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I Rôle représentatif des matrices

I Rôle représentatif des matrices

II Dictionnaire : applications linéaires ↔ matrices
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Cadre

• E est un K-espace vectoriel de dimension p.
• F est un K-espace vectoriel de dimension n.
• B = (b1, . . . , bp) est une base de E .
• C = (c1, . . . , cn) est une base de F .

Rappel
La donnée de f ∈ L (E , F ) équivaut à la donnée :

des p vecteurs
f (b1), . . . , f (bp).
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1 Matrice d’une application linéaire

Définition 1

La matrice de f dans les
bases B et C ,
notée MatB,C (f ), est la
matrice dont la je

colonne est formée des
coordonnées de f (bj)
dans la base C .

∀j ∈ J1 , pK, f (bj) =
n∑

i=1

ai ,j

ci

f (b1) f (bj) f (bp)
↓ ↓ ↓





a1,1 . . . a1,j . . . a1,p

←c1

...
...

...
ai ,1 . . . ai ,j . . . ai ,p

←ci

...
...

...
an,n . . . an,j . . . an,p

←cn

Coord. dans C
de f (bj)
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Exemple 1 : Matrice de f : (x , y , z) 7→ (2x + z , x − y + z)

1. B =
(
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)

Coord. dans C
de f (bj)
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Exemple 2 : f : P 7→ P(X + 1) de R3[X ] dans R3[X ]

Donner la matrice de f dans la base canonique de R3[X ].

Coord. dans C
de f (bj)
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Exemple 3 : f : P 7→ P − P ′ de Kn[X ] dans Kn[X ]

Donner la matrice de f dans la base canonique de Kn[X ].

Coord. dans C
de f (bj)
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Définition 1
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Exemple 4 : E est un K-espace vectoriel de dimension n
Quelle est la matrice de IdE dans une base B de E ?

Coord. dans C
de f (bj)
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1 Matrice d’une application linéaire

Exemple 5 : E est un K-espace vectoriel de dimension n
Soit f ∈ L (E ). On suppose qu’il existe :
• des scalaires λ1, . . . , λn ∈ K
• une base B = (b1, . . . , bn) de E
tels que pour tout i ∈ J1 , nK : bi ∈ Ker(f − λi IdE ).
Quelle est la matrice de f dans B ?
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1 Matrice d’une application linéaire

Remarque
Plus généralement, si F = (x1, . . . , xp) est une famille de
p-vecteurs de F , on appelle matrice de F dans la base C , notée
MatC F la matrice dont la j-ième colonne est formée des
coordonnées de xj dans la base C

Exemple 6 : Dans R3[X ] muni de la base B = (1, X , X 2, X 3)

Donner la matrice dans B de (P1, P2, P3) où
P1 = −X 3 + 2X 2 − 3X + 4 P2 = 2X 2 − 3 P3 = 4X 3 − X
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2 Correspondance : « application linéaire ↔ matrice »

Théorème 1
L’application φ : L (E , F ) −→ Mn,p(K)

f 7−→ MatB,C (f )
est

un isomorphisme.
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2 Correspondance : « application linéaire ↔ matrice »

Théorème 1
L’application φ : L (E , F ) −→ Mn,p(K)

f 7−→ MatB,C (f )
est un isomorphisme.

Exercice 1
L’énoncé du théorème contient deux propriétés. Préciser ces deux
propriétés.
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Théorème 1
L’application φ : L (E , F ) −→ Mn,p(K)
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Exercice 2
Démontrer que : dim L (E , F ) = dim E × dim F .
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C’est l’application fA ∈ L (Kp , Kn) de matrice A dans les bases
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linéaires ↔ matrices

I Rôle représentatif des matrices

II Dictionnaire : applications linéaires ↔ matrices
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1 Utiliser la matrice pour trouver le noyau et l’image

Cadre

x

(E , B)

X

f−→

A

y ?=f (x)

(F , C )

Y

Théorème 1
On note :

• X la colonne des coordonnées de x dans B

• Y la colonne des coordonnées de y dans C .
Alors : f (x) = y ⇐⇒ AX = Y

x =
p∑

j=1
xjbj

y =
n∑

i=1
yici

x1
...

xp

 y1
...

yn


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Alors : f (x) = y ⇐⇒ AX = Y

x =
p∑

j=1
xjbj

y =
n∑

i=1
yici

x1
...

xp

 y1
...

yn


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• Y la colonne des coordonnées de y dans C .
Alors : f (x) = y ⇐⇒ AX = Y
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x =
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yn
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2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)

Théorème 2

Mat

B,D

(g ◦ f ) = Mat

C ,D

(g)×Mat

B,C

(f )

g ◦ f

9



2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)

Théorème 2

Mat

B,D

(g ◦ f ) = Mat

C ,D

(g)×Mat

B,C

(f )

g ◦ f

9



2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)

Théorème 2

Mat

B,D

(g ◦ f ) = Mat

C ,D

(g)×Mat

B,C

(f )

g ◦ f

9



2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)

Théorème 2

Mat

B,D

(g ◦ f ) = Mat

C ,D

(g)×MatB,C (f )

g ◦ f

9



2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)

Théorème 2

Mat

B,D

(g ◦ f ) = MatC ,D(g)×MatB,C (f )

g ◦ f

9



2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)
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2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)

Théorème 2

MatB,D(g ◦ f ) = MatC ,D(g)×MatB,C (f )

Puissances d’un endomorphisme f ∈ L (E )

Si A = MatB(f ) alors pour tout k ∈ N : MatB
(
f k) = Ak

Exercice 2
Démontrer le théorème 2.

g ◦ f
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2 Utiliser les matrices pour calculer des composées

Cadre
(E , B) f−→ (F , C ) g−→ (G , D)

Théorème 2

MatB,D(g ◦ f ) = MatC ,D(g)×MatB,C (f )

Exemple 4 : f ∈L (R2[X ]) de matrice
(

3 −2 −2
2 −1 −2
2 −2 −1

)
dans la b.c.

a) Montrer que f est une symétrie
b) Trouver une base de ses sous-espaces caractéristiques.
c) Ecrire la matrice de f dans B′ = (X + 1, X 2 + 1, X 2 + X + 1)

g ◦ f

9



3 Utiliser les matrices pour prouver la bijectivité

Théorème 3
Soit f ∈ L (E , F ) .
L’application f est bijective ssi :

MatB,C (f ) est inversible.

Dans ce cas

:

(
MatB,C (f )

)−1
= MatC ,B(f −1)

E et F de même dimension n
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3 Utiliser les matrices pour prouver la bijectivité

Théorème 3
Soit f ∈ L (E , F ) .
L’application f est bijective ssi : MatB,C (f ) est inversible.

Dans ce cas :
(
MatB,C (f )

)−1
= MatC ,B(f −1)

Cas d’un endomorphisme f ∈ L (E )

f est bijectif ssi A=MatB(f ) est inversible et MatB(f −1)=

A−1

Exercice 3
a) Démontrer le théorème.

E et F de même dimension n
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Théorème 3
Soit f ∈ L (E , F ) .
L’application f est bijective ssi : MatB,C (f ) est inversible.

Dans ce cas :
(
MatB,C (f )

)−1
= MatC ,B(f −1)

Cas d’une famille F = (u1, . . . , un) de n vecteurs de E

F est une base de E si et seulement si MatB(F ) est inversible

Exercice 3
b) Démontrer la conséquence sur les familles de vecteurs

E et F de même dimension n
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3 Utiliser les matrices pour prouver la bijectivité

Théorème 3
Soit f ∈ L (E , F ) .
L’application f est bijective ssi : MatB,C (f ) est inversible.

Dans ce cas :
(
MatB,C (f )

)−1
= MatC ,B(f −1)

Exemple 5
Montrer que f : P 7→ P − P ′ est un automorphisme de Kn[X ].

E et F de même dimension n
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3 Utiliser les matrices pour prouver la bijectivité

Théorème 3
Soit f ∈ L (E , F ) .
L’application f est bijective ssi : MatB,C (f ) est inversible.

Dans ce cas :
(
MatB,C (f )

)−1
= MatC ,B(f −1)

Exercice 4 : Conséquence sur l’inversibilité de A ∈Mn(K)

Prouver le résultat précédemment admis : « si il existe B ∈Mn(K)
telle que AB = In (ou telle que BA = In) alors A est inversible ».

E et F de même dimension n

10



4 Matrice d’un endomorphisme dans une base bien choisie

Exercice 5
Soit p un projecteur d’un K-espace vectoriel E de dimension finie n.
Démontrer qu’il existe une base B de E dans laquelle la matrice de

p est de la forme :
(

Ir 0
0 0

)
.

11



4 Matrice d’un endomorphisme dans une base bien choisie

Exercice 6
Soient E un K-espace vectoriel de dimension 3 et f ∈ L (E ) tel que
f ̸= 0 et f ◦ f = 0.
a) Montrer que dim Ker f = 2.
b) Montrer qu’il existe une base de E dans laquelle l’endomorphisme

f a pour matrice
(

0 0 1
0 0 0
0 0 0

)

11



III Changement de base

I Rôle représentatif des matrices

II Dictionnaire : applications linéaires ↔ matrices

III Changement de base

12



Problématique générale

Deux matrices associées à une même application f ∈ L (E , F )

A = MatB,C (f ) et A′ = MatB′,C ′(f )

13



Problématique générale

Deux matrices associées à une même application f ∈ L (E , F )

A = MatB,C (f ) et A′ = MatB′,C ′(f )

Lien entre
les deux ?

13



1 Matrice de passage d’une base à une autre

Cadre
B, B′ sont deux bases d’un K-espace vectoriel E de dimension finie

Définition 1
On appelle matrice de passage de B à B′ la matrice :

PB′
B =

déf.

MatB(B′) =

MatB′,B(IdE )

En pratique
PB′

B est la matrice :

dont les colonnes sont les coordonnées des
vecteurs de B′ exprimés dans B.

Exemple 1 : B′ = (u1, u2) où u1 = (5, 2) et u2 = (2, 1)

B est la base canonique de R2. Ecrire : PB′
B et PB

B′ .

PB′
B =

b′
1 b′

j b′
n

↓ ↓ ↓




a1,1 . . . a1,j . . . a1,p

← coord. selon b1

...
...

...
...

...
...

an,n . . . an,j . . . an,p

← coord. selon bn

14
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1 Matrice de passage d’une base à une autre

Théorème 1
PB′

B est inversible et :

(PB′
B )−1 = PB

B′
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1 Matrice de passage d’une base à une autre

Théorème 1
PB′

B est inversible et : (PB′
B )−1 = PB

B′

Exercice 1
Démontrer le théorème en traduisant l’inversibilité en terme de
bijectivité.
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1 Matrice de passage d’une base à une autre

Théorème 1
PB′

B est inversible et : (PB′
B )−1 = PB

B′

Exercice 2
Soient x1 < x2 < · · · < xn. On note L1, . . . , Ln les polynômes de
Lagrange associés à x1, . . . , xn. On note P la matrice de passage de
la base canonique de Rn−1[X ] à la base (L1, . . . , Ln).

a) Montrer que pour tout j ∈ J0 , n − 1K :
n∑

i=1
x j

i Li = X j .

b) En déduire l’expression de P−1.

15



2 Effet sur la matrice d’une application linéaire

Cadre

(E ′, B′)

IdE−→

P

(E , B) f−→
A

(F , C )

IdF−→

Q−1

(F ′, C ′)

• A = MatB,C (f ) et A′ = MatB′,C ′(f ).
• P = PB′

B et Q = PC ′
C

Théorème 2

A′ = Q−1AP

Exercice 3
Démontrer cette formule en traduisant : f = IdF ◦ f ◦ IdE .

f

A′
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2 Effet sur la matrice d’une application linéaire
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3 Effet sur la matrice d’un endomorphisme

Cadre

• f ∈ L (E ).
• B et B′ sont deux bases de E et : P = PB′

B

• A = MatBf et A′ = MatB′f .

Théorème 3

A′ = P−1AP

Exemple 2 : f est canoniquement associé à A =
(

3 −10
2 −6

)
1. Trouver une base de F = Ker(f + Id) et G = Ker(f + 2Id)
2. Exprimer la matrice A′ de f dans la base B′ = (u1, u2).
3. En déduire la valeur de An pour tout n ∈ N.
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4 Effet sur les coordonnées d’un vecteur

Cadre

• x ∈ E .
• B et B′ sont deux bases de E et : P = PB′

B

• X est la colonne des coordonnées de x dans B

• X ′ est la colonne des coordonnées de x dans B′

Théorème 4

X = PX ′

Exercice 4
Démontrer la formule du théorème.

Exemple 3 : v = (2, 3).

Trouver les coordonnées x ′ et y ′ de v dans la base B′ = (u1, u2).
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