
Applications linéaires

Chapitre 23



Cadre

Dans tout le chapitre

• K = R ou C.
• E et F sont des K-espaces vectoriels
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1 Montrer qu’une application est linéaire

Définition 1
Une application f : E → F est linéaire si elle préserve les
combinaisons linéaires i.e. si :

∀x , y ∈ E , ∀λ, µ ∈ K, f (λx + µy) =

λf (x) + µf (y)

Notation
L’ensemble des applications linéaires de E dans F est noté

L (E , F )

Remarque
Si f ∈ L (E , F ) alors f est un morphisme de groupes de (E , +)
dans (F , +) donc :

f (0E ) = 0F
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1 Montrer qu’une application est linéaire

Exemples particuliers

• L’application nulle x 7→ 0F de E dans F est :

linéaire.
• L’identité de E , IdE :

x 7→ x est un automorphisme de E

• L’homothétie de rapport λ ∈ K est l’endomorphisme :

λIdE

i.e. l’application
x 7→ λx de E dans E

IdE ∈ GL(E )
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• L’identité de E , IdE : x 7→ x est un automorphisme de E
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Exemple 1 : Montrer que f est linéaire de R2 dans R3

1. f : (x , y) 7→ (y , 2x − 3y , x + 2y)

i.e. l’application
x 7→ λx de E dans E

IdE ∈ GL(E )
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1 Montrer qu’une application est linéaire
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Exemple 1 : Montrer que D est un endomorphisme de R[X ].

2. D : P 7→ P ′

i.e. l’application
x 7→ λx de E dans E
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1 Montrer qu’une application est linéaire

Exemples particuliers

• L’application nulle x 7→ 0F de E dans F est : linéaire.
• L’identité de E , IdE : x 7→ x est un automorphisme de E

• L’homothétie de rapport λ ∈ K est l’endomorphisme : λIdE

Exemple 1 : Montrer que I une forme linéaire de C ([0 , 1],R).

3. I : f 7→
∫ 1

0
f (t) dt

i.e. l’application
x 7→ λx de E dans E

IdE ∈ GL(E )
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1 Montrer qu’une application est linéaire

Exemples particuliers

• L’application nulle x 7→ 0F de E dans F est : linéaire.
• L’identité de E , IdE : x 7→ x est un automorphisme de E

• L’homothétie de rapport λ ∈ K est l’endomorphisme : λIdE

Exemple 1 : M.q. T est un endomorphisme de C ∞(R,R)

4. T : f 7→ f ′′ + 2f ′ + 3f

i.e. l’application
x 7→ λx de E dans E

IdE ∈ GL(E )
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1 Montrer qu’une application est linéaire

Exemple 2 : Les applications suivantes ne sont pas linéaires

f : R2 −→ R2

(x , y) 7−→ (x , 1 + y)
g : R2 −→ R2

(x , y) 7−→ (x2, y)
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1 Montrer qu’une application est linéaire

Exercice 1
Soit h ∈ L (E ) vérifiant :

∀x ∈ E , ∃ λ ∈ K | h(x) = λx

Montrer que h est une homothétie .

A montrer :
il existe λ ∈ K tel que : h = λIdE

dépend de x
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2 Opérations sur les applications linéaires

Théorème 1
L (E , F ) est :

un K-espace vectoriel.

Exercice 2
Démontrer ce théorème.
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2 Opérations sur les applications linéaires

Théorème 2
Si E et F sont de dimension finie alors L (E , F ) l’est aussi et

dim L (E , F ) = dim E × dim F

Théorème 3 : Composée
Si f ∈ L (E , F ) et g ∈ L (F , G) alors :

g ◦ f est linéaire
i.e. g ◦ f ∈ L (E , G)

Exercice 3
Démontrer ce théorème.

8



2 Opérations sur les applications linéaires

Théorème 2
Si E et F sont de dimension finie alors L (E , F ) l’est aussi et

dim L (E , F ) = dim E × dim F

Théorème 3 : Composée
Si f ∈ L (E , F ) et g ∈ L (F , G) alors :

g ◦ f est linéaire
i.e. g ◦ f ∈ L (E , G)

Exercice 3
Démontrer ce théorème.

8



2 Opérations sur les applications linéaires

Théorème 2
Si E et F sont de dimension finie alors L (E , F ) l’est aussi et

dim L (E , F ) = dim E × dim F

Théorème 3 : Composée
Si f ∈ L (E , F ) et g ∈ L (F , G) alors :

g ◦ f est linéaire
i.e. g ◦ f ∈ L (E , G)

Exercice 3
Démontrer ce théorème.

8



2 Opérations sur les applications linéaires

Théorème 2
Si E et F sont de dimension finie alors L (E , F ) l’est aussi et

dim L (E , F ) = dim E × dim F

Théorème 3 : Composée
Si f ∈ L (E , F ) et g ∈ L (F , G) alors : g ◦ f est linéaire

i.e. g ◦ f ∈ L (E , G)

Exercice 3
Démontrer ce théorème.

8



2 Opérations sur les applications linéaires

Théorème 2
Si E et F sont de dimension finie alors L (E , F ) l’est aussi et

dim L (E , F ) = dim E × dim F

Théorème 3 : Composée
Si f ∈ L (E , F ) et g ∈ L (F , G) alors : g ◦ f est linéaire

i.e. g ◦ f ∈ L (E , G)

Exercice 3
Démontrer ce théorème.

8



2 Opérations sur les applications linéaires

Théorème 2
Si E et F sont de dimension finie alors L (E , F ) l’est aussi et

dim L (E , F ) = dim E × dim F

Théorème 3 : Composée
Si f ∈ L (E , F ) et g ∈ L (F , G) alors : g ◦ f est linéaire

i.e. g ◦ f ∈ L (E , G)

Exercice 3
Démontrer ce théorème.

8



2 Opérations sur les applications linéaires

Remarque
( L (E ) , + , ◦) est :

un anneau

Conséquence
Si f , g ∈ L (E ) commutent, alors pour tout n ∈ N

• (f + g)n =
n∑

k=0

(
n
k

)
f k ◦ gn−k

• f n − gn = (f − g) ◦
n−1∑
k=0

f k ◦ gn−1−k

Exemple 3 : f : P 7→ P − P ′ et D : P 7→ P ′

Dans L (Rn[X ]), calculer : f ◦
n∑

k=0
Dk .

• f 0 = IdE

• f k = f ◦ · · · ◦ f︸ ︷︷ ︸
k fois

(L (E ) , + , ◦, ·) est

9
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2 Opérations sur les applications linéaires

Théorème 4 : Réciproque
Si f est un isomorphisme de E sur F , alors :

f −1 est linéaire

f ∈ GL(E )
ssi

f est lin. + f est bij.

f ∈ U(L (E ))
ssi

f est lin. + f est bij. + f −1 est lin.
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II Noyau et image d’une application
linéaire

I Généralités

II Noyau et image d’une application linéaire

III Applications linéaires et bases

IV Rang d’une application linéaire
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1 Définitions

Définition 1

• Le noyau de f , noté Ker f , est l’ensemble des antécédents de 0F
par f :

Ker f = {x ∈ E | f (x) = 0F }
• L’image de f , notée Im f , est :

Im f = f (E )

= {f (x) , x ∈ E}

Remarque

• x ∈ Ker f signifie :

f (x) = 0F

• y ∈ Im f signifie :

il existe x ∈ E tel que f (x) = y

Théorème 1
•

Ker f est un sous-e.v. de E

•

Im f est un sous-e.v. de F

Exercice 1
Démontrer le théorème.

f ∈ L (E , F )

Plus généralement :
f −1(F1) est un s.e.v de E

si F1 est un s.e.v de F

Plus généralement :
f (E1) est un s.e.v de F
si E1 est un s.e.v de E
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2 Noyau

SF 2 : Déterminer Ker f

Exemple 1 : f : (x , y , z) 7→ (2x + y − z , x − y) de R3 dans R2.

Trouver une base de Ker f

13



2 Noyau

SF 2 : Déterminer Ker f

Exemple 2 : D : P 7→ P ′ de R[X ] dans R[X ].

Déterminer le noyau de l’endomorphisme D

13



2 Noyau

SF 2 : Déterminer Ker f

Exemple 3 : T : f 7→ f ′′ + 2f ′ + 3f de C ∞(R,R) dans C ∞(R,R)

Déterminer le noyau de l’endomorphisme T

13



2 Noyau

Remarque
Pour f ∈ L (E ) et λ ∈ K x ∈ Ker

(
f − λIdE

)
signifie : f (x) =

λx

Théorème 2 : Injectivité et noyau

f est injective si et seulement si

Ker f = {0E }.
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2 Noyau

Remarque
Pour f ∈ L (E ) et λ ∈ K x ∈ Ker

(
f − λIdE

)
signifie : f (x) = λx

Théorème 2 : Injectivité et noyau
f est injective si et seulement si Ker f = {0E }.

Exercice 2
Démontrer cette équivalence.
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2 Noyau

Remarque
Pour f ∈ L (E ) et λ ∈ K x ∈ Ker

(
f − λIdE

)
signifie : f (x) = λx

Théorème 2 : Injectivité et noyau
f est injective si et seulement si Ker f = {0E }.

Exemple 4 : D : P 7→ P ′ de R[X ] dans R[X ].

L’endomorphisme D est-il injectif ?

14



3 Image

SF 4 : Déterminer Im f (option no 3)

Exemple 5 : f : (x , y) 7→ (x + 2y , 2x + y , −x + y) de R2 dans R3

Déterminer Im f

15



3 Image

Théorème 3 : Surjectivité et image

f est surjective si et seulement si

Im f = F .

16
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3 Image

Théorème 3 : Surjectivité et image
f est surjective si et seulement si Im f = F .

Exemple 6 : f : (x , y) 7→ (x + 2y , 2x + y , −x + y) de R2 dans R3

a. f est elle surjective ?

Etudiée à l’exemple 5

16



3 Image

Théorème 3 : Surjectivité et image
f est surjective si et seulement si Im f = F .

Exemple 6 : D : P 7→ P ′ de R[X ] dans R[X ].

b. L’endomorphisme D est-il surjectif ?

16



4 Exemples de raisonnements abstraits

Deux résultats à retenir

Exercice 3 : f ∈ L (E , F ) et g ∈ L (F , G)

1. Démontrer : Ker f ⊂ Ker(g ◦ f ) et Im(g ◦ f ) ⊂ Im g

2. Montrer que : g ◦ f = 0 si et seulement si Im f ⊂ Ker g .

17
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4 Exemples de raisonnements abstraits

Somme directe de noyaux

Exercice 4
Soit E un K-espace vectoriel et f ∈ L (E ) tel que f 3 = IdE .

a) Démontrer : Ker
(
f − IdE

)
⊕ Ker

(
f 2 + f + IdE

)
= E

b) Montrer que : Im
(
f 2 + f + IdE

)
= Ker

(
f − IdE

)
.

y ∈ F signifie : z ∈ G signifie :

18
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III Applications linéaires et bases

I Généralités

II Noyau et image d’une application linéaire

III Applications linéaires et bases

IV Rang d’une application linéaire

19



Cadre

Cadre

• B = (bi)i∈I est une base de E

• Pour x ∈E on note (xi)i∈I ses coordonnées dans B : x =
∑
i∈I

xibi

f
Théorème 1
Soit f ∈ L (E , F ). L’image de f est engendrée par la famille(
f (bi)

)
i∈I :

Im f = Vect
(
f (bi)

)
i∈I

Exercice 1
Démontrer l’égalité.

possiblement
infinie

seul un nb. fini
sont non nuls

famille
presque nulle
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1 Déterminer Im f

Théorème 1
Soit f ∈ L (E , F ). L’image de f est engendrée par la famille(
f (bi)

)
i∈I : Im f = Vect

(
f (bi)

)
i∈I

SF 4 : Déterminer Im f (option no 1)

Exemple 1 : f : (x , y) 7→ (x + 2y , 2x + y , −x + y) de R2 dans R3

Déterminer l’image de l’application linéaire f
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1 Déterminer Im f

Théorème 1
Soit f ∈ L (E , F ). L’image de f est engendrée par la famille(
f (bi)

)
i∈I : Im f = Vect

(
f (bi)

)
i∈I

SF 4 : Déterminer Im f (option no 1)

Exemple 2 : D : P 7→ P ′ de Kn[X ] dans Kn[X ]

Déterminer l’image de l’endomorphisme D.
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2 Prouver l’injectivité/la surjectivité/ la bijectivité

Théorème 2
Soit f ∈ L (E , F ).
i) f est injective si et seulement si :

(
f (bi)

)
i∈I est libre

ii) f est surjective si et seulement si :

(
f (bi)

)
i∈I est génératrice de F

iii) f est bijective si et seulement si :

(
f (bi)

)
i∈I est une base de F
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Théorème 2
Soit f ∈ L (E , F ).
i) f est injective si et seulement si :

(
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)
i∈I est libre

ii) f est surjective si et seulement si :
(
f (bi)

)
i∈I est génératrice de F

iii) f est bijective si et seulement si :
(
f (bi)

)
i∈I est une base de F

Exercice 2
Démontrer le théorème.
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2 Prouver l’injectivité/la surjectivité/ la bijectivité

Théorème 2
Soit f ∈ L (E , F ).
i) f est injective si et seulement si :

(
f (bi)

)
i∈I est libre

ii) f est surjective si et seulement si :
(
f (bi)

)
i∈I est génératrice de F

iii) f est bijective si et seulement si :
(
f (bi)

)
i∈I est une base de F

SF 6 : Montrer que f est un isomorphisme de E sur F
On peut montrer que f transforme une base de E en une base de F

Exemple 3 : f : P 7→ P − P ′

Montrer que f est un automorphisme de Kn[X ].
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3 Détermination par l’image d’une base

Définition 1
Soit j ∈ I.
La je forme coordonnée de E est :

φj : E −→ K
x =

∑
i∈I

xibi 7−→ xj

Elle vérifie : •

φj(bj) =

1

•

φj(bi) = 0 pour i ̸= j

Théorème 3 : « Interpolation linéaire »
Soit (ui)i∈I une famille de vecteurs de F .
Il existe une unique f ∈ L (E , F ) telle que :

∀j ∈ I, f (bj) = uj

Exercice 3
Démontrer l’existence et l’unicité par analyse-synthèse.

je coordonnée de x

Pour définir f ∈ L (E , F )
il suffit de définir les f (bj)
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3 Détermination par l’image d’une base

Théorème 4 : « Interpolation linéaire »
Soit (ui)i∈I une famille de vecteurs de F .
Il existe une unique f ∈ L (E , F ) telle que : ∀j ∈ I, f (bj) = uj

Exemple 4
On définit f ∈ L (R2,R3) par

f (1, 0) = (1, 0, 1) et f (0, 1) = (1, 1, 2)

a) Pour (x , y) ∈ R2, déterminer l’expression de f (x , y).

b) Y-a-t-il un lien entre f et la matrice A =

1 1
0 1
1 2

 ?

Pour définir f ∈ L (E , F )
il suffit de définir les f (bj)

24
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3 Détermination par l’image d’une base

Théorème 5 : Détermination sur une somme directe
On suppose que E = E1 ⊕ E2.
Soient f1 ∈ L (E1, F ) et f2 ∈ L (E2, F ).
Il existe une unique f ∈ L (E , F ) telle que •

f|E1 = f1

•

f|E2 = f2

∀y ∈ E1, f (y) = f1(y)

∀z ∈ E2, f (z) = f2(z)
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4 Espaces de dimension finie isomorphes

Théorème 6 : Détermination sur une somme directe
On suppose que E = E1 ⊕ E2.
Soient f1 ∈ L (E1, F ) et f2 ∈ L (E2, F ).
Il existe une unique f ∈ L (E , F ) telle que • f|E1 = f1 • f|E2 = f2

Théorème 7
On suppose E de dimension finie.
F est isomorphe à E ssi F est de dimension finie et :

dim E = dim F

∀y ∈ E1, f (y) = f1(y)

∀z ∈ E2, f (z) = f2(z)
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4 Espaces de dimension finie isomorphes

Théorème 6
On suppose E de dimension finie.
F est isomorphe à E ssi F est de dimension finie et : dim E = dim F

Exercice 4
Démontrer l’équivalence du théorème.

= il existe un isomorphisme de E sur F
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4 Espaces de dimension finie isomorphes

Théorème 6
On suppose E de dimension finie.
F est isomorphe à E ssi F est de dimension finie et : dim E = dim F

Exemple 5 : F =
{

u ∈ CN | ∀n ∈ N, un+2 = aun+1 + bun
}

Prouver que F est un plan vectoriel.

= il existe un isomorphisme de E sur F

26



IV Rang d’une application linéaire

I Généralités

II Noyau et image d’une application linéaire

III Applications linéaires et bases

IV Rang d’une application linéaire
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1 Définition du rang

Définition 1
f est dite de rang fini si Im f est de dimension finie.
En ce cas on pose :

rg(f ) =
déf.

dim(Im f )

Remarque
Si E est muni d’une base (b1, ..., bn) : Im f =

Vect(f (b1), ..., f (bn))

rg(f ) = dim Vect(f (b1), ..., f (bn))

= rg(f (b1), . . . , f (bn))

Exemple 1 : Ex. 72.1, banque INP
On suppose que : f (b1) = · · · = f (bn) = v où v ∈ F est fixé.
Que vaut rg(f ) ?

f ∈ L (E , F )

f est de rang fini

rang de l’application rang de la famille
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2 Théorème du rang

Théorème 1 : Forme géométrique du théorème du rang
On suppose que Ker f possède un supplémentaire S dans E .
Alors :

φ : S −→ Im f
x 7−→ f (x)

est un isomorphisme

Exercice 1
Démontrer le théorème

Théorème 2 : Théorème du rang
Si E est de dimension finie :

dim E = dim Ker f + rg(f )

isomorphisme induit par f
de S sur Im f

Im f ⊂ Ker g
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2 Théorème du rang

Théorème 3 : « Miracle de la dimension finie »
On suppose E et F de même dimension finie.
Il y a équivalence entre :
i)

f est injective

ii)

f est surjective

iii)

f est bijective

S’applique dans le cas
d’un endomorphisme en dimension finie

30
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Exercice 3
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Théorème 3 : « Miracle de la dimension finie »
On suppose E et F de même dimension finie.
Il y a équivalence entre :
i) f est injective ii) f est surjective iii) f est bijective

SF 6 : Montrer que f est un isomorphisme

Exemple 3
Montrer que

f : (x , y , z) 7→ (y + z , z + x , x + y)

est un automorphisme de R3.

S’applique dans le cas
d’un endomorphisme en dimension finie
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Théorème 3 : « Miracle de la dimension finie »
On suppose E et F de même dimension finie.
Il y a équivalence entre :
i) f est injective ii) f est surjective iii) f est bijective

SF 6 : Montrer que f est un isomorphisme

Exemple 4 : ♥ cf. Ex. 87.1 et Ex. 90.1, banque INP
Soient x1 < x2 < · · · < xn. Montrer que l’application

Φ : Rn−1[X ] −→ Rn

P 7−→
(
P(x1), ..., P(xn)

)
est un isomorphisme

S’applique dans le cas
d’un endomorphisme en dimension finie
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2 Théorème du rang

Théorème 3 : « Miracle de la dimension finie »
On suppose E et F de même dimension finie.
Il y a équivalence entre :
i) f est injective ii) f est surjective iii) f est bijective

SF 6 : Montrer que f est un isomorphisme

Exemple 5
Soit T ∈ GLn(K), triangulaire supérieure.
Montrer que T −1 est triangulaire supérieure.

S’applique dans le cas
d’un endomorphisme en dimension finie
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3 Deux compléments

Rappel
f ∈ GL(E ) ssi il existe g tel que :

g ◦ f = IdE et f ◦ g = IdE .

Théorème 4
Si E est de dimension finie et si f ∈ L (E ), alors :
• f ∈ GL(E ) ⇐⇒

∃g ∈ L (E ) | g ◦ f = IdE

• f ∈ GL(E ) ⇐⇒

∃g ∈ L (E ) | f ◦ g = IdE

Exercice 4
Démontrer le premier point.

f est inversible à gauche

f est inversible à droite
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3 Deux compléments

Théorème 5 : Rang d’une composée
Soit u ∈ L (E , F ) et v ∈ L (F , G) de rang fini.
v ◦ u est de rang fini et :

rg(v ◦ u) ≤ min(rg(u), rg(v))
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v ◦ u est de rang fini et : rg(v ◦ u) ≤ min(rg(u), rg(v))

Exercice 5
Montrer : a) rg(v ◦ u) ≤ rg(v) b) rg(v ◦ u) ≤ rg(u)
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Exercice 6 : E est de dimension finie n.
Soit u, v ∈ L (E ). Montrer : rg(v ◦ u) ≥ rg(v) + rg(u) − n

32



3 Deux compléments

Théorème 5 : Rang d’une composée
Soit u ∈ L (E , F ) et v ∈ L (F , G) de rang fini.
v ◦ u est de rang fini et : rg(v ◦ u) ≤ min(rg(u), rg(v))

Théorème 6 : Composer par un iso. ne modifie pas le rang
On suppose E , F et G de dimension finie.
Soient f ∈ L (E , F ) et g ∈ L (F , G).
• Si f est un isomorphisme : rg(g ◦ f ) = rg(g)
• Si g est un isomorphisme : rg(g ◦ f ) = rg(f )

Exercice 7
Démontrer le premier point du théorème.

32



3 Deux compléments

Théorème 5 : Rang d’une composée
Soit u ∈ L (E , F ) et v ∈ L (F , G) de rang fini.
v ◦ u est de rang fini et : rg(v ◦ u) ≤ min(rg(u), rg(v))

Théorème 6 : Composer par un iso. ne modifie pas le rang
On suppose E , F et G de dimension finie.
Soient f ∈ L (E , F ) et g ∈ L (F , G).
• Si f est un isomorphisme : rg(g ◦ f ) = rg(g)
• Si g est un isomorphisme : rg(g ◦ f ) = rg(f )

Exercice 7
Démontrer le premier point du théorème.

32


	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]I Généralités
	1 Montrer qu'une application est linéaire
	2 Opérations sur les applications linéaires

	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]II Noyau et image d'une application linéaire
	1 Définitions
	2 Noyau
	3 Image
	4 Exemples de raisonnements abstraits

	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]III Applications linéaires et bases
	1 Déterminer Imf
	2 Prouver l'injectivité/la surjectivité/ la bijectivité
	3 Détermination par l'image d'une base
	4 Espaces de dimension finie isomorphes

	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]IV Rang d'une application linéaire
	1 Définition du rang
	2 Théorème du rang
	3 Deux compléments


