
Formes linéaires et hyperplans
Complément

Chapitre 29.1



Cadre

Dans tout le complément

• E est un K-espace vectoriel.

1



1 Généralités

Rappels sur les formes linéaires

• Une forme linéaire de E est

une application linéaire de E dans K

• L (E ,K) est un espace vectoriel et dim
(
L (E ,K)

)
=

dim E

• On appelle hyperplan de E tout :

noyau d’une forme linéaire non
nulle de E

élément de L (E ,K)
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• L (E ,K) est un espace vectoriel et dim
(
L (E ,K)

)
= dim E

• On appelle hyperplan de E tout : noyau d’une forme linéaire non
nulle de E

Exemple 1 : Montrer que H est un hyperplan
1. H =

{
(x , y , z) ∈ R3 | 2x + y − z = 0

}

2. H = {P ∈ R3[X ] | P(2) + 2P ′(1) = 0}
3. H =

{
f ∈ C ∞(

R,R
)

| f (0) = f ′(0)
}

élément de L (E ,K)
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• L (E ,K) est un espace vectoriel et dim
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L (E ,K)

)
= dim E

• On appelle hyperplan de E tout : noyau d’une forme linéaire non
nulle de E

Exemple 2 : Formes linéaires coordonnées dans Rn[X ]

1. Donner l’expression des formes linéaires coordonnées pour la base
(Li)0≤i≤n des polynômes de Lagrange associés à x0 < ... < xn

2. Trouver une base B de Rn[X ] dont les formes coordonnées sont

les φk : P 7→ P(k)(0)
k! pour tout k ∈ J0 , nK.
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1 Généralités

Rappels sur les formes linéaires coordonnées
On suppose E de dimension finie muni d’une base B = (b1, ..., bn)
• La je forme linéaire coordonnée de E est

φj : E −→ K

x =
n∑

i=1
xibi 7−→ xj

• La famille (φ1, . . . , φn) est une base de L (E ,K).
• Si H est un hyperplan de E , il existe a1, . . . , an ∈ K non tous

nuls tels que :

H =
{

x ∈ E | a1x1 + · · · + anxn = 0
}

(x1, . . . , xn)
coordonnées de x dans B

E de dimension finie
Base

(b1, . . . , bn)

Vecteur

x = x1b1 + · · · + xnbn

Forme lin.

x 7→ a1x1 + · · · + anxn

Hyperplan

{a1x1 + · · · + anxn = 0}
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Exercice 1
Démontrer les deux derniers points.

(x1, . . . , xn)
coordonnées de x dans B

E de dimension finie
Base (b1, . . . , bn)

Vecteur x = x1b1 + · · · + xnbn
Forme lin. x 7→ a1x1 + · · · + anxn
Hyperplan {a1x1 + · · · + anxn = 0}
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• Si H est un hyperplan de E , il existe a1, . . . , an ∈ K non tous

nuls tels que : H =
{

x ∈ E | a1x1 + · · · + anxn = 0
}

Exemple 3 : H = {P ∈ R3[X ] | P ′(1) = P(0)}

Trouver une équation (sur les coordonnées de P) de l’hyperplan H

(x1, . . . , xn)
coordonnées de x dans B

E de dimension finie
Base (b1, . . . , bn)

Vecteur x = x1b1 + · · · + xnbn
Forme lin. x 7→ a1x1 + · · · + anxn
Hyperplan {a1x1 + · · · + anxn = 0}
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2 Hyperplans : trois définitions équivalentes

Théorème 1
Soit H un sous-espace vectoriel de E . Sont équivalentes :

i) H est le noyau d’une forme linéaire non nulle de E .
ii) H est supplémentaire d’une droite : E = H ⊕ D où D = Vect(e)

pour un certain e ∈ E \ {0E }.

Si E est de dimension finie n elles sont équivalentes à :

iii) H est de dimension n − 1.

Remarque
• En dim 3 : hyperplan =

plan

• En dim 2 : hyperplan =

droite

4
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ii) H est supplémentaire d’une droite : E = H ⊕ D où D = Vect(e)
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Si E est de dimension finie n elles sont équivalentes à :

iii) H est de dimension n − 1.

Remarque
• En dim 3 : hyperplan = plan • En dim 2 : hyperplan = droite

Exemple 4 : Déterminer la dimension de H.

H =
{
A ∈ Mn(K) |

n∑
i=1

ai ,i = 0
}

4



2 Hyperplans : trois définitions équivalentes

Théorème 1
Soit H un sous-espace vectoriel de E . Sont équivalentes :
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Remarque
• En dim 3 : hyperplan = plan • En dim 2 : hyperplan = droite

Exercice 2
Démontrer l’équivalence i) ⇔ ii) en dimension quelconque.
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2 Hyperplans : trois définitions équivalentes

Théorème 2 : « Unicité » de l’équation d’un hyperplan
Soit H un hyperplan de E et φ, ψ deux formes linéaires non nulles
de E telles que H = Kerφ = Kerψ.
Dans ce cas φ et ψ sont proportionnelles :

il existe k ∈ K \ {0} tel
que ψ = kφ.

5
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Soit H un hyperplan de E et φ, ψ deux formes linéaires non nulles
de E telles que H = Kerφ = Kerψ.
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Exercice 3
Démontrer le théorème.
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2 Hyperplans : trois définitions équivalentes

Théorème 2 : « Unicité » de l’équation d’un hyperplan
Soit H un hyperplan de E et φ, ψ deux formes linéaires non nulles
de E telles que H = Kerφ = Kerψ.
Dans ce cas φ et ψ sont proportionnelles : il existe k ∈ K \ {0} tel
que ψ = kφ.

Exemple 5 : E est un K-e. v. de dimension finie supérieure à 2
Soient H1 et H2 deux hyperplans de E distincts.
Déterminer la dimension de H1 ∩ H2.
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2 Hyperplans : trois définitions équivalentes

Théorème 3
On suppose E de dimension finie n ≥ 1. Soit p ∈ J1 , nK.
1. L’intersection de p hyperplans de E est :

un s.e.v. de E de
dimension ≥ n − p.

2. Tout sous-espace de dimension n − p est :

l’intersection de p
hyperplans de E .

p hyperplans = p équations

« Equations indépendantes »

6
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