Séries

Chapitre 30



Dans tout le chapitre

» (up)nen désigne une suite complexe.
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Exercice 3 : @GF&ie

Etablir ce résultat en montrant que (S2p)nen €t (San+1)nen sont
adjacentes.
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Exercice 5

Démontrer le théoréme a I'aide d'une comparaison série-intégrale.
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vrai aussi si
APCR, u, <0etv, <0

Théoréme 4 : (pmparaison par des grar§ls O/petits o

Soient u,v € RN.\Sj :
i) APCR, u,>0cetv,>0 i) u, = O(vp) i) Y vy CV

Alors :Z up converge.

Exemple 4 : Etudier la nature de ) u,
a) up=e V7"
ﬁ ecos n +sin2(n)
n—n
\/ﬁ ecos n +sin2(n)
n®/2 — n

b) u, =

c) u, =
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2 Critéres de conve ce par comparaison

SF 4 : comparaison avec une série de Riemann
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Alors > u, converge.

Exemple 5 : Etudier la nature de > u, :
B Inn Inn Inn Inn

a) Un—F b) Un:? C) Un:m d) Un:n7(04>1)
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1 Convergence absolue

[On dit que Y u, converge abso/ument)

Théoréme 1

Soit u € CN. Si Z |un| converge alors : Z up converge.

Exemple 1 : “4* Attention 4

Donner un exemple de série convergente mais non absolument
convergente.
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1 Convergence absolue

[On dit que Y u, converge abso/ument]

Théoréme 1

Soit u € CN. Si Z |un| converge alors : Z up converge.

Exercice 1

Démontrer le théoréme.
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1 Convergence absolue

[On dit que Y u, converge abso/ument)

Théoréme 1

Soit u € CN. Si Z |un| converge alors : Z up converge.

Exemple 2

1 n
Montrer que la série Z 5/4 ) converge.
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1 Convergence absolue

Théoréeme 2 : Comparaison par des grands O/petits o
Soient u € CN et v e RN, Si :
i) i) ii)

Alors :
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1 Convergence absolue

Une seule des deux suites
est positive : v,

Théoreme 2 :[Comparaison par des grands O/petits o

Soient v ¢ C'fet v € RN. S :
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1 Convergence absolue

Une seule des deux suites
est positive : v,

n

« jamais de (—1)
dans le O »

Théoreme 2 :[Comparaison par des/grands O/petits o

Soient v ¢ C'fet v € RN. S :
i) APCR, v, >0 i) up= O(v,) i) > v, CV

Alors :Z up converge absolument (donc converge tout court)

“* Attention 4%*

Le critere d'équivalence n'est plus valable pour les séries a terme
général de signe non constant
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1 Convergence absolue

Une seule des deux suites
est positive : v,

n

« jamais de (—1)
dans le O »

Théoreme 2 :[Comparaison par des/grands O/petits o

Soient v ¢ C'fet v € RN. S :
i) APCR, v, >0 i) up= O(v,) i) > v, CV

Alors :Z up converge absolument (donc converge tout court)

Exemple 3 : Ex. 7.2, banque INP
"+i)sin(1)Inn
\/ +3-1

Etudier la nature de : Z (=
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2 Bilan des techniques

Rappel : séries de références

. . 1 .
= La série de Riemann E — converge ssi :
n
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2 Bilan des techniques

Rappel : séries de références

. . 1 .
= La série de Riemann Z — convergessi: o> 1L
n

="

= La série de Riemann alternée Z ( —— converge ssi :  a > 0.
n
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2 Bilan des techniques

i =07
[ im. e = 07]

N

ity de signe [ > u, diverge ]
constant ?

No/ Nor\ N}
> up est On étudie Criteres de
alternée > |unl comparaison

Equivalent n“u, — 07
simple de u,? (avec o > 1)

Majoration ou ]

minoration de S,
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2 Bilan des techniques

SF 6 : Utiliser les DL pour étudier la nature de >’ u,

On découpe u, en morceaux plus simples puis on applique les
criteres de comparaison a chacun des morceaux
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2 Bilan des techniques

SF 6 : Utiliser les DL pour étudier la nature de >’ u,

On découpe u, en morceaux plus simples puis on applique les
criteres de comparaison a chacun des morceaux

Exemple 5 : u, = cos <7r\/ n?+n+ 1)
1
1. Prouver que : mvVn2 +n+1= n7r—|—g+ocz+ O(>
n

7
ol «v est un réel que I'on déterminera.

2. En déduire que Z up est convergente.
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