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Arithmétique des entiers relatifs Indications

1 Simplifier 78n+1 + 10(−1)n modulo 17.
Montrer que 78 ≡ −1 [17] , d’où : 78n+1 ≡ (−1)n × 7 [17].

2 a) Observer que 32 ≡ 2 [7] ce qui permet d’écrire 32n+1 +

2n+2 ≡ 2n × 3 + 2n+2 [7] et de factoriser par 2n. (on peut
aussi procéder par récurrence sur n en utilisant alors
32 ≡ 2 [7] pour l’hérédité).

b) Même technique en commençant par observer que 26 ≡
−4 [17] et que l’on a aussi 34 ≡ −4 [17].

3 • Méthode 1. Par récurrence sur n.

• Méthode 2. On remarque que 54 ≡ 1 [16] donc on raisonne
modulo 4 pour n i.e. on distingue quatre cas : n = 4k,
n = 4k+1, n = 4k+2 et n = 4k+3 et on vérifie pour chaque
cas que 5n (qui est congru à 50, 51, 52 ou 53 selon le cas
considéré) est congru à 4n+ 1 modulo 16

4 Faire un tableau de congruence modulo 6 en écrivant les
valeurs de n, n+ 2, 7n− 5 pour chaque entier 0,1,2,3,4 et 5.

5 Factoriser : an − bn = (a− b)
n−1∑
k=0

akbn−1−k

︸        ︷︷        ︸
S

puis montrer que n divise a−b (facile) et que n divise S (cal-
culer S modulo n uniquement en fonction de a en utilisant
b ≡ a [n]).

6 Utiliser la méthode du cours :
a) On trouve 310 ≡ −1 [25] puis utiliser 32189 = 310×218+9.

Réponse : Le reste vaut 8.
b) Commencer par simplifier 3872 ≡ 2 [5] puis observer par

exemple que 22 ≡ −1 [5].
Réponse : Le reste vaut 2.

7 Utiliser la méthode du cours pour simplifier toutes les puis-
sances
a) On trouve 210 ≡ 1 [11] puis utiliser 2123 = 212×10+3.

On trouve 35 ≡ 1 [11] puis utiliser 3121 = 324×5+1.

b) De même en utilisant 210 ≡ 1 [11] et 55 ≡ 1 [11]
c) De même en utilisant 210 ≡ 1 [11] et 55 ≡ 1 [11]
d) De même en utilisant 93 ≡ 1 [7] et 43 ≡ 1 [7]

8 On démontre que 24n ≡ 2 [7] pour tout n ∈N.
Deux possibilités :

• Par récurrence , en utilisant 24 ≡ 2 [7] pour l’hérédité.

• On constate que 23 ≡ 1 [7].
En écrivant 4n sous la forme 4n = 3q+ r : 24n = 2r .
Il suffit donc de calculer r. Pour cela simplifier 4n modulo
3.

9 On simplifie a =
10∑
k=1

1010k modulo 7.

D’abord 10 ≡ 3 [7] donc a =
10∑
k=1

310k [7].

Il reste à simplifier les 310k modulo 7.
Constater que 36 ≡ 1 [7] donc reste à trouver le reste de la

division euclidienne de 10k modulo 6 (car si 10k = 6q + r

alors 310k = (36)q × 3r ≡ 1× 3r [7]).
On trouve que 10k ≡ 4 [6] donc a ≡ 10× 4 ≡ 5 [7].

10 Appliquer l’algorithme d’Euclide étendu (on calcule le
PGCD puis on « remonte » pour obtenir une relation de
Bézout).
a) Réponse : 62∧ 43 = 1 et 13× 43− 9× 62 = 1.
b) Réponse : 744∧ 516 = 12 et 13× 516− 9× 744 = 12
c) Réponse : 720∧ 105 = 15 et 2× 720− 5× 105 = 15.

11 Par récurrence à l’aide de la propriété a∧b = b∧(a−bq)

12 Procéder par double inclusion en commençant dans chaque
cas par traduire soigneusement quelle est l’hypothèse de
départ et ce que l’on cherche à montrer.

13 On suit la méthode du savoir faire SF 7

a) Une solution particulière est (x0, y0) = (12,20) (multiplier
par 4 une relation de Bézout entre 42 et 25 par exemple).
Solutions : Les (12 + 25k,20 + 42k) avec k ∈Z

b) Une solution particulière est (x0, y0) = (2,0).
Solutions : Les (2− 5k,3k) avec k ∈Z

c) Pas de solution.
d) Une solution particulière est (x0, y0) = (−9,13).

Solutions : Les (−9 + 43k,13− 62k) avec k ∈Z

14 On suit la méthode du savoir faire SF 4

a) Solutions : Les −5 + 28k avec k ∈Z
b) Solutions : Les 5 + 7k avec k ∈Z
c) Pas de solution.

15 Dans les deux cas, procéder par analyse-synthèse.
1. Dans l’analyse, écrire x = 10x′ et y = 10y′ où x′ ∧ y′ = 1

et x′ + y′ = 10.
Ne pas oublier l’étape de synthèse.
Solutions. (10,90), (90,10), (30,70) et (70,30).

2. Dans l’analyse, commencer par remarquer que d = x∧ y
divise 75∧ 40 = 5. Il y a donc deux valeurs plausibles
pour d : d = 1 ou d = 5.
Pour chaque cas, écrire x = dx′ et y = dy′ où x′ ∧ y′ = 1.
On est ramené à un système « somme-produit » de la

forme

x′ + y′ = s

x′y′ = p
que l’on sait résoudre en se rame-

nant à une équation du second degré : vérifier que les
solutions obtenues sont bien entières.
Solutions. (15,25) et (25,15).

16 Dans tous les cas, procéder par analyse-synthèse.
a) Dans l’analyse, montrer que x∧ y = 1.

Solution. (1,1).
b) Dans l’analyse, montrer que x ∧ y = 1 ce qui permet

d’écrire x ∨ y = xy et assure que x et y vérifient xy −
x − y + 1 = 0.
Factoriser cette expression pour se ramener à un produit
nul.
Solutions. Tous les couples (1, k) et (k,1) pour k ∈N.

c) Dans l’analyse, poser d = x∧ y et écrire x = dx′ et y = dy′

où x′∧y′ = 1 ce qui permet d’écrire x′∨y′ = x′y′ et assure
que x′ et y′ vérifient x′y′ − 2x′ − 3y′ + 1 = 0.



Factoriser cette expression pour se ramener à un produit
égal à 5. Conclure en examinant les diviseurs de 5.
Solutions. Tous les couples (4d,7d) et (8d,3d) pour d ∈N.

17 1. A tâtons on trouve que −11 convient.

Il y a une méthode générale : on trouve une relation de
Bézout entre 17 et 15 i.e. u,v ∈Z tels que 17u + 15v = 1.
L’entier 15v vérifie 15v ≡ 1 [17] et 15v ≡ 0 [15].
L’entier 17u vérifie 17u ≡ 0 [17] et 17u ≡ 1 [15].
Ainsi x0 = 4× 15v + 6× 17v est solution du système.

2. Procéder par analyse-synthèse.
Dans l’analyse, si x est solution alors 17 | x − x0 et
15 | x−x0 et 15 et 17 sont premiers entre eux donc x−x0
est un multiple de 15× 17.
Il ne reste qu’à tester les candidats.

18 a) D’après le cours il suffit de montrer que (2n+ 1)∧n = 1

et (2n+ 1)∧ (n+ 1) = 1.
Pour cela les trois méthodes du savoir faire SF 9 sont
possibles.

b) De même qu’au a)

19 Pour montrer que (n + 1) |
(2n
n

)
utiliser la formule « sans

nom » :

(n+ 1)×
(
2n+ 1
n+ 1

)
= (2n+ 1)×

(
2n
n

)
puis le lemme de Gauss.

20 Poser d = a∧c et δ = a∧ (bc) et montrer que d | δ (il suffit de
montrer que d divise a et bc) et que δ | d (il suffit de montrer
que δ divise a et c)

21 • Si a∧ b = 1, montrer que a+ b est premier avec a et avec

b. Pour cela les trois méthodes du savoir faire SF 9 sont
possibles.

• Si (a+b)∧ab = 1, on peut montrer que a∧b = 1 en utilisant
l’option 2 ou l’option 3 du savoir faire SF 9

22 a) A l’aide d’une relation de Bézout entre m et n, exprimer

x en fonction de xm et xn.
b) Ecrire x sous forme irréductible x = p

q avec p∧ q = 1. Le
fait que xn ∈Z assure que qn | pn mais on sait aussi que
pn ∧ qn = 1.

23 On peut tout montrer par récurrence, l’hypothèse de récur-
rence étant :

il existe an,bn ∈N tels que

(1 +
√

2)n = an + bn
√

2
an ∧ bn = 1

Pour l’hérédité, on développe
(1 +
√

2)(an +
√

2bn) = (an + 2bn) +
√

2(an + bn)

Ne pas oublier de montrer que an+1 = an + 2bn et bn+1 =
an + bn sont premiers entre eux (savoir faire SF 9 ).

24 1. Considérer l’ensemble des valeurs prises par rk .

2. Fixer k < ℓ telq que rk = rℓ et montrer que aℓ−k ≡ 1 [n].
3. Montrer que rk+N ≡ rk pour tout k ∈N, ce qui assure en

fait l’égalité rk+N = rk vu que l’on a affaire à des entiers
de ⟦0 ,n− 1⟧.

25 k divise n! + k pour chaque k ∈ ⟦2 ,n⟧

26 a) (a− 1) divise ap − 1 : ap − 1 = (a− 1)×
p−1∑
k=0

ak

Or ap − 1 n’a que deux diviseurs positifs : 1 et ap − 1.
b) Exercice classique traité en cours (Mersenne).

27 a) Utiliser le petit théorème de Fermat (avec n+ 1 et avec

n).
b) Il s’agit de montrer que 2p divise N = (n+ 1)p − (np + 1).

p et 2 sont premiers entre eux donc il suffit de montrer
que 2 et p divisent N .
Avec la question a), il reste à montrer que N ≡ 0 [2].
On peut faire un tableau de congruence en calculant N
modulo 2 selon que n = 0 ou n = 1.

28 42 = 2× 3× 7 et 2,3 et 7 sont deux à deux premiers entre
eux donc il suffit de montrer que n7 − n ≡ 0 [p] avec p = 7,
p = 2 et p = 3.
Pour p = 7 c’est immédiat avec le petit théorème de Fermat.
Pour les deux autres on peut aussi partir de l’égalité fournie
par Fermat pour obtenir le résultat voulu (par ex. pour p = 2
on part de n2 ≡ n [2] puis on multiplie par n jusqu’à obtenir
n7 à gauche de l’égalité en utilisant n2 ≡ n pour le membre
de droite).
On peut aussi écrire 42 = 7×6 avec 7∧6 = 1 et montrer que
7 | n7 − n avec Fermat et que 6 | n7 − n avec un tableau de
congruences.

29 1. Par l’absurde supposer qu’aucun des facteurs premiers

de N n’est congru à 3 modulo 4. Montrer qu’alors tous
les facteurs premiers de N sont congrus à 1 modulo 4 et
en déduire une contradiction sur N .

2. Procéder par l’absurde en supposant qu’ils sont en
nombre fini et noter p1, . . . ,pn tous les nombres premiers
congrus à 3 modulo 4. Poser alors N = 4p1 · · ·pn − 1 et
appliquer la question 1 à l’entier N .

30

31 1. Poser α = vp(a) et β = vp(b), écrire a et b sous la forme :

a = pαq et b = pβq′ puis factoriser a+ b en supposant
par exemple α ≤ β

2.
3. Reprendre la factorisation en supposant par exemple

α < β et écrire a + b sous la forme pαq′′ où p ne divise
par q′′ .

32 Si a | b il suffit d’élever au carré l’égalité b = ka.
Si a2 | b2, c’est plus compliqué.
Au choix :

• On peut utiliser les décompositions en facteurs premiers
en écrivant

a = p
α1
1 × . . .p

αn
n et b = p

β1
1 × . . .p

βn
n

Il s’agit alors de montrer que αi ≤ βi pour tout i ∈ ⟦1 ,n⟧.
Pour cela traduire le fait que a2 | b2 à l’aide des décompo-
sitions de a2 et b2.

• On peut aussi utiliser les valuations p-adiques :

• Il s’agit de montrer que vp(a) ≤ vp(b) pour tout p ∈ P
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• L’hypothèse est : vp(a2) ≤ vp(b2) pour tout p ∈ P
Il suffit d’utiliser l’additivité des valuations p-adiques.

33 L’hypothèse est : ab = c2 pour un c ∈Z.
Deux possibilités ensuite :

• Utiliser les valuations p-adiques L’hypothèse est que vp(c)
est divisible par 2 pour tout p ∈ P et il s’agit de montrer
que pour tout p ∈P , les valuations p-adiques de a et b
sont divisibles par 2. Pour cela combiner :

• La propriété d’additivité : vp(ab) = vp(a) + vp(b).
• Le fait que si vp(a) , 0 alors vp(b) = 0 (car a∧ b = 1).

• Utiliser les décompositions en facteurs premiers. Ecrire :
a = p

α1
1 × . . .p

αn
n b = q

β1
1 × . . .q

βm
m et c = x

γ1
1 × · · · ×x

γs
s

où {p1, . . . ,pn} ∩ {q1, . . . , qm} = ∅ car a∧ b = 1.
Il s’agit alors de montrer que les αi et βi sont divisibles
par 2.
Pour cela écrire deux décompositions de ab :

• ab = p
α1
1 × . . .p

αr
r q

β1
1 × . . .q

βr
r

• ab = c2 = x
2γ1
1 × · · · × x2γs

s

L’unicité de la décomposition en facteurs premiers per-

met d’identifier les facteurs : tout pαi
i est un x

2γj
j et de

même pour les qβii .

34 Deux possibilités :

• Utiliser les valuations p-adiques. Il suffit de montrer que
pour tout p ∈ P, vp(n) est divisible par 6. Pour cela, écrire
n = x2 et n = y3 et utiliser les additivité des valuations
p-adiques pour montrer que 2 divise vp(n) et que 3 divise
vp(n).

• Utiliser les décompositions en facteurs premiers de x et y.
Ecrire :

x = p
α1
1 × . . .p

αn
n et y = p

β1
1 × . . .p

βn
n

Donc
n = x2 = p

2α1
1 × . . .p2αn

n

Il suffit de montrer que les αi sont divisibles par 3.
Pour cela écrire n = y3 et identifier les facteurs premiers ;
on obtient 2αi = 3βj pour chaque i.
Il reste à conclure à l’aide du lemme de Gauss.

35 Remarquer que an+1 = 2(2n+ 1)an puis utiliser la propriété

d’additivité des valuations p-adiques : la suite
(
v2(an)

)
est

arithmétique de raison 1.
Réponse : v2(an) = n.

36 1. L’additivité des valuations p-adiques permet d’écrire

v2(100!) =
100∑
k=1

v2(k)

Séparer ensuite les termes d’indices pairs et d’indices
impairs en utilisant :

v2(2k) = 1 + v2(k) et v2(2k + 1) = 0

ce qui donne : v2(100!) = 50 +
50∑
k=1

v2(k).

En réitérant plusieurs fois le même raisonnement (sépa-
ration « pairs-impairs ») : v2(100!) = 50+25+12+6+3+1

2. En adaptant le raisonnement ci-dessus vp(n!) =
n∑

k=1

vp(k)

La somme se réduit aux indices k multiples de p (vp(k) =

0 si k n’est pas un multiple de p) i.e. les indices de la
forme k = pℓ pour tous les indices ℓ tels que 1 ≤ ℓp ≤ n

i.e. tous les ℓ ∈ ⟦1 ,
⌊
n
p

⌋
⟧ donc :

vp(n!) =

⌊
n
p

⌋∑
ℓ=1

vp(pℓ) =
⌊
n

p

⌋
+

⌊
n
p

⌋∑
ℓ=1

vp(ℓ)

Il suffit de réitérer le raisonnement en utilisant à chaque

étape :


⌊

n
pk

⌋
p

 =
⌊

n

pk+1

⌋
.

Pour plus de rigueur on peut poser Sk =

⌊
n
pk

⌋∑
ℓ=0

vp(ℓ) et le

raisonnement précédent permet de montrer que pour

tout k ∈N : Sk =
⌊

n

pk+1

⌋
+ Sk+1. On peut par exemple

conclure par télescopage :
+∞∑
k=0

Sk − Sk+1 = S0 = vp(n!)

37 Poser α = max
m≤k≤n

v2(k) et montrer que k est atteinte une et

une seule fois sur ⟦m,n⟧ pour en déduire que
n∑

k=m

1
k

est de

la forme
p

2αq
pour certains entiers p,q impairs.
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