Matrices et Applications linéaires
(Matrices — Niveau 2)

Chapitre 27



Il Role représentatif des matrices

I Role représentatif des matrices



= E est un K-espace vectoriel de dimension p.
= [ est un K-espace vectoriel de dimension n.
» 9B = (b1,...,bp) est une base de E.

» ¢ = (c1,...,Cn) est une base de F.



= E est un K-espace vectoriel de dimension p.
= [ est un K-espace vectoriel de dimension n.
» 9B = (b1,...,bp) est une base de E.

» ¢ = (c1,...,Cn) est une base de F.

Rappel
La donnée de f € Z(E, F) équivaut a la donnée :



= E est un K-espace vectoriel de dimension p.
= [ est un K-espace vectoriel de dimension n.
» 9B = (b1,...,bp) est une base de E.
» ¢ = (c1,...,Cn) est une base de F.

Rappel

La donnée de f € Z(E, F) équivaut a la donnée : des p vecteurs
f(b1),...,f(bp).



1 Matrice d’une application linéaire

La matrice de f dans les

bases A et €, a1 .. aij .. aip
notée Maty «(f), est la : :
matrice dont la j©
colonne est formée des
coordonnées de f(b;)
dans la base 7. dnn .-+ @dnj ... adnp

aj 1 . ajj . dip



1 Matrice d’une application linéaire

f(b1) f (b)) f(bp)
La matrice de f dans les + i i
bases A et €, al . . aij . aip \ < C
notée Maty «(f), est la : : :
matrice dont la j® '
colonne est formée des ML e A ai_’p I
coordonnées de f(b;) :
dans la base ¥ ann ... anj anp / < Cn



1 Matrice d’une application linéaire

: . f(b1) f(by) f(bp)
C'est la matrice 1 1 1
A€ Mpp(K) telle que : a1 .. Ay ... ap\ea
aj1 500 aj j 500 dip |G

ann ... anj ... anp/<Cp



1 Matrice d’une application linéaire

Définition 1

: . f(b1) f(by) f(bp)
C’est la matrice 1 1 !
A€ Mpp(K) telle que : a1 ... (3] ... ap\ca
ajj est la i-eme :
coordonnée dans % du ’ .
i R [T i ;
vecteur f(b;). di.1 1 di.p i
anpn ... |ang]l .. anp/4cn

Coord. dans &
de f(bj)




1 Matrice d’une application linéaire

: . f(b1) f(by) f(bp)
C’est la matrice ! ! |
A€ Mpp(K) telle que : s1 o (B3] . mp\ca
ajj est la i-eme :
coordonnée dans % du _
aj AU T - T Ci
vecteur f(b;). i1 ij i.p j
ou encore : :
an,n an,j an,p <—Cp

Coord. dans &
de f(bj)




1 Matrice d’une application linéaire

Définition 1

: . f(b1) f(by) f(bp)
C’est la matrice ! ! |
A€ Mpp(K) telle que : s1 o (A0) .. mp\ca
ajj est la i-eme :
coordonnée dans % du ° _
aj oo aiil .. a; Ci
vecteur f(b;). i1 ij i.p j
ou encore : : :
an,n an,j an,p <—Cp

Coord. dans &
vic[L.pl £b Z G de £(b))




1 Matrice d’une application linéaire

Définition 1

: . f(b1) f(by) f(bp)
C’est la matrice ! ! |
A€ Mpp(K) telle que : s1 o (A0) .. mp\ca
ajj est la i-eme :
coordonnée dans % du ° _
aj oo aiil .. a; Ci
vecteur f(b;). i1 ij i.p j
ou encore : : :
an,n an,j an,p <—Cp

Coord. dans &
Viel[l,p], f(b Za'JCI de f(bj)




1 Matrice d’une application linéaire

Définition 1

: . f(b1) f(by) f(bp)
C’est la matrice ! ! |
A€ Mpp(K) telle que : s1 o (A0) .. mp\ca
ajj est la i-eme :
coordonnée dans % du ° _
aj oo aiil .. a; Ci
vecteur f(b;). i1 ij i.p j
ou encore : : :
an,n an,j an,p <—Cp

J Coord. dans &
Viel[l,p], f(b Za'JCI de f(bj)




1 Matrice d’une application linéaire

: . f(b1) f(by) f(bp)
C’est la matrice 1 1 !
A€ My p(K) telle que : a1 ... (7)) aLp \ < c
ajj est la i-eme :
coordonnée dans % du ' B _
vecteur £(5;). a'_’l N - a,jp ¢
ou encore : ' '
ann .- |anj| ... anp/<4cn
Coord. dans &
vjie[l,p], f(b 2 (G J
Z AL de f(b;)

Exemple 1 : Matrice de f : (x,y,z) — (2x +z,x — y + 2)
1. #=((1,0,0), (0,1,0), (0,0,1)) et % =((1,0), (0,1))



1 Matrice d’une application linéaire

: . f(b1) f(by) f(bp)
C’est la matrice 1 1 !
A€ My p(K) telle que : a1 . (A7) ... ap\ia
ajj est la i-eme :
coordonnée dans % du ' B _
vecteur £(5;). a'_’l N - a,jp ¢
ou encore : ' '
ann .- |anj| ... anp/<4cn
Coord. dans &
vjie[l,p], f(b 2 (G J
Z AL de f(b;)

Exemple 1 : Matrice de f : (x,y,z) — (2x +z,x — y + 2)
2. % =((1,0,0), (0,1,0), (0,0,1)) et ¥ =((1,0), (1,1)).



1 Matrice d’une application linéaire

: . f(b1) f(by) f(bp)
C’est la matrice 1 1 !
A€ My p(K) telle que : a1 . (A7) ... ap\ia
ajj est la i-eme :
coordonnée dans % du ' B _
vecteur £(5;). a'_’l N - a,jp ¢
ou encore : ' '
ann .- |anj| ... anp/<4cn
Coord. dans &
vjie[l,p], f(b 2 (G J
Z AL de f(b;)

Exemple 1 : Matrice de f : (x,y,z) — (2x +z,x — y + 2)
3. # =((1,0,0), (1,1,0), (1,1,1)) et ¢ =((1,0), (1,1)).



1 Matrice d’une application linéaire

: . f(b1) f(by) f(bp)
C’est la matrice ! ! |
A€ Mpp(K) telle que : s1 o (A0) .. mp\ca
ajj est la i-eme :
coordonnée dans % du _
aj oo aiil .. a; Ci
vecteur f(b;). i1 ij i.p j
ou encore : :
an,n an,j an,p <—Cp

J Coord. dans &
vje[1,p], f(b Za,Jc, de f(b;)

Exemple 2 : f: P— P(X + 1) de R3[X] dans R3[X]

Donner la matrice de f dans la base canonique de R3[X].



1 Matrice d’une application linéaire

Définition 1

: . f(b1) f(by) f(bp)
C’est la matrice ! ! |
A€ Mpp(K) telle que : s1 o (A0) .. mp\ca
ajj est la i-eme :
coordonnée dans % du _
aj oo aiil .. a; Ci
vecteur f(b;). i1 ij i.p j
ou encore : ;
an,n an,j an,p <—Cp

J Coord. dans &
vje[1,p], f(b Za,Jc, de f(b;)

Exemple 3 : f : P — P — P’ de K,[X] dans K,[X]

Donner la matrice de f dans la base canonique de K,[X].



1 Matrice d’une application linéaire

: . f(b1) f(by) f(bp)
C’est la matrice ! ! |
A€ Mpp(K) telle que : s1 o (A0) .. mp\ca
ajj est la i-eme :
coordonnée dans % du _
aj oo aiil .. a; Ci
vecteur f(b;). i1 ij i.p j
ou encore : ;
an,n an,j an,p <—Cp

J Coord. dans &
vje[1,p], f(b Za,Jc, de f(b;)

Exemple 4 : E est un K-espace vectoriel de dimension n

Quelle est la matrice de Idg dans une base & de E?



1 Matrice d’une application linéaire

Exemple b : £ est un K-espace vectoriel de dimension n

Soit f € Z(E). On suppose qu'il existe :
= des scalaires A\1,..., A\, € K
= une base & = (b1,...,b,) de E

tels que pour tout i € [1,n] :  b; € Ker(f — \ildg).
Quelle est la matrice de ¥ dans £ 7



1 Matrice d’une application linéaire

Remarque

Plus généralement, si .# = (x1,...,Xp) est une famille de
p-vecteurs de F, on appelle matrice de .7 dans la base €, notée
Maty.# la matrice dont la j-ieme colonne est formée des
coordonnées de x; dans la base ¢



1 Matrice d’une application linéaire

Remarque

Plus généralement, si .# = (x1,...,Xp) est une famille de
p-vecteurs de F, on appelle matrice de .7 dans la base €, notée
Maty.# la matrice dont la j-ieme colonne est formée des
coordonnées de x; dans la base ¢

Exemple 6 : Dans R3[X] muni de la base % = (1, X, X2, X3)

Donner la matrice dans & de (Py, P2, P3) ou
Pr=-X342X?>-3X+4 P,=2X?>-3 P3=4X3-X



2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — M p(K) est
f — Matgg(f)



2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — ., p(K) est un isomorphisme.
f — Matgg(f)



2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — ., p(K) est un isomorphisme.
f — Matg «(f)

Exercice 1

L'énoncé du théoréme contient deux propriétés. Préciser ces deux
propriétés.




2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — ., p(K) est un isomorphisme.
f — Matg «(f)

Exercice 2

Démontrer que :  dim Z(E,F) =dimE x dim F.




2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — ., p(K) est un isomorphisme.
f — Matgg(f)

Application linéaire canoniquement associée a A € ., ,(K)



2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — ., p(K) est un isomorphisme.
f — Matgg(f)

Application linéaire canoniquement associée a A € ., ,(K)

C'est I'application f4 € Z(KP, K") de matrice A dans les bases
canoniques.



2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — ., p(K) est un isomorphisme.
f — Matgg(f)

Application linéaire canoniquement associée a A € ., ,(K)

C'est I'application f4 € Z(KP, K") de matrice A dans les bases
canoniques.

Notation : noyau et image d’une matrice A € .7, ,(K)



2 Correspondance : « application linéaire +> matrice »

L'application ¢ : Z(E,F) — ., p(K) est un isomorphisme.
f — Matgg(f)

Application linéaire canoniquement associée a A € ., ,(K)
C'est I'application f4 € Z(KP, K") de matrice A dans les bases
canoniques.

Notation : noyau et image d’une matrice A € .7, ,(K)

s Ker A C KP est le noyau de I'application f4
s ImA C K” est I'image de f4



Il Dictionnaire : applications
linéaires <> matrices

I Dictionnaire : applications linéaires <+ matrices



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre

(E,2) - (F, %)



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre

On note :




1 Utiliser la matrice pour trouver le noyau et I'image

Cadre
x )
X A Yy

On note :

= X la colonne des coordonnées de x dans &%

» Y la colonne des coordonnées de y dans %.



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre
x )
X A Yy

Théoréeme 1
On note :

= X la colonne des coordonnées de x dans &%

» Y la colonne des coordonnées de y dans %.
Alors - f(x) =y < ﬂ



1 Utiliser la matrice pour trouver le noyau et I'image

4 colonne des coordonnées de x dans %4

» Y la colonne des coordonnées de y dans %.
Alors - f(x) =y <



1 Utiliser la matrice pour trouver le noyau et I'image

4 colonne des coordonnées de x dans %4

» Y la colonne des coordonnées de y dans %.
Alors : fx)=y < AX=Y ﬂ



1 Utiliser la matrice pour trouver le noyau et I'image

» Y la colonne des coordonnées de y dans %.

Alors : fx)=y < AX=Y

Exercice 1

Démontrer le théoréeme en écrivant la décomposition de f(x) dans la
base ¢



1 Utiliser la matrice pour trouver le noyau et I'image

4 colonne des coordonnées de x dans %4

» Y la colonne des coordonnées de y dans %.
Alors : fx)=y < AX=Y ﬂ

. 0z s 1 1 -1
Exemple 1 : f est canoniquement associé a A = (2 3 3>

Pour (x,y,z) € R3, calculer f(x,y, z)



1 Utiliser la matrice pour trouver le noyau et I'image

4 colonne des coordonnées de x dans %4

= Y la colonne des coordonnées de y d

ans ¢
Alors : fx)=y < AX=Y ﬂ

Exemple 2 : Trouver le noyau et I'image de f € Z(Ry[X])

1 2 3
f a pour matrice <0 2 2> dans la base canonique de Rp[X]
2 4 6



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre

colonne des coordonnées de x da

= Y la colonne des coordonnées de y dans %.

Alors : fx)=y <= AX=Y
00 -2

Exemple 3 : ¢ € Z(R,[X]) de matrice |0 2 0 | dans la b.c.
00 6

1. Déterminer une base de Ker(¢ — 6ldg) et une base de Im ¢



1 Utiliser la matrice pour trouver le noyau et I'image

Cadre

= Y la colonne des coordonnées de y dans %.

Mors:  f(x)=y <= AX =Y \ﬂ

00 -2
Exemple 3 : ¢ € Z(R2[X]) de matrice <0 2 0> dans la b.c.
00 6

2. Trouver une base dans laquelle la matrice de ¢ est diagonale.



2 Utiliser les matrices pour calculer des composées

Cadre T



2 Utiliser les matrices pour calculer des composées

gof

Cadre T

(E,2) -5 (F,¢) % (G,2)




2 Utiliser les matrices pour calculer des composées

gof

Cadre T

(E,2) -5 (F,¢) % (G,2)

Mat (gof)=Mat (g)xMat (f)



2 Utiliser les matrices pour calculer des composées

gof

Cadre T

(E,2) -5 (F,¢) % (G,2)

Mat (gof)=Mat (g) x Matg«(f)



2 Utiliser les matrices pour calculer des composées

gof

Cadre T

(E,2) -5 (F,¢) % (G,2)

Mat  (gof) = Maty o(g) x Matgz «(f)



2 Utiliser les matrices pour calculer des composées

gof

Cadre T

(E,2) -5 (F,¢) % (G,2)

Maty o (g o f) = Maty o (g) x Matg «(f)



2 Utiliser les matrices pour calculer des composées

gof

Cadre T

(E,2) -5 (F,¢) % (G,2)

Maty o (g o f) = Maty o (g) x Matg «(f)

Puissances d’un endomorphisme f € Z(E)

Si A = Matg(f) alors pour tout k € N : [Mat%(fk) = Ak]




2 Utiliser les matrices pour calculer des composées

gof

Cadre T

(E,2) -5 (F,¢) % (G,2)

Matg (g o f) = Maty (g) x Matgz «(f)

Puissances d’un endomorphisme f € Z(E)

Si A = Matg(f) alors pour tout k € N : [Matﬂ%z(fk) = Ak]

Exercice 2

Démontrer le théoreme 2.



2 Utiliser les matrices pour calculer des composées

gof

Cadre /\
(E,2) -5 (F,¢) % (G,2)

Maty o (g o f) = Maty o (g) x Matg «(f)

3 2 2
Exemple 4 : f € Z(R»[X]) de matrice <2 . 2) dans la b.c.
B = =il

a) Montrer que f est une symétrie
b) Trouver une base de ses sous-espaces caractéristiques.

c) Ecrire la matrice de f dans %’ = (X +1,X?> + 1, X> + X + 1)



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)

Soit f € Z(E,F).
L'application f est bijective ssi :

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)

Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)
Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

-1
Dans ce cas : (I\/Iatgg_gf(f)) = Maty »(f 1)

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)
Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

-1
Dans ce cas : (I\/Iatgg_gf(f)) = Maty »(f 1)

Cas d’un endomorphisme f € Z(E)

f est bijectif ssi A=Mat(f) est inversible et | Matz(f ') = ]

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)

Soit f € Z(E,F).

Théoréme 3

L'application f est bijective ssi : Matg «(f) est inversible.

-1
Dans ce cas : (I\/Iatgg_gf(f)) = Maty »(f 1)

Cas d’un endomorphisme f € Z(E)

f est bijectif ssi A=Maty(f) est inversible et

Mats(f1)=A"1]

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)

Théoréme 3

Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

—il
Dans ce cas : <|\/Iat%_<g(f)) = Maty z(f 1)

Cas d’un endomorphisme f € Z(E)

f est bijectif ssi A=Maty(f) est inversible et Mat%(ffl):Afl]

Exercice 3

a) Démontrer le théoreme.

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)

Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

-1
Dans ce cas : (I\/Iatgg_gf(f)) = Maty »(f 1)

Cas d’une famille .7 = (uy,...,u,) de n vecteurs de E

F est une base de E si et seulement si Matg(.%) est inversible

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)

Théoréme 3

Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

—il
Dans ce cas : <|\/Iat%_<g(f)) = Maty z(f 1)

Cas d’une famille .7 = (uy,...,u,) de n vecteurs de E

F est une base de E si et seulement si Matg(.%) est inversible

Exercice 3

b) Démontrer la conséquence sur les familles de vecteurs

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)
Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

-1
Dans ce cas : (I\/Iat{%)_g/(f)) = Maty z(f 1)

Exemple 5
Montrer que f : P +— P — P’ est un automorphisme de K,[X].

10



3 Utiliser les matrices pour prouver la bijectivité

(E et F de méme dimension n)
Soit f € Z(E,F).
L'application f est bijective ssi : Matg «(f) est inversible.

—il
Dans ce cas : <|\/Iat%_<g(f)) = Maty z(f 1)

Exercice 4 : Conséquence sur l'inversibilité de A € .#,(K)

Prouver le résultat précédemment admis : « si il existe B € .#,(K)
telle que AB = I, (ou telle que BA = I,) alors A est inversible ».

10



4 Matrice d’'un endomorphisme dans une base bien choisie

Exercice 5

Soit p un projecteur d'un K-espace vectoriel E de dimension finie n.
Démontrer qu'il existe une base % de E dans laquelle la matrice de

p est de la forme : (l(') 8)

11



4 Matrice d’'un endomorphisme dans une base bien choisie

Exercice 6

Soient E un K-espace vectoriel de dimension 3 et f € Z(E) tel que
fA0etfof=0.
a) Montrer que dim Ker f = 2.

b) Montrer qu'il existe une base de E dans laquelle I'endomorphisme

0 0 1
f a pour matrice ([0 0 ©
0 0 0

11



Il Changement de base

I Changement de base

12



Problématique générale

Deux matrices associées a une méme application ¥ € Z(E, F)

A= I\/Iat%%/(f) et A = Mat%/7<g/(f)

13



Problématique générale

Deux matrices associées a une méme application f € Z(E, F)

A = Matg ()

et

A = Mat%@g/(f)

S~

Lien entre
les deux?

-

13



1 Matrice de passage d’une base a une autre

Cadre

AB, B' sont deux bases d'un K-espace vectoriel E de dimension finie

14



1 Matrice de passage d’une base a une autre

Cadre

AB, B' sont deux bases d'un K-espace vectoriel E de dimension finie

Définition 1

On appelle matrice de passage de 4 a %’ la matrice :

aB!
PZ —
“



1 Matrice de passage d’une base a une autre

Cadre

AB, B' sont deux bases d'un K-espace vectoriel E de dimension finie

Définition 1
On appelle matrice de passage de 4 a %’ la matrice :

PZ = Maty(#) =
© déf.



1 Matrice de passag ; by
1 { 1

ai,1 oo EiLfj ooc ai,p\ < coord. selon by

Cadre
B, B' sont deux ba

— an,n Soo Gl 200 an,p/ < coord. selon b,
Définition 1

On appelle matrice de passageW a #' la matrice :
Pfj d?f. Mat%(%/) =

14



1 Matrice de passag ; by
1 { 1

ai,1 oo EiLfj ooc ai,p\ < coord. selon by

Cadre
B, B' sont deux ba

— an,n Soo Gl 200 an,p/ < coord. selon b,
Définition 1

On appelle matrice de passageW a #' la matrice :
Pﬁ/ d?f. Mat%(%/) = Mat_%f’%UdE)

14



1 Matrice de passag : by
1 { 1

ai,1 oo EiLfj ooc ai,p\ < coord. selon by

Cadre
B, B' sont deux ba

— an,n Soo Gl 00 an,p/ < coord. selon b,
Définition 1

On appelle matrice de passageW a #' la matrice :
Pi;/ d?f. Mat%(,@/) = Mat_%/’%UdE)

En pratique

7 .
PZ’ est la matrice :

14



1 Matrice de passag - bf

ai,p\ < coord. selon by

Cadre
B, B' sont deux ba

Lo e an,p/ < coord. selon b,
Définition 1

On appelle matrice de passageW a #' la matrice :
Pjg/ d?f Mat(%(%/) = I\/Iat_%r«%(ldg)
of )

En pratique

74 . ,
P2’ est la matrice : dont les colonnes sont les coordonnées des
vecteurs de %’ exprimés dans 4.

14



1 Matrice de passag - bf

ai,p\ < coord. selon by

Cadre
B, B' sont deux ba

an,p/ < coord. selon b,

Définition 1

On appelle matrice de passageW a #' la matrice :
Pjg/ d?f Mat(%(%/) = I\/Iat_%r«%(ldg)
of )

En pratique

74 . ,
P2’ est la matrice : dont les colonnes sont les coordonnées des
vecteurs de %’ exprimés dans 4.

Exemple 1 : &' = (u1, u2) ou u=(52) et w=(21)

o a 7/ 7
2 est la base canonique de R?. Ecrire : Pz et Pg,.

14



1 Matrice de passage d’une base a une autre

7 . .
PZ est inversible et :



1 Matrice de passage d’une base a une autre

Pg’ est inversible et : (PW) p;g/



1 Matrice de passage d’une base a une autre

7 c o B\ — G
Pg’ est inversibleet : (P4 )"t =P

Exercice 1

Démontrer le théoréme en traduisant |'inversibilité en terme de
bijectivité.



1 Matrice de passage d’une base a une autre

P%' estinversibleet : (P2 )"' = PZ

Exercice 2

Soient x; < xp < -+ < Xp. On note Ly, ..., L, les polynomes de
Lagrange associés a xi, ..., X,. On note P la matrice de passage de
la base canonique de R,_;[X] a la base (Li,...,Ly).

n
a) Montrer que pour tout j € [0,n— 1] : ZX{L; =X
i=1

b) En déduire I'expression de P~1.



2 Effet sur la matrice d’une application linéaire

(E', 2 (E, %) —;> (F, %) (F',¢")

s A= Mat%ﬁf(f) et Al = Mat@/%/(f).
» P=PZ et Q=PZ
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2 Effet sur la matrice d’une application linéaire

(E', 2 (E, %) —;> (F, %) (F', %"

s A= Mat’@,cg(f) et Al = Mat%/fg/(f_).
» P=PZ et Q=PZ
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2 Effet sur la matrice d’une application linéaire

(E', 2 (E, %) —;> (F, %) (F', %"

s A= Mat’@,cg(f) et Al = Mat%/fg/(f_).
» P=PZ et Q=PZ

A = QAP
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2 Effet sur la matrice d’une application linéaire

s A= Mat%cg(f) et Al = Matj@/fg/(f).
» P=PZ et Q=PZ

A = QAP

Exercice 3

Démontrer cette formule en traduisant : f = Idg o f o ldE.
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2 Effet sur la matrice d’une application linéaire

//T\

(E,2) <5 (E.#) - (F.€) <5 (F.¢)

s A= Mat%cg(f) et Al = Matj@/fg/(f).
» P=PZ et Q=PZ

A = QAP

Exercice 3

Démontrer cette formule en traduisant : f = Idg o f o ldg.
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2 Effet sur la matrice d’une application linéaire

(E,2) "% (E.2) —:‘>(F7<€)Q—:> (F.€")

s A= Mat%cg(f) et Al = Matj@/fg/(f).
» P=PZ et Q=PZ

A = QAP

Exercice 3

Démontrer cette formule en traduisant : f = Idg o f o ldg.

16



3 Effet sur la matrice d’un endomorphisme

Cadre

» e Z(E).

» % et # sont deux basesde Eet: P = R‘ﬁg/
» A= Matyf et A = Matyf.

17



3 Effet sur la matrice d’un endomorphisme

Cadre

» e ZL(E).

= % et # sont deux bases de Eet: P =PZ
» A= Matyf et A = Matyf.




3 Effet sur la matrice d’un endomorphisme

Cadre

» e ZL(E).

= % et # sont deux bases de Eet: P =PZ
» A= Matyf et A = Matyf.

A = PTlAp




3 Effet sur la matrice d’un endomorphisme

Cadre

» e ZL(E).
= % et # sont deux bases de Eet: P =PZ
» A= Matyf et A = Matyf.

A = PTlAp

. a © 3 -10
Exemple 2 : f est canoniquement associé a A = (2 76>

1. Trouver une base de F = Ker(f +1d) et G = Ker(f + 2Id)
2. Exprimer la matrice A’ de f dans la base ' = (u1, up).

3. En déduire la valeur de A” pour tout n € N.



4 Effet sur les coordonnées d’un vecteur

Cadre

= xc E.
s B et B sont deux basesde Eet: P = P;%?/
= X est la colonne des coordonnées de x dans %

= X’ est la colonne des coordonnées de x dans %A’

18



4 Effet sur les coordonnées d’un vecteur

Cadre

= xc E.
B et A’ sont deux bases de Eet: P = P%/

= X est la colonne des coordonnées de x dans &

= X’ est la colonne des coordonnées de x dans %A’

Théoreme 4
X = PX’



4 Effet sur les coordonnées d’un vecteur

Cadre

= xc E.
B et A’ sont deux bases de Eet: P = P%/

= X est la colonne des coordonnées de x dans &

= X’ est la colonne des coordonnées de x dans %A’

Théoreme 4

X =PX'

Exercice 4

Démontrer la formule du théoreme.




4 Effet sur les coordonnées d’un vecteur

Cadre

= xc E.
B et B sont deux basesde Eet: P = P{,;%/

= X est la colonne des coordonnées de x dans %

= X’ est la colonne des coordonnées de x dans %A’

Théoreme 4
X = PX’

Exercice 4

Démontrer la formule du théoreme.

Exemple 3 : v = (2,3).

Trouver les coordonnées x” et y’ de v dans la base ' = (u1, u2).
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