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Limites et continuité Indications

1 Raisonner par l’absurde en supposant ℓ > 0. Ensuite l’idée
est de construire des valeurs de f arbitrairement grande en
ajoutant des accroissements f (x+ 1)− f (x).
Pour cela :

• Avec la définition de la limite, montrer qu’il existe A > 0
tel que f (x+ 1)− f (x) ≥ ℓ

2 pour x ≥ A.

• En faisant apparaître un télescopage, montrer que pour
tout n ∈N, f (A+n)− f (A) ≥ n ℓ

2 .

• Aboutir à une contradiction en examinant la limite de
f (A+n).

2 a) Utiliser la quantité conjugué.

Réponse : f (x) −→
x→+∞

7
2
.

b) Utiliser la quantité conjugué.
Réponse : f (x) −→

x→+∞
0.

c) Revenir à l’exponentielle et utiliser une limite classique.
Réponse : f (x) −→

x→0
e.

d) Au dénominateur, factoriser par ex dans le logarithme
puis écrire le dénominateur comme une somme et facto-
riser le dénominateur par x Réponse : f (x) −→

x→+∞
+∞.

e) Revenir à l’exponentielle et utiliser les croissances com-
parées en faisant intervenir lnx dans le quotient qui ap-
paraît dans l’exponentielle.
Réponse : f (x) −→

x→+∞
1.

f) Ecrire f (x) =
x

sinx
× sinx ln(sinx) puis utiliser les crois-

sances comparées pour le second facteur.
Réponse : f (x) −→

x→0+
0.

3 a) Produit d’une fonction de limite nulle par une fonction

bornée.
Réponse : f (x) −→

x→+∞
0.

b) Factoriser par les termes prépondérants : x au numéra-
teur et x2 au dénominateur. On est ramené au produit
d’une fonction de limite nulle par une fonction bornée
Réponse : f (x) −→

x→+∞
0.

c) Procéder par minoration en minorant lnx + cosx par
lnx − 1 .
Réponse : f (x) −→

x→+∞
+∞.

d) Procéder (par exemple) par encadrement en encadrant
Arctan.
Réponse : f (x) −→

x→+∞
1.

e) Procéder par encadrement en utilisant x − 1 ≤ ⌊x⌋ ≤ x.
Réponse : f (x) −→

x→+∞
1.

f) La fonction f est nulle sur ]0 ,1[.
Réponse : f (x) −→

x→0+
0.

4 • Pour a > 1, procéder par minoration en minorant a+sinx

par a− 1 Réponse : f (x) −→
x→+∞

+∞.

• Pour a < −1, procéder par majoration en majorant a+sinx
par a+ 1 Réponse : f (x) −→

x→+∞
−∞.

• Pour a ∈ [−1 ,1],Montrer que f n’a pas de limite en
construisant deux suites (un)n∈N et (vn)n∈N de limites
infinies telles que f (un)→ 0 et f (vn)→ +∞.

5 On utilise le savoir faire SF 3 en construisant dans chaque

cas une suite (un) et une suite (vn) pour lesquelles
(
f (un)

)
et

(
f (vn)

)
ont des limites différentes.

a) On peut prendre un =
1

2nπ
et vn =

1
2nπ+ π

2

b) On peut prendre un = n et vn = n+
1
2

c) On peut prendre un = n et vn = n+
1
2

6 1. Procéder par récurrence sur n ∈N. Pour l’hérédité, faire

apparaître f (2nx) en écrivant
f (2n+1x)
f (x)

=
f (2n+1x)
f (2nx)

×
f (2n+1x)
f (x)

2. Fixer n tel que 1 ≤ c ≤ 2n puis procéder par encadrement
en utilisant la croissance de f et la question 1.

3. Se ramener à la question 2 en faisant apparaître 1/c ≥ 1 :
f (cx)
f (x)

=
f (cx)

f ( 1
c × cx)

=
1

f ( 1
c × cx)
f (cx)

7

8 a) Fixer n et étudier la limite à gauche et la limite à droite

f . Pour cela, calculer f (x) pour x ∈ ]n − 1 ,n[ puis pour
x ∈ ]n,n+ 1[.
Réponse : f (x) −→

x→n−
1 et f (x) −→

x→n−
0 donc f n’est pas conti-

nue en n.
b) Fixer n et étudier la limite à gauche et la limite à droite

g. Pour cela, calculer g(x) pour x ∈ ]n − 1 ,n[ puis pour
x ∈ ]n,n+ 1[.
Réponse : g(n) = n, g(x) −→

x→n−
n et g(x) −→

x→n−
n et g est conti-

nue en n.

9 a) Revenir à l’exponentielle.

• La continuité sur R∗+ se justifie par composition (mais
attention à la rédaction)

• La limite en 1 s’obtient par croissances comparées.

b) • La continuité sur [0 ,1[∪ ]1 ,2] se justifie par composi-
tion (mais attention à la rédaction) puis quotient.

• La limite en 1 se calcule en faisant apparaître un taux
d’accroissement.

c) • La continuité sur R∗ se justifie par composition (mais
attention à la rédaction) puis produit.

• La limite en 0 se calcule en faisant remarquant le pro-
duit d’une fonction de limite nulle par une fonction
bornée.

d) Ici la fonction est définie sur ]0 , e[∪ ]e ,+∞[ donc il y a
deux points à considérer pour le prolongement.

• La continuité sur R∗+ \ {e} se justifie par composition.
• Les limites en e se calculent en calculant la limite de

lnx
lnx−1 (qui n’est pas une forme indéterminée).
On obtient des limites infinies : f n’est pas prolon-
geable par continuité en e.

• La limite en 0 se calcule en factorisant par lnx le nu-
mérateur et le dénominateur dans l’exponentielle.

10 Deux méthodes sont possibles :



• Première méthode. En suivant l’indication on peut expri-
mer M en fonction de f , g et |f − g | et conclure par opéra-
tion sur les fonctions continues.

• Deuxième méthode. Revenir à la définition de la continuité
i.e. fixer a ∈R et montrer que M(x) −→

x→a
M(a). Distinguer

trois cas :

• Si f (a) > g(a). Montrer que M coïncide avec f sur tout
un voisinage de a.

• Si g(a) > f (a). Montrer que M coïncide avec g sur tout
un voisinage de a.

• Si f (a) = g(a). Fixer ε > 0 et montrer que |M(x)−M(a)| ≤
ε au voisinage de a en traduisant la continuité de
f et de g i.e. le fait que lim

x→a
f (x) = f (a) = M(a) et

lim
x→a

g(x) = g(a) = M(a)

11

12 Réponse :

• f n’est continue en aucun point de Q.

• f est continue sur R \Q

13 Procéder par l’absurde en supposant l’existence de a < b tel
que f (a) > f (b). Exploiter la continuité de f pour étendre
cette inégalité sur des voisinages de a et b i.e. construire
un α > 0 tel que f (x) > f (y) pour tous x ∈ [a − α ,a + α]
et y ∈ [b − α ,b + α]. Construire alors n et m tels que
nα ∈ [a−α ,a+α] et mα ∈ [a−α ,a+α].

14 1. L’ensemble A des périodes de f est une partie non vide

et minorée deR donc possède une borne inférieure T ≥ 0.
Il s’agit de montrer que :

• T > 0. On peut par exemple procéder par l’absurde.
Fixer a > 0 tel que f (a) > f (0) (par exemple) puis ex-
ploiter la continuité de f pour étendre cette inégalité
sur un voisinage de a i.e. construire α > 0 tel que
f (x) > f (0) pour tout x ∈ [a − α ,a + α]. Considérer
une période β < α de f et construire n ∈ N tel que
nβ ∈ [a−α ,a]

• T est une période de f . Utiliser les suites i.e. considérer
une suite (Tn) de périodes de f telle que Tn −→n→+∞

T .

2. La fonction f : x 7→

1 si x ∈Q
0 sinon

.

15 1. Utiliser la caractérisation des intervalles i.e. montrer

que si x,y ∈ A sont tels que x < y et si t ∈ [x ,y] alors
t ∈ A.

2. Posant a = infA et b = supA il s’agit de montrer que
a,b ∈ A. Utiliser les suites.

16 1. Il s’agit d’une suite du type un+1 = f (un) où f : x 7→ ex−1

est croissante donc on dispose d’une méthode classique
(voir partie I du cours sur l’exercice Ex. 43, banque INP) :

• Etudier le signe de g : x 7→ ex − 1− x
• Distinguer les cas x0 < 0, x0 = 0, x0 > 0.
• Dans le cas x0 < 0 :

• Montrer par récurrence que un < 0 pour tout n ∈N
• Montrer que u est croissante avec le signe de g.
• Montrer que limun = 0 grâce au critère ℓ = f (ℓ).

• Raisonner de même pour x0 > 0.

2. Etant donné x0 ∈ R− quelconque montrer que h(x0) =
h(0).
Pour cela utiliser la question 1.
L’hypothèse faite sur f permet d’écrire f (un+1) = f (un)
et donc f (x0) = f (un) pour tout n ∈N.
La caractérisation séquentielle de la limite assure par
ailleurs que f (un) −→

n→+∞
0.

3. La fonction x 7→ ex−1 a pour réciproque ϕ : y 7→ ln(1+y)
de R+ dans R∗+.
La fonction h vérifie aussi h(ln(1 + y)) = h(y) pour tout
y ≥ 0.
Adapter le raisonnement des questions 1 et 2 en fixant
x0 ≥ 0 puis en considérant la suite v définie par v0 = x0
et vn+1 = ϕ(vn).
En adaptant le raisonnement de la question 1, on montre
que vn→ 0.
En copiant le raisonnement de la question 2, on montre
que h(x0) = h(0).

17 Procéder par analyse-synthèse.
Pour l’analyse, en posant un = x

2n pour tout n ∈N :

• D’une part la suite
(
f (un)

)
est constante vu l’hypothèse

faite sur f .

• D’autre part f (un)→ f (0) (caractérisation séquentielle de
la continuité)

La premier terme f (u0) = f (x) est donc égal à la limite f (0),
ceci pour tout x ∈R : f est constante.
Ne pas oublier la synthèse.

18 Procéder par analyse-synthèse.
Pour l’analyse, prendre x ∈ ]0 ,1[.
En posant un = x2n pour tout n ∈N :

• D’une part la suite
(
f (un)

)
est décroissante vu l’hypothèse

faite sur f .

• D’autre part f (un)→ f (0) (caractérisation séquentielle de
la continuité)

Cela donne f (x) ≥ f (0).
En posant vn = x1/2n , on obtient de même f (x) ≤ f (1).
L’hypothèse f (0) = f (1) permet de conclure.
Ne pas oublier la synthèse.

19 1. Procéder par récurrence sur n en utilisant

sin
(

x
2n+1

)
cos

(
x

2n+1

)
= 1

2 sin
(
x

2n
)

pour l’hérédité

2. Procéder par analyse-synthèse.
Pour l’analyse, en fixant x , 0 et en réitérant l’hypothèse
faite sur f , on obtient :

∀n ∈N, f (x) = f
( x

2n

) n∏
k=1

cos
( x

2k

)
En utilisant alors le résultat de la question 1 puis en
prennant la limite pour n→ +∞ du membre obtenu à
droite de l’égalité on trouve :

f (x) = f (0)
sinx

x
Les candidats solutions sont donc les fonction f de la
forme

f : x 7→

α
sinx

x
si x , 0

α si x = 0

2



Ne pas oublier la synthèse dans laquelle il s’agit de
vérifier que les candidats obtenus satisfont la relation
f (2x) = f (x)cosx et sont continues en 0.

20 1. Fixer x,y ∈R et procéder par récurrence sur n ∈N. Pour

l’hérédité, étant donné k ∈ ⟦0 ,2n⟧, remarquer que si l’on

note xn =
(
1− k

2n

)
x+

k

2n y et xn+1 =
(
1− k

2n+1

)
x+

k

2n+1 y,

alors : xn+1 =
x+ xn

2
.

2. Il suffit de montrer que tout t ∈ [0 ,1] est limite d’une

suite d’éléments de A. Considérer la suite
( ⌊2nt⌋

2n

)
n∈N

.

3. Etant donné x,y ∈R et t ∈ [0 ,1], il s’agit de montrer :
(⋆) f

(
(1− t)x+ ty

)
≤ (1− t)f (x) + tf (y)

Combiner les deux questions précédentes :
• La question 2 assure qu’il existe une suite (tn) de A

telle que tn −→n→+∞
t

• La question 1 assure que l’inégalité (⋆) est vraie pour
tous les tn :

Il suffit de passer aux limites dans les inégalités (sans
oublier de préciser en quoi la continuité de f est essen-
tielle).

21 1.

2. Procéder par analyse-synthèse :
• Dans l’analyse, avec la question 1, la fonction g : x 7→
f (x) − f (0) vérifie g(x + y) = g(x) + g(y). On sait alors
(exercice vu dans le cours), que g est une fonction
linéaire i.e. de la forme x 7→ ax.

• Ne pas oublier l’étape de synthèse.
Solutions : il s’agit des fonctions affines x 7→ ax+ b.

22 On sait d’après le cours que les fonction f : R→ R, conti-
nues, telles que : (⋆) : f (x + y) = f (x) + f (y) sont les
fonctions linéaires x 7→ ax. On peut traiter chaque question
en se ramenant à l’équation (⋆).
1. La fonction nulle est solution. Pour les autres, procéder

par analyse-synthèse. Dans l’analyse, commencer par
montrer que f > 0 et montrer que g = lnf est solution
de l’équation (⋆). Ne pas oublier la synthèse.
Solutions : il s’agit des fonctions x 7→ eax

2. Procéder par analyse-synthèse. Dans l’analyse, montrer
que g = f ◦ exp est solution de l’équation (⋆). Ne pas
oublier la synthèse.
Solutions : il s’agit des fonctions x 7→ a lnx

23 Appliquer le T.V.I afin de montrer que ϕ : x 7→ f (x) − x
s’annule. Pour cela remarquer (en factorisant par x) que
ϕ(x) −→

x→+∞
−∞.

24 1. Appliquer le T.V.I afin de montrer que ϕ : x 7→

f
(
x+

1
2

)
− f (x) s’annule sur [0 , 1

2 ].

2. Appliquer le T.V.I afin de montrer que la fonction ϕ :

x 7→ f
(
x+

1
n

)
− f (x) s’annule sur [0 ,1− 1

n ].

On trouve
n−1∑
k=0

ϕ
( k
n

)
= 0. Que peut-on en déduire quant

aux signes des ϕ
( k
n

)
?

25 Appliquer le T.V.I afin de montrer que ϕ : x 7→ f (x)− g(x)
s’annule.
Il s’agit de trouver un a pour lequel ϕ(a) ≥ 0 et un b pour
lequel ϕ(b) ≤ 0.
Dessiner l’hypothèse f ([0 ,1]) ⊂ g([0 ,1]) : il s’agit de trouver
un point a en lequel on est certain que le graphe de g est
au-dessus de celui de f est un point b en lequel le graphe de
g est en dessous de celui de f . On peut par exemple prendre
a tel que : g(a) = max

[0 ,1]
g et b tel que : g(b) = min

[0 ,1]
g

26 Appliquer le TVI strictement monotone afin de montrer
que ϕ : x 7→ f (x)− x s’annule une seule fois sur R.
Examiner les limites de ϕ en ±∞.

27 Appliquer le T.V.I afin de montrer que la fonction ϕ :
x 7→ f (x)− x s’annule sur R. Considérer un point fixe a de

f ◦ · · · ◦ f︸    ︷︷    ︸
n fois

et poser xk = f ◦ · · · ◦ f︸    ︷︷    ︸
k fois

(a) puis calculer
n−1∑
k=0

ϕ(xk).

28 Procéder par l’absurde.

29 Appliquer le théorème des bornes atteintes à la fonction
ϕ : x 7→ g(x)− f (x).

30 Formaliser l’hypothèse faite sur f :
il existe M tel que pour tout x ∈R : −M ≤ f (x) ≤M.

• f ◦ g est bornée par M (on peut prendre g(x) au lieu de x
dans l’encadrement ci-dessus).

• Pour montrer que g ◦ f est bornée, justifier que g est bor-
née sur [−M ,M].

31 La fonction f possède un minimum m et un maximum M
sur [1 ,3].
En évaluant l’égalité de l’énoncé en un point x judicieuse-
ment choisi, on montre que m ≥ −2.
De même on montre à nouveau en évaluant que M ≤ −2.
Ceci assure que f est constante, de valeur −2.

32 Utiliser la définition de la limite lim
x→+∞

f (x) = +∞ avec l’exi-
gence A = f (0) pour assurer l’existence d’un B tel que pour
tout x en dehors du segment [0 ,B] : f (x) ≥ f (0).
Il reste ensuite à appliquer un théorème.

33 1. Avec y = 0, l’hypothèse sur f assure qu’il existe M > 0

tel que f ne s’annule pas sur R \ [−M ,M].
Le théorème des valeurs intermédiaires montre alors que
f est de signe constant sur chaque intervalle ]−∞ ,−M[
et ]M ,+∞[. Montrer que ces deux signes ne peuvent être
identiques en procédant par l’absurde et en montrant
qu’alors f serait minorée sur R, notamment à l’aide du
théorème des bornes atteintes sur [−M ,M], contredisant
ainsi la surjectivité de f .

2. En supposant par exemple que
f < 0 sur ]−∞ ,−M[ et f > 0 sur ]M ,+∞[

on montre que : f (x) −→
x→+∞

+∞ et f (x) −→
x→−∞

−∞.

Revenir pour cela à la définition de la limite. Fixer A > 0
et adapter le raisonnement précédent avec y = A pour
montrer qu’il existe M ′ > 0 tel que :

• Ou bien f > A sur ]M ′ ,+∞[ et f < A sur ]−∞ ,−M ′[
• Ou bien f < A sur ]M ′ ,+∞[ et f > A sur ]−∞ ,−M ′[

3



montrer que la seconde alternative est impossible en
procédant de même par l’absurde et en montrant que f
serait majorée sur R.

34 1. Le réel x étant fixé, appliquer le théorème des bornes

atteintes à la fonction ϕx : t 7→ f (t) + xg(t).
2. Faire apparaître astucieusement yg(tx) :

M(x) = f (tx) + yg(ty)︸          ︷︷          ︸
majoré par M(y)

+g(tx)(x − y)

3. Majorer |g(tx)| à l’aide du théorème des bornes atteintes.

35 1. Considérer x ∈ [0 ,1] en lequel f atteint son maximum.

2.

36 1. Pour n ≥ 2 fixé, appliquer le TVI strictement monotone

à f : x 7→ xn + x2 − 1 sur [0 ,1].
2. Fixer n ∈N. Afin de montrer que xn+1 ≥ xn, il suffit de

montrer que fn+1(xn+1) ≥ fn+1(xn).
Puisque fn+1(xn+1) = 0, il suffit donc de montrer que
0 ≥ fn+1(xn).
Pour cela, calculer fn+1(xn) = xn+1

n + x2
n − 1 en utilisant le

fait que 0 = xnn + x2
n − 1.

3. Le th. de la limite monotone assure que xn −→n→+∞
ℓ ≤ 1.

Montrer alors par l’absurde que ℓ = 1.
Pour obtenir une contradiction, faire tendre n vers l’in-
fini dans la relation xnn = x2

n − 1.

37 1. Pour n ≥ 3 fixé, appliquer le TVI strictement monotone

à f : x 7→ xn−nx+1 sur chaque intervalle [0 ,1[ et ]1 ,+∞[.
2. Montrer d’abord que (αn) est décroissante.

Fixer n ∈N. Afin de montrer que αn+1 ≤ αn, il suffit de
montrer que fn+1(αn+1) ≥ fn+1(αn).
Puisque fn+1(αn+1) = 0, il suffit donc de montrer que
0 ≥ fn+1(αn).
Pour cela, calculer fn+1(αn) = αn+1

n − (n+ 1)αn + 1 en uti-
lisant le fait que 0 = αn

n −nαn + 1.
Le th. de la limite monotone assure ensuite que αn −→n→+∞
ℓ ≥ 0.
Montrer alors par l’absurde que ℓ = 0.
Pour obtenir une contradiction, faire tendre n vers l’in-
fini dans la relation αn

n = nαn − 1.

3. Pour montrer que f
(
1 +

2
√
n

)
≥ 0, minorer

(
1 +

2
√
n

)n
en

ne gardant que les trois premiers termes dans la formule
du binôme.
Comparer ensuite 1 +

2
√
n

et βn (fn est croissante sur

[1 ,+∞[).
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