
Matrices – Niveau 3

Chapitre 29



I Théorie du rang

I Théorie du rang

II Matrices équivalentes, matrices semblables
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1 Image et noyau d’une matrice A ∈ Mn,p(K)

Notation

• Vecteurs colonnes de A : Cj = (a1j , . . . , anj) ∈ Kn 1 ≤ j ≤ p
• Vecteurs lignes de A : Li = (ai1 , . . . , aip) ∈ Kp 1 ≤ i ≤ n

Exercice 1 : A =
(

3 1 −4
−3 −1 4

)
Déterminer une base de Im A et une base de Ker A.

En pratique

• Im A = Vect(C1 , . . . , Cp)
• Ker A est l’ensemble des solutions du système : AX = 0

d’inconnue X ∈ Mp,1(K )
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1 Image et noyau d’une matrice A ∈ Mn,p(K)

En pratique

• Im A = Vect(C1 , . . . , Cp)
• Ker A est l’ensemble des solutions du système : AX = 0

Théorème 1 : Critère AX = 0
On suppose que A ∈ Mn(K).
Alors A est inversible ssi :

Ker A = {0}

d’inconnue X ∈ Mp,1(K )

i.e. ssi pour tout X ∈ Mp,1(K )
AX = 0 =⇒ X = 0
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Théorème 1 : Critère AX = 0
On suppose que A ∈ Mn(K).
Alors A est inversible ssi : Ker A = {0}

Conséquence
A ∈ Mn(K) est inversible ssi (C1, . . . , Cn) est :

libre

Exercice 2
Démontrer le théorème.
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1 Image et noyau d’une matrice A ∈ Mn,p(K)

En pratique

• Im A = Vect(C1 , . . . , Cp)
• Ker A est l’ensemble des solutions du système : AX = 0

Théorème 1 : Critère AX = 0
On suppose que A ∈ Mn(K).
Alors A est inversible ssi : Ker A = {0}

Exercice 3 : Matrice à diagonale strictement dominante
On suppose que pour tout i ∈ J1 , nK : |ai ,i | >

∑
j ̸=i

|ai ,j |.

Montrer que A est inversible.

d’inconnue X ∈ Mp,1(K )

i.e. ssi pour tout X ∈ Mp,1(K )
AX = 0 =⇒ X = 0
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2 Rang d’une matrice A ∈ Mn,p(K)

Définition 1
On appelle rang de A le rang dans Kn de :

la famille de ses colonnes.

Remarque
Autrement dit : rg(A) =

rg(C1, . . . , Cp) = dim Im A = rg(fA)

Exercice 4 : Montrer :

a) rg(A) ≤ min(n, p)

b) ∀B ∈ Mp,q(K), rg(AB) ≤ min(rg(A), rg(B))

c) ∀P ∈ GLn(K), rg(PA) = rg(A)
d) ∀Q ∈ GLp(K), rg(AQ) = rg(A)

= dim Vect(C1, ..., Cp)

On ne modifie pas
le rang en multipliant

par une matrice inversible
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2 Rang d’une matrice A ∈ Mn,p(K)

Théorème 2 : Inversibilité et rang
On suppose que A ∈ Mn(K) . Alors A est inversible ssi :

rgA = n.

Conséquence
A ∈ Mn(K) est inversible ssi (C1, . . . , Cn) est :

génératrice

Exercice 5
Démontrer le théorème.
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2 Rang d’une matrice A ∈ Mn,p(K)

Théorème 3 : Lien avec le rang d’une famille de vecteurs
Soit (E , B) un K-espace vectoriel de dimension finie muni d’une
base et F = (u1, . . . , up) ∈ Ep : rg(F ) =

rg
(
MatB(F )

)
Théorème 4 : Lien avec le rang d’une application linéaire
Soit (E , B) et (F , C ) deux K-espaces vectoriels de dimension finie
munis de bases et f ∈ L (E , F ) : rg(f ) =

rg
(
MatB,C (f )

)
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(
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Exercice 0 : Bonus
Démontrer les deux théorèmes
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3 Rang et matrices extraites de A ∈ Mn,p(K)

Définition 2
Une matrice extraite de A est une matrice obtenue en supprimant
certaines lignes et certaines colonnes de A.

Théorème 6
Le rang de A est la taille maximale des matrices carrées inversibles
extraites de A. Autrement dit, pour tout r ∈ N, rg(A) ≥ r ssi

A
possède une matrice extraite inversible de taille r .

Exemple 1 : A =

 1 4 9 2
1 3 1 7
8 0 5 1
9 0 0 2


Montrer sans aucun calcul que rg(A) ≥ 3.

de la forme :

ai1,j1 . . . ai1,jq
...

...
aim,j1 . . . aim,jq


pour certains : 1 ≤ i1 < · · · < im ≤ n

et : 1 ≤ j1 < · · · < jq ≤ p
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4 Méthode de Gauss pour le calcul du rang

Remarque
Les opérations élémentaires conservent le rang

d1

. . .

dr




0

0 0

r

r

8



4 Méthode de Gauss pour le calcul du rang

Remarque
Les opérations élémentaires conservent le rang

d1

. . .

dr




0

0 0

r

r

car effectuer une opé. élem.
=

multiplier par une matrice inversible
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4 Méthode de Gauss pour le calcul du rang

Remarque
Les opérations élémentaires conservent le rang

Vocabulaire
Une matrice est échelonnée
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II Matrices équivalentes, matrices
semblables

I Théorie du rang

II Matrices équivalentes, matrices semblables
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1 Matrices semblables et trace

Cadre
• A, B ∈ Mn(K).

Définition 1
On dit que B est semblable à A si :

il existe P ∈ GLn(K) telle que
B = P−1AP

Exercice 1 : La similitude est une relation d’équivalence
On note A ∼ B pour « B est semblable à A ». Montrer que la
relation « ∼ » est une relation d’équivalence sur Mn(K).

C’est le cas si A et B représentent le même
endomorphisme f dans deux bases différentes
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1 Matrices semblables et trace

Définition 2
On appelle trace de A la somme de ses coefficients diagonaux :

tr(A) =
déf.

n∑
i=1

ai ,i

A ∈ Mn(K)
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Définition 2
On appelle trace de A la somme de ses coefficients diagonaux :

tr(A) =
déf.

n∑
i=1

ai ,i

Théorème 1
1. Linéarité :

∀λ, µ ∈ K, tr(λA + µB) = λtr(A) + µtr(B).

2. Symétrie :

tr(AB) = tr(BA).

Exercice 2
Démontrer que : tr(AB) = tr(BA).

A ∈ Mn(K)
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1 Matrices semblables et trace

Définition 2
On appelle trace de A la somme de ses coefficients diagonaux :

tr(A) =
déf.

n∑
i=1

ai ,i

Théorème 1
1. Linéarité : ∀λ, µ ∈ K, tr(λA + µB) = λtr(A) + µtr(B).
2. Symétrie : tr(AB) = tr(BA).

Exemple 1
Trouver toutes les matrices A, B ∈ Mn(K) tels que AB − BA = In.

A ∈ Mn(K)
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1 Matrices semblables et trace

Théorème 2
Si A et B sont semblables alors :

trA = trB.

Exercice 3

a) Démontrer ce résultat.
b) Montrer que la réciproque de ce théorème est fausse.
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1 Matrices semblables et trace

SF 10 : Montrer que A et B sont semblables
On note f l’endomorphisme canoniquement associé à A et on
cherche une base B telle que MatB(f ) = B
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1 Matrices semblables et trace

SF 10 : Montrer que A et B sont semblables
On note f l’endomorphisme canoniquement associé à A et on
cherche une base B telle que MatB(f ) = B

Exemple 2 : A =
(

0 1 0
0 0 1
0 0 0

)
, B =

(
0 1 0
0 0 0
1 0 0

)
C =

(
0 2 0
0 0 2
0 0 0

)
a) Montrer que B est semblable à A.
b) Montrer que C est semblable à A.
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1 Matrices semblables et trace

SF 10 : Montrer que A et B sont semblables
On note f l’endomorphisme canoniquement associé à A et on
cherche une base B telle que MatB(f ) = B

Exemple 3 : A ∈ Mn(K) est de rang r

Montrer que A est semblable à une matrice :
(

B 0
C 0

)
où : B ∈ Mr (K), C ∈ Mn−r ,r (K)
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1 Matrices semblables et trace

Trace d’un endomorphisme f ∈ L (E )

C’est la trace de la matrice de f

dans n’importe quelle base de E .

Théorème 3 : Trace d’un projecteur
Si p est un projecteur de E , alors :

tr(p) = rg(p).

Exercice 4
Démontrer ce théorème en considérant la matrice de p dans une
base bien choisie.

les matrices qui représentent f
ont toutes la même trace

14



1 Matrices semblables et trace

Trace d’un endomorphisme f ∈ L (E )

C’est la trace de la matrice de f dans n’importe quelle base de E .

Théorème 3 : Trace d’un projecteur
Si p est un projecteur de E , alors :

tr(p) = rg(p).

Exercice 4
Démontrer ce théorème en considérant la matrice de p dans une
base bien choisie.

les matrices qui représentent f
ont toutes la même trace

14



1 Matrices semblables et trace

Trace d’un endomorphisme f ∈ L (E )

C’est la trace de la matrice de f dans n’importe quelle base de E .

Théorème 3 : Trace d’un projecteur
Si p est un projecteur de E , alors :

tr(p) = rg(p).

Exercice 4
Démontrer ce théorème en considérant la matrice de p dans une
base bien choisie.

les matrices qui représentent f
ont toutes la même trace

14



1 Matrices semblables et trace

Trace d’un endomorphisme f ∈ L (E )

C’est la trace de la matrice de f dans n’importe quelle base de E .

Théorème 3 : Trace d’un projecteur
Si p est un projecteur de E , alors :

tr(p) = rg(p).

Exercice 4
Démontrer ce théorème en considérant la matrice de p dans une
base bien choisie.

les matrices qui représentent f
ont toutes la même trace

14



1 Matrices semblables et trace

Trace d’un endomorphisme f ∈ L (E )

C’est la trace de la matrice de f dans n’importe quelle base de E .

Théorème 3 : Trace d’un projecteur
Si p est un projecteur de E , alors : tr(p) = rg(p).

Exercice 4
Démontrer ce théorème en considérant la matrice de p dans une
base bien choisie.

les matrices qui représentent f
ont toutes la même trace

14



1 Matrices semblables et trace

Trace d’un endomorphisme f ∈ L (E )

C’est la trace de la matrice de f dans n’importe quelle base de E .

Théorème 3 : Trace d’un projecteur
Si p est un projecteur de E , alors : tr(p) = rg(p).

Exercice 4
Démontrer ce théorème en considérant la matrice de p dans une
base bien choisie.

les matrices qui représentent f
ont toutes la même trace

14



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B ∈ Mn,p(K) sont équivalentes si :

il existe
U ∈ GLn(K) et V ∈ GLp(K) telles que B = UAV .

Interprétations

• Si f ∈ L (E , F ) alors MatB,C (f ) et MatB′,C ′(f ) sont
équivalentes

• A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes

Remarque
L’équivalence des matrices est une relation d’équivalence.

15



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B ∈ Mn,p(K) sont équivalentes si : il existe
U ∈ GLn(K) et V ∈ GLp(K) telles que B = UAV .

Interprétations

• Si f ∈ L (E , F ) alors MatB,C (f ) et MatB′,C ′(f ) sont
équivalentes

• A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes

Remarque
L’équivalence des matrices est une relation d’équivalence.

15



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B ∈ Mn,p(K) sont équivalentes si : il existe
U ∈ GLn(K) et V ∈ GLp(K) telles que B = UAV .

Interprétations

• Si f ∈ L (E , F ) alors MatB,C (f ) et MatB′,C ′(f ) sont
équivalentes

• A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes

Remarque
L’équivalence des matrices est une relation d’équivalence.

15



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B ∈ Mn,p(K) sont équivalentes si : il existe
U ∈ GLn(K) et V ∈ GLp(K) telles que B = UAV .

Interprétations

• Si f ∈ L (E , F ) alors MatB,C (f ) et MatB′,C ′(f ) sont
équivalentes

• A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes

Remarque
L’équivalence des matrices est une relation d’équivalence.

15



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B ∈ Mn,p(K) sont équivalentes si : il existe
U ∈ GLn(K) et V ∈ GLp(K) telles que B = UAV .

Interprétations

• Si f ∈ L (E , F ) alors MatB,C (f ) et MatB′,C ′(f ) sont
équivalentes

• A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes

Remarque
L’équivalence des matrices est une relation d’équivalence.

15



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B ∈ Mn,p(K) sont équivalentes si : il existe
U ∈ GLn(K) et V ∈ GLp(K) telles que B = UAV .

Interprétations

• Si f ∈ L (E , F ) alors MatB,C (f ) et MatB′,C ′(f ) sont
équivalentes

• A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes

Remarque
L’équivalence des matrices est une relation d’équivalence.

15



2 Matrices équivalentes et rang

Exercice 5

• E est un K-espace vectoriel de dimension p non nulle
• F est un K-espace vectoriel de dimension nnon nulle
• f ∈ L (E , F ) est de rang r .
Montrer qu’il existe une base B de E et une base C de F telles
que : MatB,C (f ) = Jr où : Jr =

(
Ir 0
0 0

)
∈ Mn,p(K)

Théorème 4

• Si A ∈ Mn,p(K) est de rang r , alors :

A est équivalente à Jr

• A, B ∈ Mn,p(K) sont équivalentes ssi :

rgA = rgB.

Exercice 6
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• Si A ∈ Mn,p(K) est de rang r , alors : A est équivalente à Jr

• A, B ∈ Mn,p(K) sont équivalentes ssi : rgA = rgB.

Exercice 6

1. Démontrer le théorème.
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Exercice 5

• E est un K-espace vectoriel de dimension p non nulle
• F est un K-espace vectoriel de dimension nnon nulle
• f ∈ L (E , F ) est de rang r .
Montrer qu’il existe une base B de E et une base C de F telles
que : MatB,C (f ) = Jr où : Jr =

(
Ir 0
0 0

)
∈ Mn,p(K)

Théorème 4

• Si A ∈ Mn,p(K) est de rang r , alors : A est équivalente à Jr

• A, B ∈ Mn,p(K) sont équivalentes ssi : rgA = rgB.

Exercice 6

2. En déduire que rg(A) = rg(A⊤)
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