
Séries

Chapitre 30



Cadre

Dans tout le chapitre

• (un)n∈N désigne une suite complexe.
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I Généralités

I Généralités

II Séries à termes positifs

III Nature d’une série dans le cas général
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1 Vocabulaire sur les séries

Définition 1

• La série de terme général un est
la suite (Sn)n∈N définie par :

∀n ∈ N, Sn =
n∑

k=0
uk

• Pour tout n ∈ N, Sn est la ne somme partielle de la série.

Retenir :

∀n ∈ N∗, un = Sn − Sn−1

Définition 2
On suppose que la série

∑
un converge.

• La somme de la série :

la limite finie S = lim
n→+∞

Sn, notée
+∞∑
n=0

un

• Le ne reste de la série :

Rn = S − Sn =
+∞∑

k=n+1
uk

Retenir :

Rn −→
n→+∞

0.

« La série
∑

un »

i.e. la suite (Sn) converge

= lim
N→+∞

N∑
k=n+1

uk
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1 Vocabulaire sur les séries

j Attention j Ne pas confondre les notations

∑
un =

+∞∑
n=0

un

Théorème 1 : Opérations sur les séries

• Si
∑

un et
∑

vn convergent, alors :

∑
(λun + µvn) converge

• Si
∑
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∑

vn divergente :
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2 Premiers exemples classiques

Théorème 1 : Opérations sur les séries

• Si
∑

un et
∑

vn convergent, alors :
∑

(λun + µvn) converge
• Si

∑
un est convergente et

∑
vn divergente :

∑
(un + vn) est

divergente

Théorème 2 : Série exponentielle

Soit z ∈ C. La série exponentielle
∑ zn

n! converge et :

+∞∑
n=0

zn

n! = ez

Théorème 3 : Séries géométriques
Soit q ∈ C. La série géométrique

∑
qk converge ssi :

|q| < 1.

Dans ce cas
+∞∑
k=0

qk = 1
1 − q .

Exercice 1
Démontrer le théorème 3.
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2 Premiers exemples classiques

Théorème 2 : Série exponentielle
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2 Premiers exemples classiques

Théorème 4 : Séries télescopiques
La série

∑
(vn+1 − vn) converge ssi :

la suite (vn) converge.
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2 Premiers exemples classiques

Théorème 4 : Séries télescopiques
La série

∑
(vn+1 − vn) converge ssi : la suite (vn) converge.

Exemple 1 : Etudier la nature

a)
∑ 1

n(n + 1) b)
∑ 1

n2 c)
∑

ln
(
1 + 1

n
)

d)
∑ 1

n

6



2 Premiers exemples classiques

Théorème 5 : Séries alternées
Soit (an)n∈N ∈ RN, décroissante de limite nulle.
La série alternée

∑
(−1)nan est convergente.

De plus, pour tout n ∈ N :
•

|Rn| ≤ an+1

•

Rn est du signe de (−1)n+1

Exercice 3 : Figure

Etablir ce résultat en montrant que (S2n)n∈N et (S2n+1)n∈N sont
adjacentes.

Rn =
+∞∑

k=n+1
(−1)kak

7

https://www.desmos.com/calculator/zvbkizhp6z
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2 Premiers exemples classiques

Théorème 6
Si la série

∑
un converge, alors :

un −→
n→+∞

0.

Divergence grossière

Exemple 2 : Etudier la nature de
∑

un

a) un = n
3n + 2 b) un =

(
1 − 1

n
)n

c) un =
(
1 − 1

n
)n2

8
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∑

un

a) un = n
3n + 2 b) un =

(
1 − 1

n
)n

c) un =
(
1 − 1

n
)n2
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3 Comparaison série-intégrale

Exemple 3

a) Montrer que
∑ 1

n ln n diverge

b) On pose Rn =
+∞∑

k=n+1

1
k2 . Montrer que : Rn ∼ 1

n

Théorème 7
Soit α ∈ R.
La série de Riemann

∑ 1
nα

converge si et seulement si α > 1.

Exercice 5
Démontrer le théorème à l’aide d’une comparaison série-intégrale.
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II Séries à termes positifs

I Généralités

II Séries à termes positifs

III Nature d’une série dans le cas général
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1 Sommes partielles d’une série à termes positifs

Théorème 1
On suppose que (un)n∈N est à termes positifs.
La série

∑
un converge ssi :

elle est majorée

Exercice 1
Démontrer le théorème.

ie si les sommes partielles
sont majorées
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2 Critères de convergence par comparaison

Théorème 2 : Comparaison par des inégalités
On suppose qu’à partir d’un certain rang, 0 ≤ un ≤ vn.

• Si
∑

vn converge, alors
∑

un converge.
• Si

∑
un diverge, alors

∑
vn diverge.
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2 Critères de convergence par comparaison

Théorème 3 : Comparaison par des équivalents
On suppose qu’à partir d’un certain rang, un ≥ 0 et vn ≥ 0.
Si un ∼ vn alors :

les séries
∑

un et
∑

vn sont de même nature

l’une CV ssi l’autre CV
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∑
un et
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Exercice 3 : Ex. 7.1, banque INP
Démontrer le théorème dans le cas où un ≥ 0 et vn > 0 pour tout
n ∈ N.
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On suppose qu’à partir d’un certain rang, un ≥ 0 et vn ≥ 0.
Si un ∼ vn alors : les séries

∑
un et

∑
vn sont de même nature

Exemple 3 : Montrer que la suite (un) converge

Pour tout n ∈ N∗ : un = ln n −
n∑

k=1

1
k .
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2 Critères de convergence par comparaison

Rappel sur les « grands O »

• Rappel. un = O(vn) signifie :

la suite
(un

vn

)
n∈N

est bornée

• Exemples.

a) 2n = O( ) b) sin(n2) = O( ) c) (−1)n

n −
√

n = O
( )

• Dans un DL.

a)
√

1 + 1
n =

1 + 1
2n = 1 + 1

2n + O
( 1

n2

)

b) ln(1 + 1
n ) =

1
n − 1

2n2 = 1
n − 1

2n2 + O
( 1

n3

)

= O
( 1

n2
)

= O
( 1

n3
)

14
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2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i)

APCR, un ≥ 0 et vn ≥ 0

ii)

un = O(vn)

iii)

∑
vn CV

Alors :

∑
un converge.

ou un = o(vn)
vrai aussi si

APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii)

un = O(vn)

iii)

∑
vn CV

Alors :

∑
un converge.

ou un = o(vn)
vrai aussi si

APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :

∑
un converge.

ou un = o(vn)
vrai aussi si

APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :

∑
un converge.

ou un = o(vn)

vrai aussi si
APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :

∑
un converge.

ou un = o(vn)

vrai aussi si
APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge.

ou un = o(vn)

vrai aussi si
APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge.

ou un = o(vn)
vrai aussi si

APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge.

Exercice 4
Démontrer le théorème.

ou un = o(vn)
vrai aussi si

APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge.

Exemple 4 : Etudier la nature de
∑

un

a) un = e−
√

n

b) un =
√

n ecos n + sin2(n)
n3 − n

c) un =
√

n ecos n + sin2(n)
n5/2 − n

ou un = o(vn)
vrai aussi si

APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge.

Exemple 4 : Etudier la nature de
∑

un

a) un = e−
√

n

b) un =
√

n ecos n + sin2(n)
n3 − n

c) un =
√

n ecos n + sin2(n)
n5/2 − n

ou un = o(vn)
vrai aussi si

APCR, un ≤ 0 et vn ≤ 0

15



2 Critères de convergence par comparaison

Théorème 4 : Comparaison par des grands O/petits o

Soient u, v ∈ RN. Si :
i) APCR, un ≥ 0 et vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge.

Exemple 4 : Etudier la nature de
∑

un

a) un = e−
√

n

b) un =
√

n ecos n + sin2(n)
n3 − n

c) un =
√
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2 Critères de convergence par comparaison

SF 4 : comparaison avec une série de Riemann
Lorsque l’on étudie la nature d’une série

∑
un, si on trouve α > 1

tel que : nαun −→
n→+∞

0

Alors

∑
un converge.

Exemple 5 : Etudier la nature de
∑

un :

a) un = ln n
n4

i) un = o
( 1

nα

)
ii) ∀n ≥ 1,

1
nα

≥ 0 iii)
∑ 1

nα
CV
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Exemple 5 : Etudier la nature de
∑

un :

a) un = ln n
n4 b) un = ln n

n2 c) un = ln n
n3/2 d) un = ln n

nα
(α > 1)

i) un = o
( 1

nα

)
ii) ∀n ≥ 1,

1
nα
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∑ 1
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III Nature d’une série dans le cas
général

I Généralités

II Séries à termes positifs

III Nature d’une série dans le cas général
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1 Convergence absolue

Théorème 1
Soit u ∈ CN. Si

∑
|un| converge alors :

∑
un converge.

On dit que
∑

un converge absolument
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1 Convergence absolue

Théorème 1
Soit u ∈ CN. Si

∑
|un| converge alors :

∑
un converge.

Exemple 1 : j Attention j

Donner un exemple de série convergente mais non absolument
convergente.

On dit que
∑

un converge absolument
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1 Convergence absolue

Théorème 1
Soit u ∈ CN. Si

∑
|un| converge alors :

∑
un converge.

Exercice 1
Démontrer le théorème.

On dit que
∑

un converge absolument
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1 Convergence absolue

Théorème 1
Soit u ∈ CN. Si

∑
|un| converge alors :

∑
un converge.

Exemple 2

Montrer que la série
∑ (−1)n

n5/4 + 1
converge.

On dit que
∑

un converge absolument
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1 Convergence absolue

Théorème 2 : Comparaison par des grands O/petits o

Soient u ∈ CN et v ∈ RN. Si :
i)

APCR, vn ≥ 0

ii)

un = O(vn)

iii)

∑
vn CV

Alors :

∑
un converge absolument (donc converge tout court)

« jamais de (−1)n

dans le O »
Une seule des deux suites

est positive : vn

19
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1 Convergence absolue

Théorème 2 : Comparaison par des grands O/petits o

Soient u ∈ CN et v ∈ RN. Si :
i) APCR, vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge absolument (donc converge tout court)

j Attention j

Le critère d’équivalence n’est plus valable pour les séries à terme
général de signe non constant

« jamais de (−1)n

dans le O »
Une seule des deux suites

est positive : vn
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1 Convergence absolue

Théorème 2 : Comparaison par des grands O/petits o

Soient u ∈ CN et v ∈ RN. Si :
i) APCR, vn ≥ 0 ii) un = O(vn) iii)

∑
vn CV

Alors :
∑

un converge absolument (donc converge tout court)

Exemple 3 : Ex. 7.2, banque INP

Etudier la nature de :
∑ ((−1)n + i) sin( 1

n ) ln n√
n + 3 − 1

« jamais de (−1)n

dans le O »
Une seule des deux suites

est positive : vn

19



2 Bilan des techniques

Rappel : séries de références

• La série de Riemann
∑ 1

nα
converge ssi :

α > 1.

• La série de Riemann alternée
∑ (−1)n

nα
converge ssi :

α > 0.
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2 Bilan des techniques

lim
n→+∞

un = 0 ?

∑
un divergeun de signe

constant ?

Critères de
comparaison

On étudie∑
|un|

∑
un est

alternée

Majoration ou
minoration de Sn

Equivalent
simple de un ?

nαun → 0 ?
(avec α > 1)

Oui Non

NonNon Oui
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2 Bilan des techniques

SF 6 : Utiliser les DL pour étudier la nature de
∑

un

On découpe un en morceaux plus simples puis on applique les
critères de comparaison à chacun des morceaux

22
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Exemple 4 : Etudier la convergence absolue puis la
convergence de

∑
un

a) un = (−1)n

n +
√

n cos n
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convergence de
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2 Bilan des techniques

SF 6 : Utiliser les DL pour étudier la nature de
∑

un

On découpe un en morceaux plus simples puis on applique les
critères de comparaison à chacun des morceaux

Exemple 5 : un = cos
(
π

√
n2 + n + 1

)
1. Prouver que : π

√
n2 + n + 1 = nπ + π

2 + α
π

n + O
( 1

n2

)
où α est un réel que l’on déterminera.

2. En déduire que
∑

un est convergente.
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2 Bilan des techniques

SF 6 : Utiliser les DL pour étudier la nature de
∑

un

On découpe un en morceaux plus simples puis on applique les
critères de comparaison à chacun des morceaux

Exemple 6
Soit α > 1. Etablir :

a)
+∞∑
k=0

1
(2k + 1)α

=
(
1 − 1

2α

)
ζ(α)

b)
+∞∑
k=1

(−1)k−1

kα
=

(
1 − 1

2α−1

)
ζ(α)

Pour tout α > 1 :

ζ(α) =
déf.

+∞∑
k=1

1
kα

=
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