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1 Définition et convergence des sommes des Riemann

Définition 1
Pour tout n ∈ N∗, on appelle sommes de Riemann de f :

Rn(f ) =

b − a
n

n−1∑
k=0

f
(
a + k b − a

n
)

Sn(f ) =

b − a
n

n∑
k=1

f
(
a + k b − a

n
)

a = x0 x1 x2 . . .xk xk+1 . . .xn = b

Rn(f ) =
n−1∑
k=0

(xk+1 − xk)f (xk) Sn(f ) =
n∑

k=1
(xk − xk−1)f (xk)

f ∈ C M ([a , b] , K)
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1 Définition et convergence des sommes des Riemann

Théorème 1
Les suites (Rn(f ))n∈N∗ et (Sn(f ))n∈N∗ convergent et :

lim
n→+∞

Rn(f ) = lim
n→+∞

Sn(f ) =

∫ b

a
f (t) dt

Exercice 1
Démontrer le résultat pour (Rn(f )) dans le cas où f est
M-lipschitzienne pour un certain M > 0.
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1 Définition et convergence des sommes des Riemann

Remarque
Très souvent, on peut choisir [a , b] = [0 , 1].

Cas particulier très important

1
n

n−1∑
k=0

f
(k
n

)
−→

n→+∞

∫ 1

0
f (t) dt et 1

n

n∑
k=1

f
(k
n

)
−→

n→+∞

∫ 1

0
f (t) dt
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2 Application à la convergence de certaines suites

Cas particulier très important

1
n

n−1∑
k=0

f
(k

n
)

−→
n→+∞

∫ 1

0
f (t) dt et 1

n

n∑
k=1

f
(k

n
)

−→
n→+∞

∫ 1

0
f (t) dt

Exemple 1 : Etudier la limite de (un)

un =
n∑

k=1

1
n + k
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2 Application à la convergence de certaines suites
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1
n
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n
)
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∫ 1

0
f (t) dt

Exemple 1 : Etudier la limite de (un)

un =
n∑

k=1

1
n + k
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1
n
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k=0

f
(k

n
)
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2 Application à la convergence de certaines suites

Cas particulier très important

1
n

n−1∑
k=0

f
(k

n
)

−→
n→+∞

∫ 1

0
f (t) dt et 1

n

n∑
k=1

f
(k

n
)

−→
n→+∞

∫ 1

0
f (t) dt

Exemple 2 : Trouver un équivalent de Sn

Sn =
n∑

k=1

1
n2 + k2
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II Formules de Taylor « globales »
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1 Formule de Taylor à reste intégral

Théorème 1 : Formule de Taylor à reste intégral
Si f est de classe C n+1 sur I :

f (b) =
n∑

k=0

f (k)(a)
k! (b − a)k +

∫ b

a

(b − t)n

n! f (n+1)(t) dt

Exercice 1
Démontrer cette formule par récurrence sur n.

Rappel. Lorsque f est C n

Taylor-Young s’écrit :

f (b) =
b→a

n∑
k=0

f (k)(a)
k! (b − a)k +

o
(
(b − a)n)

mêmes termes que dans un DL Reste intégral
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x − x2

2 ≤ ln(1 + x) ≤ x − x2

2 + x3

3
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2 Inégalité de Taylor-Lagrange

Théorème 2 : Inégalité de Taylor-Lagrange
Si f est de classe C n+1 sur I et si Mn+1 majore

∣∣∣f (n+1)
∣∣∣ sur [a , b]

∣∣∣∣∣∣ f (b) −
n∑

k=0

f (k)(a)
k! (b − a)k

∣∣∣∣∣∣ ≤ |b − a|n+1

(n + 1)! Mn+1

Exercice 2
Etablir cette inégalité à l’aide de la formule de Taylor à reste
intégral.

ou [b , a]

=
∫ b

a

(b − t)n

n! f (n+1)(t) dt
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montrer que pour tout z ∈ C :
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n→+∞

ez .

Mn+1 est à trouver
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3 Bilan sur les formules de Taylor

Cadre

Chaque formule estime : Rn(x) = f (x) −
n∑

k=0

f (k)(a)
k! (x − a)k

Formules de Taylor

Taylor-Young Rn(x) =
x→a

o
(
(x − a)n)

Taylor reste intégral Rn(x) =
∫ x

a

(x − t)n

n! f (n+1)(t) dt

Taylor Lagrange |Rn(x)| ≤ |x − a|n+1

(n + 1)! Mn+1

estimation
locale

expression
globale

estimation
globale
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Taylor Lagrange |Rn(x)| ≤ |x − a|n+1

(n + 1)! Mn+1

estimation
locale

expression
globale

estimation
globale

11
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recours aux intégrales

I Sommes de Riemann
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1 La ruse de l’intégrale de tk

SF 13 : Mettre une somme sous forme intégrale

Exercice 1

Calculer la limite de la suite de terme général un =
n∑

k=1

(−1)k−1

k

1
k =

∫ 1

0
tk−1 dt

13
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2 Encadrement d’une somme par une intégrale

SF 14 : Effectuer une comparaison somme-intégrale

Exercice 2 : f ∈ C (R+,R) est décroissante

Montrer :

∀n ∈ N,

∫ n+1

0
f (t) dt ≤

n∑
k=0

f (k) ≤ f (0) +
∫ n

0
f (t) dt

14



2 Encadrement d’une somme par une intégrale

Exemple 1

Montrer que pour tout n ∈ N∗ :
n∑

k=1
ln k ≥ n ln n − n + 1.

14



2 Encadrement d’une somme par une intégrale

Exemple 2 : La somme harmonique : Hn =
n∑

k=1

1
k .

Montrer que : Hn ∼ ln n.

14



2 Encadrement d’une somme par une intégrale

Exemple 3 : α ∈ ]0 , 1[

Déterminer un équivalent de : Sn =
n∑

k=1

1
kα

.

14



3 Développement asymptotique somme-intégrale

Théorème 1
Soit f ∈ C (R+,R+), décroissante.

Il existe ℓ ∈ R tel que :

n∑
k=0

f (k) =
n→+∞

∫ n

0
f (t) dt

+ℓ+o(1)

≤ f (0)

k − 1 k 15
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3 Développement asymptotique somme-intégrale

Théorème 2
Soit f ∈ C (R+,R+), décroissante.

Il existe ℓ ∈ R tel que :
n∑

k=0
f (k) =

n→+∞

∫ n

0
f (t) dt+ℓ+o(1)

Développement asymptotique de la somme harmonique

Appliqué avec t 7→ 1
t sur [1 , +∞[ on obtient :

Hn =
n→+∞

ln n + γ + o(1)
Développement
asymptotique
à deux termesn∑

k=1

1
k ∫ n

1

1
t dt

Constante d’Euler
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1 Continuité uniforme

Cadre
f : I → K est continue i.e. :

∀x ∈ I,

∀ε > 0, ∃ α > 0 | ∀y ∈ I, |x − y | ≤ α ⇒ |f (x) − f (y)| ≤ ε

Définition 1
f est uniformément continue sur I si :

∀ε > 0, ∃ α > 0 | ∀x , y ∈ I, |y − x | ≤ α =⇒ |f (y) − f (x)| ≤ ε

Remarque

1. Si f est uniformément continue sur I :

elle y est continue.

2. Si f est lipshitzienne sur I :

elle y est uniformément continue.

Exercice 1
Démontrer le point 2.

18
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2. Si f est lipshitzienne sur I : elle y est uniformément continue.

Exercice 1
Démontrer le point 2.
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1 Continuité uniforme

Définition 1
f est uniformément continue sur I si :
∀ε > 0, ∃α > 0 | ∀x , y ∈ I, |y − x | ≤ α =⇒ |f (y) − f (x)| ≤ ε

Théorème 1 : (Théorème de Heine)

Si f est continue sur un segment [a , b], alors elle y est
uniformément continue.

Exercice 2
Démontrer le théorème par l’absurde.
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2 Approximation uniforme par des fonctions en escalier

Cadre
f : [a , b] → K est continue par morceaux sur le segment [a , b]

Théorème 2
Soit ε ∈ R∗

+. Il existe une fonction φ en escalier sur [a , b] telle que :

∥f − φ∥∞ ≤ ε

f est bornée sur [a , b] :

i.e. : ∀x ∈ [a , b], |φ(x) − f (x)| ≤ ε
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2 Approximation uniforme par des fonctions en escalier

Cadre
f : [a , b] → K est continue par morceaux sur le segment [a , b]

Théorème 2
Soit ε ∈ R∗

+. Il existe une fonction φ en escalier sur [a , b] telle que :
∥f − φ∥∞ ≤ ε

Exercice 3
Démontrer le théorème.

f est bornée sur [a , b] :
∥f ∥∞ = sup

x∈I
|f (x)|

i.e. : ∀x ∈ [a , b], |φ(x) − f (x)| ≤ ε
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2 Approximation uniforme par des fonctions en escalier

Cadre
f : [a , b] → K est continue par morceaux sur le segment [a , b]

Théorème 2
Soit ε ∈ R∗

+. Il existe une fonction φ en escalier sur [a , b] telle que :
∥f − φ∥∞ ≤ ε

Exercice 4
Justifier l’existence d’une suite (φp) de fonctions en escalier sur
[a , b] telle que ∥f − φp ∥∞ −→

p→+∞
0

f est bornée sur [a , b] :
∥f ∥∞ = sup

x∈I
|f (x)|

i.e. : ∀x ∈ [a , b], |φ(x) − f (x)| ≤ ε
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2 Approximation uniforme par des fonctions en escalier

Exercice 2
Justifier l’existence d’une suite (φp) de fonctions en escalier sur
[a , b] telle que ∥f − φp ∥∞ −→

p→+∞
0

Conséquence (rappel)

On peut prolonger l’intégrale des fonction en escalier aux fonctions
continues par morceaux :

• La suite
(∫

[a ,b]
φp

)
est convergente.

• Sa limite ne dépend pas du choix de (φp).

• On pose :
∫

[a ,b]
f =

déf.

lim
p→+∞

∫
[a ,b]

φp

intégrale d’une fonction en escalier
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2 Approximation uniforme par des fonctions en escalier

Théorème 2
Soit ε ∈ R∗

+. Il existe une fonction φ en escalier sur [a , b] telle que :
∥f − φ∥∞ ≤ ε

Exemple 1 : Riemann-Lebesgue pour f ∈ C M ([a , b],R)

On souhaite montrer : lim
λ→+∞

∫ b

a
f (t) sin(λt) dt = 0.

1. Démontrer le résultat lorsque f est en escalier.
2. Conclure dans le cas général.
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V Calcul approché d’intégrales

I Sommes de Riemann

II Formules de Taylor « globales »

III Approximations de sommes par recours aux intégrales

IV Approximation d’une fonction continue par morceaux

V Calcul approché d’intégrales
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Cadre

Objectif

Approcher : I =
∫ b

a
f (t) dt

=
n−1∑
k=0

∫ xk+1

xk
f (t) dt

a

= x0 xn =

b
24
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b−a

n

x1 . . . . . .xk+1xk
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1 Méthode des rectangles

Objectif

Approcher : I=
n−1∑
k=0

∫ xk+1

xk
f (t) dt

a= x0 xn =b
b−a

n

x1 . . . . . .xk+1

f (xk)

xk

≈ (xk+1 − xk)f (xk)

24



1 Méthode des rectangles

Objectif

Approcher : I=
n−1∑
k=0

∫ xk+1

xk
f (t) dt ≈ b − a

n

n−1∑
k=0

f (xk)

a= x0 xn =b
b−a

n

x1 . . . . . .xk+1

f (xk)

xk

24



2 Méthode des trapèzes

Objectif

Approcher : I=
n−1∑
k=0

∫ xk+1

xk
f (t) dt

a= x0 xn =b
b−a

n

x1 . . . . . .xk+1

f (xk)
f (xk+1)

xk

≈ (xk+1 − xk) f (xk)+f (xk+1)
2
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2 Méthode des trapèzes

Objectif

Approcher : I=
n−1∑
k=0

∫ xk+1

xk
f (t) dt ≈ b − a

n

n−1∑
k=0

f (xk) + f (xk+1)
2

a= x0 xn =b
b−a

n

x1 . . . . . .xk+1xk
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