Formes linéaires et hyperplans
Complément

Chapitre 29.1



Dans tout le complément

= £ est un K-espace vectoriel.
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(élément de #(E,K))

Rappels sur les formes linéaires

= Une forme linéaire de E est une application linéaire de E dans K

» Z(E,K) est un espace vectoriel et dim(f(E,K)) = dim E]

= On appelle hyperplan de E tout : noyau d'une forme linéaire non
nulle de E

Exemple 1 : Montrer que H est un hyperplan
1. H={(x,y,z) €R® | 2x +y — z=0}
2. H={P eR3[X] | P(2)+2P'(1) =0}
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Rappels sur les formes linéaires

= Une forme linéaire de E est une application linéaire de E dans K

» Z(E,K) est un espace vectoriel et dim(f(E,K)) = dim E]

= On appelle hyperplan de E tout : noyau d'une forme linéaire non
nulle de E

Exemple 1 : Montrer que H est un hyperplan
1. H={(x,y,z) €R® | 2x +y — z=0}

2. H={P eR3[X] | P(2)+2P'(1) =0}

3. H={f e ¢*°(R,R) | f(0) =f'(0)}
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(élément de #(E,K))

Rappels sur les formes linéaires

= Une forme linéaire de E est une application linéaire de E dans K

» Z(E,K) est un espace vectoriel et dim(f(E,K)) = dim E]

= On appelle hyperplan de E tout : noyau d'une forme linéaire non
nulle de E

Exemple 2 : Formes linéaires coordonnées dans R,[X]

1. Donner I'expression des formes linéaires coordonnées pour la base
(Li)o<i<n des polyndmes de Lagrange associés a xp < ... < Xp

2. Trouver une base #Z de R,[X] dont les formes coordonnées sont

P()(0)

L Pour tout k € [0,n].

les @i : P —
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Rappels sur les formes linéaires coordonnées

On suppose E de dimension finie muni d'une base # = (by, ..., by)
= La j° forme linéaire coordonnée de E est ¢ : E — K
n
X = inb,- — Xj
i=1
= La famille (¢1,...,¥n) est une base de Z(E, K).
= Si H est un hyperplan de E, il existe a1, ..., a, € K non tous
nuls tels que : H:{XGE\31X1+---+3,,X,,:O}
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Base (b1,...,bp) onnées
Vecteur
Forme lin. 'une base # = (bu, ..., by)
Hyperplan est @ : E — K

/

= La famille (g1, ...

n
X = inb,- — Xj
=i

,pn) est une base de Z(E,K).

= Si H est un hyperplan de E, il existe a1, ..., a, € K non tous

nuls tels que :

H:{XGE | 31x1+-§+anx,,:0}

(X17 . 7Xn)
coordonnées de x dans %
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Base (b1,...,bp) onnées
Vecteur X =x1b1 + -+ xpbp
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/ X = ZX,’b,’ — Xj

i=1
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E de dimension finie

Pase (b1, b) lonnées
Vecteur x =x1by + -+ x, by,
Forme lin. | x+— aixq + -+ + apx, 'une base # = (by, ..., by)
Hyperplan | {aixg + - -+ + apx, = 0} Est ¢ : E 3K

/ X = ZX,’b,’ — Xj

i=1
= La famille (¢1,...,¥n) est une base de Z(E, K).
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Pase (b1, b) bonnées
Vecteur x =x1by + -+ x, by,
Forme lin. | x — a;xy + - + apxy 'une base # = (by, ..., by)
Hyperplan | {aixg + - -+ + apx, = 0} Est ¢ : E 3K

/ X = ZX,'b,' — Xj
i=1

= La famille (¢1,...,¥n) est une base de Z(E, K).

= Si H est un hyperplan de E, il existe a1, ..., a, € K non tous
nuls tels que : H = {x €E | aixi+ \+ anXp = O}
(X1y .-y Xn)

coordonnées de x dans %

Démontrer les deux derniers points.
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E de dimension finie

Pase (b1, b) lonnées
Vecteur x =x1by + -+ x, by,
Forme lin. | x+— aixq + -+ + apx, 'une base # = (by, ..., by)
Hyperplan | {aixg + - -+ + apx, = 0} Est ¢ : E 3K

/ X = ZX,’b,’ — Xj

i=1

= La famille (¢1,...,¥n) est une base de Z(E, K).
= Si H est un hyperplan de E, il existe a1, ..., a, € K non tous
nuls tels que : H = {x €E | aixi+ -§+ anXp = 0}

(X17 . :Xn)
coordonnées de x dans %
Exemple 3: H={P cR3[X] | P'(1)= P(0)}

Trouver une équation (sur les coordonnées de P) de I'hyperplan H
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Soit H un sous-espace vectoriel de E. Sont équivalentes :
i) H est le noyau d'une forme linéaire non nulle de E.

ii) H est supplémentaire d'une droite : E = H® D ou D = Vect(e)
pour un certain e € E \ {Og}.

Si E est de dimension finie n elles sont équivalentes a :

iii) H est de dimension n — 1.

Remarque

= En dim 3 : hyperplan = plan = En dim 2 : hyperplan = droite

Exemple 4 : Déterminer la dimension de H.

H={Ac . #(K) | . ai;=0}
i=1



2 Hyperplans : trois définitions équivalentes

Soit H un sous-espace vectoriel de E. Sont équivalentes :

i) H est le noyau d'une forme linéaire non nulle de E.

ii) H est supplémentaire d'une droite : E = H® D ou D = Vect(e)
pour un certain e € E \ {Og}.

Si E est de dimension finie n elles sont équivalentes a :

iii) H est de dimension n — 1.

Remarque

= En dim 3 : hyperplan = plan = En dim 2 : hyperplan = droite

Exercice 2

Démontrer |'équivalence i) < ii) en dimension quelconque.
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Théoréeme 2 : « Unicité » de I'équation d’un hyperplan

Soit H un hyperplan de E et ¢, 1 deux formes linéaires non nulles
de E telles que H = Ker ¢ = Ker 1.

Dans ce cas ¢ et ¢ sont proportionnelles : il existe k € K\ {0} tel
que 1 = k.

Exercice 3

Démontrer le théoreme.



2 Hyperplans : trois définitions équivalentes

Théoréeme 2 : « Unicité » de I'équation d’un hyperplan

Soit H un hyperplan de E et ¢, 1 deux formes linéaires non nulles
de E telles que H = Ker ¢ = Ker 1.

Dans ce cas ¢ et ¢ sont proportionnelles : il existe k € K\ {0} tel
que 1 = k.

Exemple 5 : E est un K-e. v. de dimension finie supérieure a 2

Soient Hj et H, deux hyperplans de E distincts.
Déterminer la dimension de Hy N Ho.
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On suppose E de dimension finie n > 1. Soit p € [1, n].
1. L'intersection de p hyperplans de E est : un s.e.v. de E de

dimension > n— p.
2. Tout sous-espace de dimension n — p est : |'intersection de p
hyperplans de E.
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dimension > n— p.

2. Tout sous-espace de dimension n — p est : |'intersection de p

hyperplans de E.




2 Hyperplans : trois définitions équivalentes

p hyperplans = p équations
= p contraintes

On suppose E d//dimension finie n > 1. Soit p € [1, n].

1. L'intersection/de p hyperplans de E est : un s.e.v. de E de
dimension > n— p.

2. Tout sous-espace de dimension n — p est : |'intersection de p

hyperplans de E.




2 Hyperplans : trois définitions équivalentes

p hyperplans = p équations
= p contraintes

= au moins n — p degrés de liberté

On suppose E d//dimension finie n > 1. Soit p € [1, n].

1. L'intersection/de p hyperplans de E est : un s.e.v. de E de
dimension > n— p.

2. Tout sous-espace de dimension n — p est : |'intersection de p
hyperplans de E.



2 Hyperplans : trois définitions équivalentes

p hyperplans = p équations
= p contraintes

= au moins n — p degrés de liberté

On suppose E d//dimension finie n > 1. Soit p € [1, n].

1. L'intersection/de p hyperplans de E est : un s.e.v. de E de
dimension > n— p.

2. Tout sous-espace de dimension n — p est : |'intersection de p
hyperplans de E.

Exercice 4

Démontrer les deux points du théoreme.
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2 Hyperplans : trois définitions équivalentes

p hyperplans = p équations
= p contraintes

= au moins n — p degrés de liberté

On suppose E d//dimension finie n > 1. Soit p € [1, n].

1. L'intersection/de p hyperplans de E est : un s.e.v. de E de
dimension > n— p.

2. Tout sous-espace de dimension n — p est : |'intersection de p
hyperplans de E.

[« Equations indépendantes »]

Remarque

Plus généralement :
dim(Kerp1N---Nyp) =n—p < (¢1,...,9p) est libre
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