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1 Définition et convergence des sommes des Riemann

feé.(a,b], K)

Définition 1

Pour tout n € N*, on appelle sommes de Riemann de f :

Ra(f) = [S,,(f) = ]

a = Xp X1 X2 - - - Xk Xk+1"'Xn:b
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1 Définition et convergence des sommes des Riemann

feé.(a,b], K)

Définition 1

Pour tout n € N*, on appelle sommes de Riemann de f :

Ral(F) = b;a§f<a+kb;a) [Sn(f) bnaif(aJrkbna)]
k=0 k=1

a = Xp X1 X2 - - - Xk Xk+1"'Xn:b




1 Définition et convergence des sommes des Riemann

(Xk1 — xi)f(xx)

sommes de Riemann de f :

5 a
R - B2 f(o 4 k2=2) [snm bnaif(a+kbna)]
k=0 k=1

f(x)

Aire :
(Xk+1 — xi)f (xk)

A }
a= Xp X1 X - - - Xk Xk+1"'Xn:b




1 Définition et convergence des sommes des Riemann

n—1
Ra(f) = > (k1 — %) (xk)
L fiTd DI sommes de Riemann de f :
/ __n—1 . . n .
Ro(F) = " aZf<a+kb S Sa(F) =" aZf(a+kb %)
k=0 1 =1 N
f(Xk)

Aire :
Xk+1 — Xk)f(Xk)




1 Définition et convergence des sommes des Riemann

n—1

 Défns j{:(Xk+1 — xi)f (xk)
k=0
~ g
/b—an_1 b — /b—a

Ra(f) =

Zf<a+k

k=0 n =

Aire :
(Xk+1 — xi)f (xk)




1 Définition et convergence des sommes des Riemann

n—1

It D) afis Z(Xk—|—1 — Xk )f (xk)

k=0

= sommes

Sa(f) = zn:(xk — xk—1)f(xx)
k=1

7,
n—1
R(f) = Gl Zf(aJrkb;a) Sa(
k=0

fifc

n b—
. kzzzlf(a—i—k na>

J

a=xp X1

Aire :
(X1 — XK)F(Xg1)

XXk Xkp1l---Xp=Db
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1 Définition et convergence des sommes des Riemann

Les suites (Rn(f))nen+ et (Sn(f))nen= convergent et :
b
im Ro(f) = lim Sn(f) = / F(£)de

n——+o00 n—-+o00

Exercice 1

Démontrer le résultat pour (R,(f)) dans le cas ot f est
M-lipschitzienne pour un certain M > Q.
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Remarque

Tres souvent, on peut choisir [a, b] = [0,1].

Cas particulier trés important



1 Définition et convergence des sommes des Riemann

Remarque

Tres souvent, on peut choisir [a, b] = [0,1].

Cas particulier trés important

1 n—1 k "1
EZI‘(;) H—%O/O f(t)dt Zf n%x/ f(t

k=0 ’ k 1



2 Application a la convergence de certaines suites

Cas particulier trés important

1n71fk ‘1ftdt t lnfk ‘1ftdf
) o s e D32r(0) o [

Exemple 1 : Etudier la limite de (u,)

=3y

k:1n+k



2 Application a la convergence de certaines suites

Cas particulier trés important

> (%) — /‘1f(t)dt e 1y (%) — /1f(t)dt
n,— N/ n—eteJo n“ \n/ n=+oo Jo
=0 k=1
On fait apparaitre
- - oi 1 n—1 k
Exemple 1 : Etudier la limite de (u,) Iy f<7)
ni= \n




2 Application a la convergence de certaines suites

Cas particulier trés important

1n71fk ‘1ftdt t lnfk ‘1ftdf
) o s e D32r(0) o [

Exemple 2 : Trouver un équivalent de S,

" 1
=L

k=1
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1 Formule de Taylor a reste intégral

Théoreme 1 : Formule de Taylor a reste intégral

Si f est de classe "1 sur [ :
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f(b) =3 f(klj!(a)(b —a)k + /ab(b;!t)nf(”+1)(t)dt

k=0
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Théoreme 1 : ForQule de Taylor a reste int§igral
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Théoreme 1 : ForQule de Taylor a reste int§igral

Rappel. Lorsque f est "

Taylor-Young s'écrit : f(b) = Z o (b—a)k+
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1 Formule de Taylor a reste intégral

mémes termes que dans un DL | Reste intégral |

Théoreme 1 : ForQule de Taylor a reste int§igral

Rappel. Lorsque f est "

Taylor-Young s'écrit : f(b) = Z i (b—a)k+|o((b—a)")
—a H




1 Formule de Taylor a reste intégral

mémes termes que dans un DL | Reste intégral |

Théoreme 1 : ForQule de Taylor a reste int§igral

Remplace
le
«o(b—a)"»

Rappel. Lorsque f est " /

Taylor-Young s'écrit : f(b) = Z i (b—a)k+|o((b—a)"
—a H




1 Formule de Taylor a reste intégral

mémes termes que dans un DL Reste intégral |

Théoreme 1 : ForQule de Taylor a reste int§igral

Remplace
le
«o(b—a)"»

Démontrer cette formule par récurrence sur n.

Rappel. Lorsque f est "

Taylor-Young s'écrit : f(b) = Z i (b—a) +|o((b—a)")
—a H



1 Formule de Taylor a reste intégral

Théoréme 1 : Formule de Taylor a reste intégral

f(b) = Z f(k,i!(a)(b —a)* + /ab(b — 0" () (1) d

k=0

SF 12 : Majorer ou minorer f(x) par des polyndmes



1 Formule de Taylor a reste intégral

Théoréme 1 : Formule de Taylor a reste intégral

() =3 O apes [P )y

I |
o k! n!

SF 12 : Majorer ou minorer f(x) par des polyndmes

= On applique la formule de Taylor a reste intégral a f



1 Formule de Taylor a reste intégral

Théoréme 1 : Formule de Taylor a reste intégral

SVAGIO PRSI LR

— _ (n+1)

f(b) = 2 (b— ) + [ () e
k=0

SF 12 : Majorer ou minorer f(x) par des polyndmes

= On applique la formule de Taylor a reste intégral a f

= On majore/minore le reste intégral



1 Formule de Taylor a reste intégral

Théoréme 1 : Formule de Taylor a reste intégral

% FOa) )k, (PO 1)

_ o \¥ = ) £(n+1)

() = > (b - 3) +/a — LA () de
k=0

SF 12 : Majorer ou minorer f(x) par des polyndmes

= On applique la formule de Taylor a reste intégral a f

= On majore/minore le reste intégral

Exemple 1 : Montrer que pour tout x € R

2 2 3

x—%ﬁln(l—i—x)éx—%-ﬁ-%



2 Inégalité de Taylor-Lagrange

Théoreme 2 : Inégalité de Taylor-Lagrange

Si f est de classe €"*! sur I et si M, ;1 majore ’f(’”“l)’ sur [a, b]



2 Inégalité de Taylor-Lagrange

Théoreme 2 : Inégalité de Taylor-Lagrange

Si f est de classe €"*! sur I et si M, ;1 majore ’f(’”“l)’ sur [a, b]

— M
(n+1)| n+1



2 Inégalité de Taylor-Lagrange

[: /ab(b;!t)nf(nﬂ)(t) dt]

Théoreme 2 : In\galité de Taylor-Lagrange

Si f est de classe G\{! sur I et si M, 1 majore ’f(”+1)’ sur [a, b]

Exercice 2

Etablir cette inégalité a I'aide de la formule de Taylor a reste
intégral.




2 Inégalité de Taylor-Lagrange

Théoreme 2 : Inégalité de Taylor-Lagrange

Si f est de classe €1 sur | et si M,;1 majore

i 7. £(k)(a)

f(”H)‘ sur [a, b] :

f(b) = > i (b—a)k| < 2

P9 _m
R CE

k=0

10



2 Inégalité de Taylor-Lagrange

(Mn,l est a trouver]

Théoréeme 2 : Inégalité de Taylor-!

Si f est de classe "1 sur | et si M,,; majore

n Ff(K) (5
if(b)—zf k!( )(b—a)k < b

k=0

f(”’l)‘ sur [a, b] :

10



2 Inégalité de Taylor-Lagrange

M1 est a trouver

Théoreme 2 : Inégalité de Taylor-

Si f est de classe €1 sur [ et si M,.1 majore Fn+1)] gy [a,b] :

i 7. £(k)(a)

f(b) = > i (b—a)k| < 2

k=0

Exemple 2

1. En appliquant I'inégalité ci-dessus a I'exponentielle, montrer que
n
1

E —r €
=0 n——+o00

10



2 Inégalité de Taylor-Lagrange

M1 est a trouver

Théoreme 2 : Inégalité de Taylor-

Si f est de classe €1 sur [ et si M,.1 majore Fn+1)] gy [a,b] :

i 7. £(k)(a)

f(b) = > i (b—a)k| < 2

k=0

Exemple 2

2. En appliquant I'inégalité ci-dessus une fonction f bien choisie,

n o _k
z
montrer que pour tout z € C : E — — e
k—ok! n—-+00

10



3 Bilan sur les formules de Taylor

Cadre
- " K (a) k
Chaque formule estime :  Rp(x) = f(x) — Z (x — a)
prd k!
Formules de Taylor
Taylor-Young Ra(x) =, o((x—a)™)

o X(x— )" 1
Taylor reste intégral | R,(x) = / e FOr+(¢) dt
a 5

Taylor Lagrange |Rn(x)] <




3 Bilan sur les formules de Taylor

Cadre
. £(k)
Chaque formule estime :  Rp(x) = f(x) — Z (a) (x — a)k
- K
Formules de Taylor estimation
locale
Taylor-Young Rn(x) =, o((x —a)")

o X(x— )" 1
Taylor reste intégral | R,(x) = / e FOr+(¢) dt
a 5

Taylor Lagrange |Rn(x)] <

11



3 Bilan sur les formules de Taylor

Cadre

Chaque formule estime :  Rp(x) = f(x) — Z

Taylor-Young

L X(x —t)" 1
Taylor reste intégral | R,(x) = / S F(n 1) (¢ dt
a H

Taylor Lagrange |Rn(x)] <

globale

11



3 Bilan sur les formules de Taylor

Cadre

Chaque formule estime :  Rp(x) = f(x) — Z

Taylor-Young

B (g — e globale
Taylor reste intégral | Ru(x) = / Q f(”“)(tﬁL
a n:
’X _ a|n+1
Taylor Lagrange |Rn(X)| < WM,H_l

estimation
globale

11



Il Approximations de sommes par
recours aux intégrales

I Approximations de sommes par recours aux intégrales
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1 La ruse de l'intégrale de t*

SF 13 : Mettre une somme sous forme intégrale

Exercice 1

n k—1
. . - -1
Calculer la limite de la suite de terme général u, = E L

k=1

13



1 La ruse de l'intégrale de t*
1 k-1
== [ tFldt

SF 13 : Mettre une somme sous forme intégrale

Exercice 1

n k—1
. . - -1
Calculer la limite de la suite de terme général u, = E L

k=1

13



2 Encadrement d’une somme par une intégrale

SF 14 : Effectuer une comparaison somme-intégrale

Exercice 2 : f € ¥(R4,R) est décroissante

Montrer :

VneN, /()n+1f(t)dt < éf(k) < F(0)+ /Onf(t)dt

14



2 Encadrement d’une somme par une intégrale

Exemple 1

n
Montrer que pour tout n € N* : Z Ink>nlnn—n+1.
k=1

14



2 Encadrement d’une somme par une intégrale

1
Exemple 2 : La somme harmonique : H, = Z;

Montrer que :  H, ~ Inn.

14



2 Encadrement d’une somme par une intégrale

Exemple 3 : o €]0,1]

n
. . L 1
Déterminer un équivalent de : S, = I
k=1

14



3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

Il existe £ € R tel que :
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3 Développement asymptotique somme-intégrale
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n

Il existe ¢ € R tel que : [Zf(k) = / f(t)dt+¢
k—0 n o | 0




3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
k—0 n o | 0




3 Développement asymptotique somme-intégrale

Théoréme 1
Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
k—0 n o | 0

k—1 k 15
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Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
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-k
Aire:/ f(t)dt
Jk—1

k—1 k 15
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Soit f € ¥(R4+,Ry), décroissante.
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3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
k—0 n o | 0

D

/k £(£) dt (k)
Jk—1

ak




3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
k—0 n o | 0

D

/k £(£) dt (k)
Jk—1

ak

-
|
=
x t--=-=-=-=--

115)



3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
k—0 n o | 0

D

/k £(£) dt (k)
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3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

n
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3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
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3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,Ry), décroissante.

n

Il existe £ € R tel que : [Zf(k) = / f(t)dt+4+o(1)
k—0 n > Jo
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3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,R), décroissante.

n

SFk) = '/(;nf(t) dt+0+o(1)

Il existe £ € R tel que : [
k=0

Développement asymptotique de la somme harmonique

1
Appliqué avec t — S sur [1,+400[ on obtient :

16



3 Développement asymptotique somme-intégrale

Soit f € ¥(R4+,R), décroissante.

n

SFk) = '/(;nf(t) dt+0+o(1)

Il existe £ € R tel que : [
k=0

Développement asymptotique de la somme harmonique

1
Appliqué avec t — S sur [1,+400[ on obtient :

H, = Inn+ v + o1)

n——+00
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3 Développement asymptotique somme-intégrale

Théoréme 2
Soit f € ¥(R4+,R), décroissante.

n

SFk) = '/(;nf(t) dt+0+o(1)

Il existe £ € R tel que : [
k=0

Développement asymptotique de la somme harmonique

1
Appliqué avec t — S sur [1,+400[ on obtient :

H, = Inn+ v + o1)

n——+00

16



3 Développement asymptotique somme-intégrale

Théoréme 2
Soit f € ¥(R4+,R), décroissante.

n

SFk) = '/(;nf(t) dt+0+o(1)

Il existe £ € R tel que : [
k=0

Développement asymptotique de la somme harmonique

1
Appliqué avec t — S sur [1,+400[ on obtient :

= Inn+ v + o1

16



3 Développement asymptotique somme-intégrale

Théoréme 2
Soit f € ¥(R4+,R), décroissante.

n

SFk) = '/(;nf(t) dt+0+o(1)

Il existe £ € R tel que : [
k=0

Développement asymptotique de la somme harmonique

1
Appliqué avec t — S sur [1,+400[ on obtient :

= Inn—i—’y—i—o

n
n—-+4-o00
r I Constante d’ Euler)
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3 Développement asymptotique somme-intégrale

Théoréme 2
Soit f € ¥(R4+,R), décroissante.

n

SFk) = '/(;nf(t) dt+0+o(1)

Il existe £ € R tel que : [
k=0

Développement asymptotique de la somme harmonique

1
Appliqué avec t — S sur [1,+400[ on obtient :

Développement
= Inn+ « + o( asymptotique

n n—-+4-o00 N
a deux termes
Constante d’ Euler)
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Approximation d’une fonction
continue par morceaux

Approximation d'une fonction continue par morceaux
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1 Continuité uniforme

Cadre
f: ] — K est continue i.e. :

18
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Vx € 1,
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1 Continuité uniforme
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1 Continuité uniforme

Cadre
f ] — K est continue i.e. :
Vxel,Ye>0,3a >0 | Vyel, x—y|<a=|f(x)—f(y)| <e

18



1 Continuité uniforme

dépend de ¢

f 1 — K est conting€ i.e. :
Vxel,Ye>0,3a. >0 | Vyel, [x—y|l<a=|f(x)—f(y) <e
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1 Continuité uniforme

dépend de ¢
Cadre

f : 1 = K est contin
Vxel,Ve>0,3acx >0 | Vyel, x—y|<a=|f(x)—f(y)<e

18



1 Continuité uniforme

dépend de ¢
et de x

f: ] — K est contin€ i.e. :
Vxel,Ye>0,3a. >0 | Vyel, [x—y|l<a=|f(x)—f(y) <e

f est uniformément continue sur [ si :
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1 Continuité uniforme

dépend de ¢
et de x

f: ] — K est contin€ i.e. :
Vxel,Ye>0,3a. >0 | Vyel, [x—y|l<a=|f(x)—f(y) <e

f est uniformément continue sur [ si :
Ve>0,3a >0 | Vx,yel, ly—x|<a = |f(y)—f(x)|<e
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1 Continuité uniforme

dépend de ¢
et de x

f: ] — K est contin€ i.e. :
Vxel,Ye>0,3a. >0 | Vyel, [x—y|l<a=|f(x)—f(y) <e

(Ie méme pour tous les x]

f est uniforfnément continue sur [ si :
Ve>0,3a >0 | Vx,yel, ly—x|<a = |f(y)—f(x)|<e
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1 Continuité uniforme

dépend de ¢

f: ] — K est contin€ i.e. :
Vxel,Ye>0,3a. >0 | Vyel, [x—y|l<a=|f(x)—f(y) <e

(Ie méme pour tous les x]

f est uniforfnément continue sur [ si :
Ve>0,3a >0 | Vx,yel, ly—x|<a = |f(y)—f(x)|<e

Remarque

1. Si f est uniformément continue sur [ :
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1 Continuité uniforme

dépend de ¢

f: ] — K est contin€ i.e. :
Vxel,Ye>0,3a. >0 | Vyel, [x—y|l<a=|f(x)—f(y) <e

(Ie méme pour tous les x]

f est uniforfnément continue sur [ si :
Ve>0,3a >0 | Vx,yel, ly—x|<a = |f(y)—f(x)|<e

Remarque

1. Si f est uniformément continue sur / : elle y est continue.

18



1 Continuité uniforme
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1 Continuité uniforme

Définition 1

f est uniformément continue sur [ si :

Ve>0,3a >0 | Vx,yel, ly—x|<a = |[f(y)—f(x)|<e

Remarque

1. Si f est uniformément continue sur [ : elle y est continue.

2. Si f est lipshitzienne sur [ : elle y est uniformément continue.

Exercice 1

Démontrer le point 2.




1 Continuité uniforme

f est uniformément continue sur [ si :
Ve>0,3a>0 | Vx,yel, |y—x|<a = |f(y)—Ff(x)|<e

Théoréeme 1 : (Théoréme de Heine)
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f est uniformément continue sur [ si :
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1 Continuité uniforme

Définition 1
f est uniformément continue sur [ si :

Ve>0,3a>0 | Vx,yel, |y—x|<a = |f(y)—f(x)|<e

Théoréeme 1 : (Théoréme de Heine)

Si f est continue sur un segment [a, b], alors elle y est
uniformément continue.

Exercice 2

Démontrer le théoréme par I'absurde.
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2 Approximation uniforme par des fonctions en escalier

Cadre

f :[a,b] — K est continue par morceaux sur le segment [a, b]
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2 Approximation uniforme par des fonctions en escalier

f est bornée sur [a, b] :
I [loo = sup |£(x)|
Cadre xel

f :[a,b] — K est continue par morceaux sur le segment [a, b]

Soit ¢ € R . Il existe une fonction ¢ en escalier sur [a, b] telle que :

”f_(PHOOSE
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2 Approximation uniforme par des fonctions en escalier

f est bornée sur [a, b] :
I [loo = sup |£(x)|
Cadre xel

f :[a,b] — K est continue par morceaux sur le segment [a, b]

Thioreme 2 GG IIGCRIOES

Soit ¢ € R . Il existe une fonction ¢ /f escalier sur [a, b] telle que :

If —¢llec <€

Exercice 3

Démontrer le théoreme.
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2 Approximation uniforme par des fonctions en escalier

f est bornée sur [a, b] :

[f]loo = sup |[f(x)]
Cadre el

f :[a,b] — K est continue par morceaux sur le segment [a, b]

Thioreme 2 CIMIMGEIIGCRIOED

Soit ¢ € R . Il existe une fonction ¢ /f escalier sur [a, b] telle que :

If —¢llec <€

Exercice 4

Justifier I'existence d'une suite (¢,) de fonctions en escalier sur

[a, b] telle que  ||f — @p [|oo p_>—+>oo
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2 Approximation uniforme par des fonctions en escalier

Exercice 2

Justifier I'existence d'une suite (yp,) de fonctions en escalier sur

[a, b] telle que  ||f — ¢p|loo pjoo 0

Conséquence (rappel)

On peut prolonger I'intégrale des fonction en escalier aux fonctions
continues par morceaux :
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Justifier I'existence d'une suite (yp,) de fonctions en escalier sur

[a, b] telle que  ||f — ¢p|loo pjoo 0
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On peut prolonger I'iy &grale des fonction en escalier aux fonctions
continues par morce/4ux :

= La suite (/[a . gop) est convergente.

= Sa limite ne dépend pas du choix de (¢p).
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2 Approximation uniforme par des fonctions en escalier

Exercice 2

Justifier I'existence d'une suite (yp,) de fonctions en escalier sur

[a, b] telle que  ||f — ¢p|loo pjoo 0

Consé(intégrale d’'une fonction en escalier]

On peut prolonger I'iy &grale des fonction en escalier aux fonctions
continues par morce/4ux :

= La suite / est convergente.
( [2.6] ) :
= Sa limite ne dépend pas du choix de (¢p).

- On pose : / f= tm [
 Pose J[a,b] déf. P%ITOO_[aTb] ¥p

21



2 Approximation uniforme par des fonctions en escalier

Théoréme 2
Soit ¢ € R . Il existe une fonction ¢ en escalier sur [a, b] telle que :

If = ¢lloo <€

Exemple 1 : Riemann-Lebesgue pour f € €.#([a, b],R)
b
m f(t)sin(At)dt = 0.

li
A—4o00 /3
1. Démontrer le résultat lorsque f est en escalier.

On souhaite montrer :

2. Conclure dans le cas général.
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Calcul approché d’intégrales

Calcul approché d'intégrales
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n—1
=y
k=0
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Objectif

n—10
Approcher : = Z / f(t)dt
k=0 77k
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1 Méthode des rectangles

~ (X1 — Xi ) F(x)

Objectif

Approcher : =
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1 Méthode des rectangles

Objectif

nfl Xet1 b*
Approcher : = Z / . f(t)dt ~
k=0 "%k
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2 Méthode des trapezes

f(xk)+7(x
~ (X1 — Xk) (xi) 2( Jt1)

i

n—10
Approcher : = Z / f(t)dt
k=0 77k

Objectif
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2 Méthode des trapezes

Objectif

n—10
Approcher : = Z / f(t)dt ~
k=0 77k
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