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Rappels et compléments sur les fonctions Indications

0 La correction figure sur un fichier à part.

1 1. Dans chaque cas, traduire les conditions pour former

un système d’inéquations et d’équations :

a) f (x) est défini ssi

1− x , 0
1+x
1−x ≥ 0

Faire un tableau de signe pour traduire la deuxième
condition.
Solution : [−1 ,1[.

b) f (x) est défini ssi


x > 0
lnx < 1

(x − 3)2 < 4
Ne pas oublier la valeur absolue pour traduire la der-
nière condition.
Solution : ]1 , e[.

c) f (x) est défini ssi ex + 2e−x − 3 ≥ 0 i.e. (en multipliant
par ex > 0) ssi (ex)2 − 3ex + 2︸           ︷︷           ︸

=
X=ex

X2−3X+2

≥ 0.

Déterminer les racines x1 et x2 du trinôme X2−3X+2.
Ensuite f (x) est défini ssi ex ≤ x1 ou ex ≥ x2.
Solution : R− ∪ [ln2 ,+∞[.

2. Utiliser le savoir faire SF 5 :
a) f =

√
u où u est la fonction u : x 7→ 1−x

1+x : utiliser le

savoir faire SF 5 avec v =
√·, dérivable sur R∗+.

Solution : ]−1 ,1[.

b) f =
lnu
√
v

avec u : x 7→ 1− lnx et v : x 7→ 4− (x − 3)2.

Justifier la dérivabilité de lnu et de
√
v sur ]1 , e[ en

utilisant le savoir faire SF 5 . Conclure par quotient.
Solution : ]1 , e[

c) f =
√
u où u est la fonction u : x 7→ ex + 2e−x − 3 : utili-

ser le savoir faire SF 5 avec v =
√·, dérivable sur R∗+.

Solution : ]−∞ ,0[∪ ]ln2 ,+∞[.

2 1. Egaler les valeurs en 0 et en T .

2. Les dérivées d’une fonction T -périodique sont encore
des fonctions T -périodiques, de même que les combinai-
sons linéaires de fonctions T -périodiques.

3 1. Solution : R tout entier.

2. Calculer f (−x) = ln(
√
x2 + 1 + x), utiliser la quantité

conjuguée :
√
x2 + 1 + x =

√
x2+1

2
−x2

√
x2+1−x

. Utiliser enfin les
propriétés du logarithme : f est impaire.

4

5 Revenir à la définition : considérer deux réels x,y tels que
x < y, il s’agit de montrer que f (x) > f (y).
Puisque x < y la stricte décroissance de f ◦ f ◦ f permet
d’écrire : f ◦ f

(
f (x)

)
> f ◦ f

(
f (y)

)
.

Conclure en utilisant la croissance de f ◦ f .

6 On ne peut pas dériver : revenir à la définition.
Considérer deux réels x,y tels que x < y, il s’agit de montrer
que f (x) < f (y).
L’hypothèse permet d’écrire f (x)ef (x) < f (y)ef (y) i.e.
ϕ
(
f (x)

)
< ϕ

(
f (y)

)
où ϕ est la fonction ϕ : t 7→ tet .

Conclure en montrant que ϕ est croissante sur R+.

7 Si T est une période de f , il suffit de montrer que f est
constante sur [0 ,T ].
Pour tout x ∈ [0 ,T ], montrer que f (x) = f (0) en utilisant
la croissance de f , le fait que 0 ≤ x ≤ T et le fait que
f (0) = f (T ).

8 1. a) Prendre x = y = 0 dans l’égalité de départ : on obtient

f (0) = 0 ou 1.
Montrer que f (0) = 0 est impossible en évaluant l’éga-
lité f (x)f (y)− f (xy) = x+ y en deux valeurs de x et y
judicieusement choisies.

b) Evaluer l’égalité f (x)f (y)− f (xy) = x+y en une valeur
de y bien choisie.

2. Il s’agit de tester si le candidat f : x 7→ x+ 1 est solution
du problème de départ.
Considérer deux réels x,y et calculer f (x)f (y)− f (x)f (y)

9 Procéder par analyse-synthèse.
Les solutions sont toutes les fonctions de la forme x 7→ kx
où k décrit R.

10 Par analyse-synthèse :
1. • Analyse. Si f est solution. Ecrire l’égalité de l’énoncé

avec x puis avec 1− x, on obtient un systèmef (x) + xf (1− x) = 1 + x

(1− x)f (x) + f (1− x) = 2− x

Combiner les deux équations pour éliminer f (1− x),
on obtient f (x) = 1, pour tout x ∈R.

• Synthèse. Si f : x 7→ 1 calculer f (x) + xf (1 − x) pour
vérifier que pour tout x ∈R, f (x) + xf (1− x) = 1 + x.

2. • Analyse. Si f est solution. Ecrire l’égalité de l’énoncé
avec y = f (x) + x, on obtient f (x) = 1− x.

• Synthèse. Si f : x 7→ 1 − x calculer f
(
y − f (x)

)
pour

vérifier que pour tout x,y ∈R, f
(
y − f (x)

)
= 2− x − y.

11
1. Procéder par analyse-synthèse.

Les solutions sont toutes les fonctions de la forme

x 7→ x2

2
+αx où α décrit R.

2.

12 a) f est définie sur ]−1 ,1[ et est impaire, il suffit de l’étudier

sur [0 ,1[ puis de compléter par imparité.

x −1 1
f ′(x) +

f (x) −∞
+∞

b) f est définie sur [−1 ,1] et est paire, il suffit de l’étudier
sur [0 ,1] puis de compléter par imparité.

x −1 − 1√
2

1√
2 1

f ′(x) − 0 + 0 −

f (x)
0

−1
2

1
2

0

c) On a besoin de dériver deux fois pour accéder au signe
de f ′ .



x −∞ 0 +∞
f ′(x) + 0 −

f (x) −∞
0

−∞

13 Etudier les variations de f : x 7→ (x − 1)ex − xe+ 1 pour dé-
terminer le nombre de fois où f s’annule.
On obtient f ′(x) = xex − e.
On ne sait pas résoudre à la main l’inéquation f ′(x) ≥ 0, le
plus simple est de dériver deux fois. On obtient le signe de
f ′′ donc les variations de f ′ .
Pour accéder au signe de f ′ remarquer que f ′(x) −→

x→−∞
0 et

que f ′(1) = 0.
La fonction f ′ est donc négative sur ]−∞ ,1[ puis positive.
On obtient les variations de f et le calcul des limites et de
f (1) permet de voir que f s’annule deux fois.

14 1.

x 0 e +∞
f ′(x) + 0 −

f (x) −∞

1
e

0

2. L’équation équivaut à f (x) = k.
Le nombre de solutions se lit sur le tableau de f :

• Si k > 1
e , il n’y a aucune solution ;

• Si 0 < k < 1
e , il y exactement deux solutions ;

• Si k ≤ 0 ou k = 1
e , il y a une unique solution.

3. On trouve à tâton deux solutions : x = 2 et x = 4.
La question 2. assure qu’il ne peut y en avoir plus, ce
sont donc les seules.

15 1. La fonction tangente à f au point a est la fonction affine :

Ta : x 7→ ln(a)− 1 +
x

a
Par définition, g(a) est le réel x tel que Ta(x) = 0.
La résolution de l’équation Ta(x) = 0 donne

g(a) = a− a lna

2. Une tangente passe par M(α,0) ssi il existe a > 0 tel que
g(a) = α. Il s’agit de chercher les valeurs de α pour les-
quelles l’équation g(a) = α possède deux solutions.
Dresser le tableau de variation de g pour répondre à la
question.
Réponse : pour α ∈ ]0 ,1[.

16 Il s’agit de montrer que a = 1 est l’unique solution de l’équa-
tion f ′(a) = 1.
Après calcul de f ′(a) : f ′(a) = 1 ssi a3 + 2lna− 1︸          ︷︷          ︸

ϕ(a)

= 0.

Etudier ensuite les variations de ϕ pour montrer que ϕ ne
s’annule qu’en a = 1.

17 Suivre l’indication en considérant ϕ : t 7→ f ′(t)sin(t − x)−
f (t)cos(t − x).
Constater que ϕ(x) = −f (x) et que ϕ(x+π) = f (x+π) donc
il s’agit de montrer que ϕ(x+π) ≥ ϕ(x).
Il suffit de montrer que ϕ est croissante sur l’intervalle
[x ,x+π].
Pour cela calculer ϕ′(t), on obtient ϕ′(t) =

(
f ′′(t) +

f (t)
)
sin(t − x).

18 1. Dériver deux fois (en justifiant la dérivabilité)

2. Utiliser : f ( x+y
2 ) ≥ f (x)+f (y)

2 .

19 En notant f la fonction x 7→ x lnx il s’agit de montrer que

(a+ b)f
(x+ y

a+ b

)
≤ af

(x
a

)
+ bf

(y
b

)
ou encore

f
(x+ y

a+ b

)
≤ a

a+ b
f
(x
a

)
+

b

a+ b
f
(y
b

)
Pour ce faire, montrer que f est convexe puis utiliser judi-
cieusement la définition de la convexité de f .

20 Observer que −
n∑
i=1

ti ln ti =
n∑
i=1

ti ln
( 1
ti

)
puis appliquer

l’inégalité de Jensen à la fonction ln pour majorer la somme.
La minoration repose sur le fait que les ln ti sont tous néga-
tifs.

21 1. Dériver deux fois (en justifiant la dérivabilité)

2. Comparer les logarithmes. Les propriétés de ln per-
mettent d’écrire :

ln
(
(1 + x1)

1
n . . . (1 + xn)

) 1
n

=
1
n

(
ln(1 + x1)︸     ︷︷     ︸

=f (lnx1)

+ · · ·+ ln(1 + xn)︸     ︷︷     ︸
=f (lnxn)

)
Il suffit alors d’appliquer l’inégalité de Jensen.

3. Factoriser par (a1 . . . an)
1
n pour faire apparaître un pro-

duit de la forme 1 + (x1 . . .xn)
1
n puis utiliser 2.

22 Appliquer l’inégalité de Jensen à f : x 7→ 1
1 + sinx

pour

minorer
f (α) + f (β) + f (γ)

3

23 Pour montrer qu’une fonction à la fois convexe et concave
est affine, on peut par exemple montrer puis exploiter le

fait que τa : x 7→
f (x)− f (a)

x − a
est constante.

24 Poser g =
1
f

et revenir à la définition i.e. montrer que :

∀a,b ∈ I, ∀t ∈ [0 ,1], g
(
(1− t)a+ tb

)
≤ (1− t)g(a) + tg(b)

Il s’agit de majorer :
1

f
(
(1− t)a+ tb

) .

Pour cela utiliser :

• La concavité de f

• La convexité de la fonction h : x 7→ 1
x

25 Revenir à la définition i.e. montrer que :

∀a,b ∈R∗+, ∀t ∈ [0 ,1], h
(
(1− t)a+ tb

)
≤ (1− t)h(a) + th(b)

Il s’agit de majorer :

h
(
(1− t)a+ tb

)
=
(
(1− t)a+ tb

)
g
( 1

(1− t)a+ tb

)
Pour cela :

• Remarquer que m =
1

(1− t)a+ tb
est entre

1
a

et
1
b

donc il

existe s ∈ [0 ,1] tel que m = (1− s)1
a

+ s
1
b

.

• Utiliser la convexité de la fonction g pour majorer g(m)

• Déterminer enfin une expression de s en fonction de t

26 Utiliser la décroissance de la fonction τ0 : t 7→
f (t)− f (0)

t

2



27 1. Etant donné x ∈ [a ,b] il s’agit de montrer que ϕ(x) ≤M

où M = max
(
ϕ(a),ϕ(b)

)
.

On peut par exemple écrire x = (1 − t)a + tb pour un
certain t ∈ [0 ,1] puis exploiter la convexité de f pour
majorer ϕ(x) = ϕ

(
(1− t)a+ tb

)
.

2. Par hypothèse, il existe x ∈ ]a ,b[ tel que :

(⋆) f (x) < f (a) +
f (b)− f (a)

b − a
Le réel µ =

f (b)− f (a)
b − a

convient. Cette valeur de µ est

choisir pour que ϕ(a) = ϕ(b) et l’inégalité (⋆) assure que
ϕ(x) > ϕ(a).

28 Etant fixé a ∈R, l’hypothèse faite sur f assure qu’il existe
u < v tels que :

τa(u) < τa(v)
En prenant x tel que x > v et a−x < u, exploiter la convexité
de f pour montrer que :
• f (x) ≥ f (a) + τa(v)(x − a)
• f (a− x) ≥ f (a)− τa(u)x
Il suffit de sommer les deux inégalités obtenus et d’utiliser
le fait que τa(v)− τa(u) > 0.

29 a) Utiliser cos2x = 2cos2 x − 1. Réponse : cos2x =
√

3
2 .

b) 2x∈ [0 ,π] et cos2x est connu, cela permet de trouver 2x

30 Utiliser tan2θ =
2tanθ

1− tan2θ
avec θ = π

8

On trouve que x = tan
π

8
vérifie : x2 + 2x − 1 = 0.

Trouver les racines du trinôme du second degré, puis élimi-
ner l’une des deux par des considérations de signe.

31 Il s’agit de montrer que pour tout n ≥ 2 :

2cos
( π

2n

)
= un−1

où (un) est la suite définie par u0 = 0 et un+1 =
√

2 +un pour
tout n ≥ 0.
L’égalité ci-dessus se démontre par récurrence sur n.

32 Exploiter la convexité de tan sur [0 ,
π

4
].

33 a) L’équation équivaut à sinx = sin(−2x).

Utiliser le théorème concernant l’égalité sinθ = sinϕ.
Solutions dans ]−π,π[ : −2π

3 , 0, 2π
3 et π.

b) L’équation équivaut à cos3x = cos2x.
Utiliser le théorème concernant l’égalité cosθ = cosϕ.
Solutions dans ]−π,π[ : −4π

5 , −2π
5 , 0, 2π

5 et 4π
5 .

34 Dans chaque cas, utiliser la technique pour transformer de

acos t + b sin t (en factorisant par
√
a2 + b2).

a) Par la technique ci-dessus donne

cosx −
√

3sinx = 2cos(x+
π

3
)

On résout alors : cos(x+ π
3 ) = 0.

Solutions x ≡ π
6 [π]

b) La technique ci-dessus donne√
6cos2x+

√
2sin2x = 2

√
2cos(2x − π

6
)

On résout alors : cos(2x − π
6 ) = −

√
2

2 = cos( 3π
4 ).

On utilise le théorème concernant l’égalité cosθ = cosϕ.
Solutions : x ≡ 11π

24 [π] ou x ≡ −7π
24 [π]

35 a) Utiliser la formule : sinp+ sinq = 2sin p+q
2 cos p−q

2

pour le membre de gauche.

Ensuite tout passer à gauche pour se ramener à une équa-
tion de la forme · · · = 0
Solutions : x ≡ π

4

[
π
2

]
ou x ≡ π

9

[
2π
3

]
ou x ≡ 2π

9

[
2π
3

]
b) Utiliser la formule : cosp+ cosq = 2cos p+q

2 cos p−q
2

pour factoriser cosx+ cos5x.
Ensuite factoriser par cos3x le résultat.
Solutions : x ≡ π

6

[
π
3

]
36 a) Utiliser tan2x =

2tanx

1− tan2 x
.

Ensuite tout passer à gauche pour se ramener à une équa-
tion de la forme · · · = 0
On trouve que l’équation équivaut à

tanx = 0 ou tanx = ± 1
√

3
On conclut à l’aide des valeurs remarquables de la fonc-
tion tan et de sa π-périodicité.
Solutions : x ≡ 0 [π] ou x ≡ π

6 [π] ou x ≡ −π
6 [π]

b) Remplacer sin2 x par 1− cos2 x et sin(2x) par 2sinxcosx.
L’équation équivaut à : cos2 x = 0 ou −1 + 2sin2 x = 0.
Solutions : x ≡ π

2 [π] ou x ≡ π
4 [2π] ou x ≡ −π

4 [2π]

37 Etudier la fonction f : t 7→ et sin t sur [0 ,π] pour trouver
son maximum.

x 0 3π
4 π

f ′(x) + 0 −

f (x)
0

e3π/4
√

2
0

38 Remarquer que pour tout x ∈ [−1 ,1] : |x| ≥ x2.

39 Si 0 < |cosx| < 1 montrer que (cosx)3 + (sinx)3 < 1.
Les seuls candidats solutions sont :

• les x tels que cosx = 0 i.e. x ≡ π
2 [2π] ou x ≡ 3π

2 [2π]

• les x tels que |cosx| = 1 i.e. x ≡ 0 [2π] ou x ≡ π [2π]

Il suffit de tester toutes ses valeurs.On constate que les
seules solutions sont les x tels que x ≡ 0 [2π] et x ≡ π

2 [2π].

40 Si f est solution, montrer que la fonction
f 2

2
+ cos est

constante.

41 1. Utiliser tan2θ =
2tanθ

1− tan2θ
avec θ = π

6 (ou constater que
π

12
=
π

3
− π

4
et utiliser la formule concernant tan(a− b)).

Réponse : tan
π

12
= 2−

√
3.

2. Fixer θ1 < · · · < θn tous dans ]−π
2
,
π

2
[ tels que xi = tanθi .

Il s’agit de montrer qu’il existe i ∈ {1, . . . ,n− 1} tel que :

tan(θi+1 −θi) < tan
π

12
Procéder par l’absurde i.e. supposer :

∀i ∈ {1, . . . ,n− 1} , tan(θi+1 −θi) ≥ tan
π

12
La stricte croissance de tan donne alors

∀i ∈ {1, . . . ,n− 1} , θi+1 −θi ≥
π

12
On en tire une contradiction en sommant ces inégalités

3


