)
n (x) =

(n− 1)!
x

n∑
k=1

(n
k

)
(−1)k−1.

Remarquer alors que la somme se calcule en utilisant :
n∑

k=0

(n
k

)
(−1)k = 0 (formule du binôme).

18 Le résultat se vérifie pour n = 1 et n = 2 par le calcul de

f ′(x) et f ′′(x).
Pour n ≥ 2 procéder par récurrence forte en dérivant n fois
l’égalité :

∀x > 0, f ′(x)f (x) = x

On obtient :
n∑

k=0

(
n

k

)
f (k+1)f (n−k) = 0

Sortir alors le terme d’indice k = n pour exprimer f (n+1)

en fonction des autres dérivées puis calculer (−1)nf (n+1) en
écrivant (−1)n = (−1)k−1(−1)n−k−1 et en utilisant l’hypothèse
de récurrence forte sur les (−1)kf (k+1) et les (−1)n−k−1f (n−k).

19 Dériver n fois la fonction ϕ : x 7→ exf (x) avec Leibniz.
Réponse : il s’agit des fonctions x 7→ P (x)e−x où P est une fonc-
tion polynomiale de degré strictement inférieur à n

20 1. Procéder par récurrence sur n.

2. On trouve : (1 + x2)f ′(x) + 2xf (x) = 0.
Il suffit alors de dériver n fois cette relation en utilisant la
formule de Leibniz pour dériver chacun des deux termes

(1 + x2)f ′(x) = u(x)× f ′(x) et 2xf (x) = v(x)f (x)

21

22 Suivre la méthode du savoir-faire SF 5

23 Suivre la méthode du savoir-faire SF 5

24 1. Calculer la limite de f en 0.

2. Procéder par récurrence.
3. Procéder par récurrence. Pour l’hérédité, prouver que

f (n) est de classe C 1 en utilisant le théorème de la limite
de la dérivée :
• Justifier que f est de classe C n+1 sur R∗+ (composition)
• Calculer la limite des f (n+1) en 0 à l’aide de l’expres-

sion trouvée à la question 2.
• Le théorème de la limite de la dérivée assure que f (n)

est dérivable en 0 et que sa dérivée f (n+1) y est conti-
nue

25 Appliquer le théorème de Rolle à g : x 7→ f (x)e−x.

26 Appliquer le théorème de Rolle à ϕ : x 7→ f (x)αf (1 − x)β .
Attention de justifier soigneusement la continuité sur [0 ,1]
(composition).

27 1. Prolonger g par continuité en 0 puis appliquer le théo-

rème de Rolle à la fonction g.
2. Considérer un c ∈ ]0 ,1[ pour lequel : g ′(c) = 0.

28 Par l’absurde, supposer que l’équation a au moins cinq so-
lutions. La fonctionf : x 7→ x6 + ax3 + bx2 + cx + d s’annule
au moins cinq fois.
Aboutir à une contradiction en appliquant le théorème de
Rolle et en calculant f (3).

29 Procéder par récurrence sur n

30 Itérer le théorème de Rolle :

• f (a) = f (b) donc il existe c1 ∈ ]a ,b[ tel que f ′(c1) = 0 ;
• f ′(a)=f ′(c1)(= 0) donc il existe c2∈ ]a ,b[ tel que f ′′(c2)=0
• . . .

2



plus proprement, montrer par récurrence sur k ∈ ⟦1 ,n⟧
qu’il existe ck ∈ ]a ,b[ tel que f (k)(ck) = 0.

31 Prolonger ϕ : x 7→ f (tanx) par continuité sur [0 , π2 ] puis
appliquer le théorème de Rolle à ϕ sur ce segment.

32 1. a) Il suffit de résoudre l’équation ϕ(x) = 0 d’inconnue A.

Ici x est fixé : le réel A trouvé dépend de x.
b) ϕ s’annule trois fois : ϕ(a) = ϕ(x) = ϕ(b) = 0.

Avec le théorème de Rolle, montrer que ϕ′′ s’annule
une fois. Simplifier l’expression de ϕ′′ et observer que
l’égalité ϕ′′(c) = 0 conduit à f ′′(c) = A. L’égalité de-
mandée en découle en écrivant que ϕ(x) = 0.

2. Traiter les cas x = a et x = b à part.
Pour x ∈ ]a ,b[, utiliser la question 2. et montrer que

(x − a)(b − x) ≤ (b − a)2

4
pour tout x ∈ [a ,b].

33 1. Il suffit de résoudre l’équation ϕ(a) = 0 d’inconnue A.

2. La dérivée des produits sous le signe
∑

fait apparaître
des simplifications :

Réponse : ϕ′(t) =
(
A− f (n+1)(t)

) (b − t)n

n!
3. Appliquer le théorème de Rolle à la fonction ϕ sur [a ,b].

L’égalité ϕ′(c) = 0 conduit à f (n+1)(c) = A.
L’égalité demandée en découle en écrivant que ϕ(b) = 0.

34 C’est la même ruse que les exercices précédents :

• Considérer la fonction ϕ : t 7→ f (t)− A

24
t2(1− t)2 en fixant

la valeur de A pour que ϕ(x) = 0.

• Appliquer le théorème de Rolle plusieurs fois d’affilée à ϕ
pour obtenir l’existence d’un c ∈ ]0 ,1[ tel que ϕ(4)(c) = 0.

• Calculer ϕ(4) et utiliser l’égalité ϕ(4)(c) = 0 pour montrer
que f (4)(c) = A.

• Conclure à partir de la relation ϕ(x) = 0.

35 C’est la même ruse que les exercices précédents :

• Considérer la fonction ϕ : t 7→ f (t) − (t − a1) . . . (t − an)
A

n!
en fixant la valeur de A pour que ϕ(x) = 0.

• La fonction ϕ s’annule en au moins n + 1 points ce qui
assure (voir l’exemple du cours) l’existence d’un c tel que
ϕ(n)(c) = 0.

• Calculer ϕ(n)(t). Pour cela noter que la fonction t 7→
(t − a1) . . . (t − an) est de la forme t 7→ tn + Q(t) où Q est
un polynôme de degré au plus n−1 donc Q(n) = 0. Utiliser
l’égalité ϕ(n)(c) = 0 pour montrer que f (n)(c) = A.

• Conclure à partir de la relation ϕ(x) = 0.

36 C’est la même ruse que les exercices précédents, mais la
fonction ϕ est moins évidente à construire 1

• Considérer par exemple la fonction

ϕ : t 7→ f (a)(b−t)−f (b)(a−t)+(a−b)f (t)−A
2

(a−b)(b−t)(t−a)

en fixant la valeur de A pour que ϕ(c) = 0.

• Appliquer le théorème de Rolle plusieurs fois d’affilée à ϕ
pour obtenir l’existence d’un d ∈ ]0 ,1[ tel que ϕ′′(d) = 0.

• Utiliser l’égalité ϕ′′(d) = 0 pour montrer que f ′′(d) = A.

• Conclure à partir de la relation ϕ(x) = 0.

37 Par l’égalité des accroissements finis, pour chaque k ∈
⟦0 ,n − 1⟧, il existe un un ck ∈ [ kn ,

k+1
n ] tel que :

f ( k+1
n )− f ( kn )

1
n

= f ′(ck)

38 Appliquer l’inégalité des accroissements finis à f : t 7→
ln(1 + t) sur [1 ,+∞[.

Il suffit de majorer |f ′ | par
1
2

sur [1 ,+∞[.

39 Pour x ∈ ]0 ,+∞[ fixé, appliquer l’égalité des accroissements
finis à Arctan entre 0 et x.

40 Pour x > 0, appliquer l’égalité des accroissements finis à
g : x 7→ f (x)− f (−x) entre 0 et x.

41 Pour x > 0, appliquer l’égalité des accroissements finis à

f : x 7→ xe
1
x entre x et x+ 1.

42 1. Pour k ∈N∗ fixé, appliquer l’égalité des accroissements

fini à ln entre k et k + 1.

2. a) Sommer
1
k
≥ ln(k + 1)− lnk pour k ∈ ⟦1 ,n⟧.

b) Utiliser le th. de la limite monotone.
Pour la décroissance de (un) utiliser la minoration de
la question 1 : 1

n+1 ≤ ln
(
n+1
n

)
.

43 Revenir à la définition de la limite.
Fixer ε > 0 et A > 0 tel que |f ′(x)| ≤ ε pour x ≥ A.

Pour majorer
∣∣∣∣∣ f (x)

x

∣∣∣∣∣, commencer par appliquer l’égalité des

accroissements finis à f entre A et x, puis choisir x suffisam-

ment grand pour que
∣∣∣∣∣ f (A)

x

∣∣∣∣∣ ≤ ε

44 1. Remarquer que 2
3 f
′(a) + 1

3 f
′(b) est entre f ′(a) et f ′(b)

puis appliquer le TVI à f ′ .
2. Avec le résultat de la question 1, il suffit de montrer qu’il

existe a ∈ ]0 ,b[ tel que f (b)
b = f ′(a).

45 1. Il suffit de montrer que pour tout a > 0, la fonction

τa : x 7→
f (x)− f (a)

x − a
est négative. Pour ce faire montrer

que τa est croissante et de limite nulle en +∞.
2. a) Commencer par montrer que f ′ possède une limite

ℓ′ ≤ 0 en +∞ à l’aide du théorème de la limite mo-
notone. Il suffit ensuite de montrer par ailleurs que
ℓ′ ≥ 0. Pour cela, constater que ℓ′ ≥ f ′(c) pour tout
c > 0. Montrer alors que ℓ′ ≥ τx(2x) pour tous x > 0
à l’aide de l’égalité des accroissements finis et faire
tendre x vers +∞.

b) Considérer f : x 7→ sin(x2)
x par exemple.

46 1. Montrer que ϕ n’est pas strictement monotone.

2. Avec les notations du 1., il s’agit de montrer qu’il existe
c ∈ [a ,b] tel que f ′(c) = y.
Appliquer par exemple le théorème de Rolle à la fonc-
tion ϕ.

1. L’idée est de multiplier l’égalité demandée par (a− b)(a− c)(b − c) puis de « faire varier » l’un des trois paramètre (par exemple c)

3


