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I Théorie du rang



1 Image et noyau d’une matrice A € .7, ,(K)

Notation

= Vecteurs colonnesde A: G =(ayj,...,an) K" 1<<p
» Vecteurs lignesde A:  Lj=(aj1, ..., ap) € KP 1<i<n
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On suppose que A € #,(K).
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1 Image et noyau d’une matrice A € .7, ,(K)

En pratique [d'inconnue X € ///,,71(K)]
= ImA=Vect(G , ..., () \/

= Ker A est I'ensemble des solutions du systeme : AX =0

i.e. ssi pour tout X € ., 1(K)
Théoréeme 1 : Critére AX=0 = X =0

On suppose que A € #,(K). V
Alors A est inversible ssi :  Ker A= {0}

Conséquence

A € #,(K) est inversible ssi (Cy, ..., C,) est : libre

Exercice 2

Démontrer le théoreme.



1 Image et noyau d’une matrice A € .7, ,(K)

En pratique [d'inconnue X € ///pﬂl(K)J

n ImA:Vect(Cl,...,Cp) \/

= Ker A est I'ensemble des solutions du systeme : AX =0

i.e. ssi pour tout X € ., 1(K)
Théoréme 1 : Critére AX=0 = X =0

On suppose que A € #,(K). V
Alors A est inversible ssi :  Ker A= {0}

Exercice 3 : Matrice a diagonale strictement dominante

On suppose que pour tout i € [1,n] : laji| > Z |aj j|.
J#i
Montrer que A est inversible.
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On appelle rang de A le rang dans K” de :
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On appelle rang de A le rang dans K” de : la famille de ses colonnes.
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Remarque
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2 Rang d’une matrice A € #, ,(K)

Définition 1
On appelle rang de A le rang dans K” de : la famille de ses colonnes.
= dim Vect(Cy, ..., Cp)

Remarque

Autrement dit :  rg(A) = rg(Cy,..., Cp) =dimIm A = rg(fa)

a) [re(4) < min(n, p))
b) VB € M, 4(K), [rg(AB) < min(rg(A), rg(B))]

c) VP € GL,(K), rg(PA) = rg(A)
d) ¥Q € GLy(K), rg(AQ) = rg(A)




2 Rang d’une matrice A € #, ,(K)

On appelle rang de A le rang dans K” de : la famille de ses colonnes.
= dim Vect(Cy, ..., Cp)

Remarque

Autrement dit :  rg(A) = rg(Cy,..., Cp) =dimIm A = rg(fa)

a) [re(4) < min(n, p))
b) VB € M, 4(K), [rg(AB) < min(rg(A), rg(B))]

c) VP € GL,(K), rg(PA) = rg(A)
d) ¥Q € GLy(K), rg(AQ) = rg(A)

On ne modifie pas
le rang en multipliant
par une matrice inversible
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On suppose que A € #,(K) . Alors A est inversible ssi :
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Théoreme 2 : Inversibilité et rang

On suppose que A € #,(K) . Alors A est inversible ssi : rgA = n.

Conséquence

A € #,(K) est inversible ssi (Cy, ..., C,) est : génératrice



2 Rang d’une matrice A € #, ,(K)

Théoreme 2 : Inversibilité et rang

On suppose que A € #,(K) . Alors A est inversible ssi : rgA = n.

Conséquence

A € #,(K) est inversible ssi (Cy, ..., C,) est : génératrice

Exercice 5

Démontrer le théoreme.



2 Rang d’une matrice A € #, ,(K)

Théoreme 3 : Lien avec le rang d’une famille de vecteurs

Soit (E, #) un K-espace vectoriel de dimension finie muni d'une
base et .# = (u1,...,up) € EP 1 rg(F) =
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2 Rang d’une matrice A € #, ,(K)

Théoreme 3 : Lien avec le rang d’une famille de vecteurs

Soit (E, #) un K-espace vectoriel de dimension finie muni d'une
base et .# = (u1,...,up) € EP:  rg(F) = rg(Maty(.7))

Théoreme 4 : Lien avec le rang d’une application linéaire

Soit (E, #) et (F, %) deux K-espaces vectoriels de dimension finie
munis de bases et f € Z(E,F) : rg(f) = rg(Matgz 4 (f))

Exercice 0 : Bonus

Démontrer les deux théoremes
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2 Rang d’une matrice A € #, ,(K)

Théoreme 3 : Lien avec le rang d’une famille de vecteurs

Soit (E, #) un K-espace vectoriel de dimension finie muni d'une
base et .# = (u1,...,up) € EP:  rg(F) = rg(Maty(.7))

Théoreme 4 : Lien avec le rang d’une application linéaire

Soit (E, #) et (F, %) deux K-espaces vectoriels de dimension finie
munis de bases et f € Z(E,F) : rg(f) = rg(Matgz 4 (f))

Théoréme 5 : Rang de la transposée (Admis provisoirement)

= rg(AT) = rg(A)
= Lerang de A est aussi le rang de : la famille de ses vecteurs lignes



3 Rang et matrices extraites de A € .7, ,(K)

Définition 2
Une matrice extraite de A est une matrice obtenue en supprimant
certaines lignes et certaines colonnes de A.




3 Rang et matrices extraites de

i1, j1 Qi1 ,jq

de la forme :

aim il aim -jq

Définition 2

pour certains : 1< i <---<im<n
Une matrice extraite de A est une et teqjiecen- suppLip

certaines lignes et certaines colonnes de A.




3 Rang et matrices extraites de

i1 1 Qi1 ,jq

de la forme :

aim W1 aim ‘J'q

Définition 2

pour certains : 1<ip <---<inp<n
Une matrice extraite de A est une et teqjiecen- suppLip

certaines lignes et certaines colonnes de A.

Théoréeme 6

Le rang de A est la taille maximale des matrices carrées inversibles
extraites de A. Autrement dit, pour tout r € N, rg(A) > r ssi



3 Rang et matrices extraites de

i1 1 Qi1 ,jq

de la forme :

aim Jl a”m ‘J'q
Définition 2

pour certains :

1<ih < - <in<n
Une matrice extraite de A est une et teqjiecen- suppLip
certaines lignes et certaines colonnes de A.

Théoréeme 6

Le rang de A est la taille maximale des matrices carrées inversibles
extraites de A. Autrement dit, pour tout r € N, rg(A) > r ssi A
posséde une matrice extraite inversible de taille r.



3 Rang et matrices extraites de

i1 1 Qi1 ,jq

de la forme :

aim il aim ‘J'q

Définition 2

pour certains : 1<ip <---<inp<n
Une matrice extraite de A est une et teqjiecen- suppLip

certaines lignes et certaines colonnes de A.

Théoréeme 6

Le rang de A est la taille maximale des matrices carrées inversibles
extraites de A. Autrement dit, pour tout r € N, rg(A) > r ssi A
posséde une matrice extraite inversible de taille r.

Exemple 1 : A =

O O WP
o 01 = ©
N = NN

1
1
8
9

Montrer sans aucun calcul que rg(A) > 3.
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Remarque

Les opérations élémentaires conservent le rang
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4 Méthode de Gauss pour le calcul du rang

car effectuer une opé. élem.

multiplier par une matrice inversible
Remarque

Les opérations élémentaires conservent le rang

Vocabulaire

Une matrice est échelonnée
si elle a la forme r




4 Méthode de Gauss pour le calcul du rang

car effectuer une opé. élem.

multiplier par une matrice inversible
Remarque

Les opérations élémentaires conservent le rang

Vocabulaire

Une matrice est échelonnée
si elle a la forme r

Exercice 6

Montrer que cette matrice
est de rang r 0 0




4 Méthode de Gauss pour le calcul du rang

Remarque

Les opérations élémentaires conservent le rang

r
SF 9 : Calculer le rang

On transforme A en une
matrice échelonnée par r
opérations élémentaires
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Remarque

Les opérations élémentaires conservent le rang

SF 9 : Calculer le rang

On transforme A en une
matrice échelonnée par
opérations élémentaires r

Exemple 2 : Rang de




4 Méthode de Gauss pour le calcul du rang

Remarque

Les opérations élémentaires conservent le rang

SF 9 : Calculer le rang

On transforme A en une
matrice échelonnée par
opérations élémentaires £

Exemple 2 : Rang de

o 0 1 2
b 1 4 -1 -2
) (—2 8 4 1 ) 0 0




Il Matrices équivalentes, matrices
semblables

I Matrices équivalentes, matrices semblables



1 Matrices semblables et trace

Cadre
v A B e #4,(K).

On dit que B est semblable a A si :




1 Matrices semblables et trace

Cadre
v A B e #4,(K).

Définition 1

On dit que B est semblable a A si : il existe P € GL,(K) telle que
B=PlAP




1 Matrices semblables et trace

[ C'est le cas si A et B représentent le méme ]

endomorphisme f dans deux bases différentes

On dit que B estgemblable a A si : il existe P € GL,(K) telle que

10



1 Matrices semblables et trace

C'est le cas si A et B représentent le méme
endomorphisme f dans deux bases différentes

emblable a A si : il existe P € GL,(K) telle que

Exercice 1 : La similitude est une relation d’équivalence

On note A ~ B pour « B est semblable a A ». Montrer que la
relation « ~ » est une relation d'équivalence sur .Z,(K).

10



1 Matrices semblables et trace

A € #,(K)

Définition 2

On appelle trace de A la somme de ses coefficients diagonaux :

11



1 Matrices semblables et trace

A € Mn(K)

Définition 2

On appelle trace de A la somme de ses coefficients diagonaux :

n

tr(A) d?f 23;7;

Ci=1
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A € #,(K)
Définition 2

On appelle trace de A la somme de ses coefficients diagonaux :

n

tr(A) d?f 28;7;
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1. Linéarité :

2. Symétrie :



1 Matrices semblables et trace

A € #,(K)
Définition 2

On appelle trace de A la somme de ses coefficients diagonaux :

n

tr(A) d?f 28;7;

Ci=1

1. Linéarité : VA, u €K, tr(A+ uB) = Atr(A) + utr(B).
2. Symétrie :



1 Matrices semblables et trace

A € #,(K)
Définition 2

On appelle trace de A la somme de ses coefficients diagonaux :

n

tr(A) d?f 28;7;

Ci=1

1. Linéarité : VA, u €K, tr(A+ uB) = Atr(A) + utr(B).
2. Symétrie :  tr(AB) = tr(BA).



1 Matrices semblables et trace

A € Mn(K)

Définition 2
On appelle trace de A la somme de ses coefficients diagonaux :
n

1. Linéarité : VA, u €K, tr(A+ uB) = Atr(A) + utr(B).
2. Symétrie :  tr(AB) = tr(BA).

Exercice 2

Démontrer que :  tr(AB) = tr(BA).

11



1 Matrices semblables et trace

A € #,(K)

Définition 2
On appelle trace de A la somme de ses coefficients diagonaux :
n

tr(A) d?f. 28;7;

1. Linéarité : VA, u €K, tr(A+ uB) = Atr(A) + utr(B).
2. Symétrie :  tr(AB) = tr(BA).

Exemple 1
Trouver toutes les matrices A, B € .#,(K) tels que AB — BA = I,.

11



1 Matrices semblables et trace

Si A et B sont semblables alors :




1 Matrices semblables et trace

Si A et B sont semblables alors :  trA = trB.




1 Matrices semblables et trace

Si A et B sont semblables alors :  trA = trB.

Exercice 3

a) Démontrer ce résultat.

b) Montrer que la réciproque de ce théoréme est fausse.



1 Matrices semblables et trace

SF 10 : Montrer que A et B sont semblables

On note f I'endomorphisme canoniquement associé a A et on
cherche une base Z telle que Maty(f) = B

13



1 Matrices semblables et trace

SF 10 : Montrer que A et B sont semblables

On note f I'endomorphisme canoniquement associé a A et on
cherche une base Z telle que Maty(f) = B

0 1
Exemple 2 : A= (o 0
0 o

oro
___—
oy
Il
N

a) Montrer que B est semblable a A.
b) Montrer que C est semblable a A.

13



1 Matrices semblables et trace

SF 10 : Montrer que A et B sont semblables

On note f I'endomorphisme canoniquement associé a A et on
cherche une base Z telle que Maty(f) = B

Exemple 3 : A € .#,(K) est de rang r

Montrer que A est semblable a une matrice : (Ig 8)
ou: Be#(K) Ce M (K)

13



1 Matrices semblables et trace

Trace d’un endomorphisme f € Z(E)

C'est la trace de la matrice de f

14



1 Matrices semblables et trace

Trace d’un endomorphisme f € Z(E)

C'est la trace de la matrice de f dans n'importe quelle base de E.

14



1 Matrices semblables et trace

les matrices qui représentent f
ont toutes la méme trace
Trace d’un endomorphisme f € .,1/(E)

C'est la trace de la matrice de f dans n'importe quelle base de E.

14



1 Matrices semblables et trace

ont toutes la méme trace
Trace d’un endomorphisme f ¢ ME)

[Ies matrices qui représentent f]

C'est la trace de la matrice de f dans n'importe quelle base de E.

Théoréme 3 : Trace d’un projecteur

Si p est un projecteur de E, alors :



1 Matrices semblables et trace

les matrices qui représentent f
ont toutes la méme trace
Trace d’un endomorphisme f ¢ ME)

C'est la trace de la matrice de f dans n'importe quelle base de E.

Théoréme 3 : Trace d’un projecteur

Si p est un projecteur de E, alors :  tr(p) = rg(p).



1 Matrices semblables et trace

les matrices qui représentent f
ont toutes la méme trace
Trace d’un endomorphisme f ¢ .,1/(E)

C'est la trace de la matrice de f dans n'importe quelle base de E.

Théoréme 3 : Trace d’un projecteur

Si p est un projecteur de E, alors :  tr(p) = rg(p).

Exercice 4

Démontrer ce théoreme en considérant la matrice de p dans une
base bien choisie.

14



2 Matrices équivalentes et rang

Deux matrices A, B € .#,, ,(K) sont équivalentes si :



2 Matrices équivalentes et rang

Deux matrices A, B € .#, 5(K) sont équivalentes si : il existe
U € GLy(K) et V € GL,(K) telles que B = UAV.
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Définition 3
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U € GLy(K) et V € GL,(K) telles que B = UAV.

Interprétations



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B € .#, 5(K) sont équivalentes si : il existe
U € GLy(K) et V € GL,(K) telles que B = UAV.

Interprétations

» Sif e Z(E,F) alors Matgz «(f) et Matg () sont
équivalentes



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B € .#, 5(K) sont équivalentes si : il existe
U € GLy(K) et V € GL,(K) telles que B = UAV.

Interprétations

» Sif e Z(E,F) alors Matgz «(f) et Matg () sont
équivalentes

= A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes



2 Matrices équivalentes et rang

Définition 3
Deux matrices A, B € .#, 5(K) sont équivalentes si : il existe
U € GLy(K) et V € GL,(K) telles que B = UAV.

Interprétations

» Sif e Z(E,F) alors Matgz «(f) et Matg () sont
équivalentes

= A et B sont équivalentes si on peut transformer A en B par
opérations élémentaires sur les lignes et colonnes

Remarque

L'équivalence des matrices est une relation d'équivalence.



2 Matrices équivalentes et rang

Exercice 5

= E est un K-espace vectoriel de dimension p non nulle

= F est un K-espace vectoriel de dimension nnon nulle

» f e Z(E,F) est de rang r.

Montrer qu'il existe une base % de E et une base % de F telles

que: Matyu(f)=J, ob: J = (Ié g) € My p(K)



2 Matrices équivalentes et rang

Exercice 5

= E est un K-espace vectoriel de dimension p non nulle

= F est un K-espace vectoriel de dimension nnon nulle

» f e Z(E,F) est de rang r.

Montrer qu'il existe une base % de E et une base % de F telles

que: Matyu(f)=J, ob: J = (’6 g) € Mpp(K)

Théoréme 4

» Si A€ #,p(K) est de rang r, alors :



2 Matrices équivalentes et rang

Exercice 5

= E est un K-espace vectoriel de dimension p non nulle

= F est un K-espace vectoriel de dimension nnon nulle

» f e Z(E,F) est de rang r.

Montrer qu'il existe une base % de E et une base % de F telles
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2 Matrices équivalentes et rang

Exercice 5

= E est un K-espace vectoriel de dimension p non nulle
= [ est un K-espace vectoriel de dimension nnon nulle
» f e Z(E,F) est de rang r.

Montrer qu'il existe une base & de E et une base € de F telles

N I 0
que: Matgg(f)=J, ou: J = (0 0) € Mnp(K)

Théoreme 4

» Si Ae A, p(K) est de rang r, alors : A est équivalente a J,
» A, B e M,p(K) sont équivalentes ssi :  rgA = rgB.

Exercice 6

1. Démontrer le théoreme.
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Exercice 5

= E est un K-espace vectoriel de dimension p non nulle
= [ est un K-espace vectoriel de dimension nnon nulle
» f e Z(E,F) est de rang r.

Montrer qu'il existe une base % de E et une base € de F telles

S I 0
que: Matgg(f)=J, ou: J = (0 0) € Mnp(K)

Théoréme 4

» Si A€ #,p(K) est de rang r, alors : A est équivalente a J,
» A, B e #,p(K) sont équivalentes ssi :  rgA = rgB.

Exercice 6

2. En déduire que rg(A) = rg(AT)
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