Applications linéaires

Chapitre 23



Dans tout le chapitre

= K=R ouC.

= E et F sont des K-espaces vectoriels
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combinaisons linéaires \e. si :
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isomorphisme

Notation linéaire + bijectif

L'ensemble des applications linéaires de E dans F est noté .Z(E, F)

Remarque
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Une application f : E — F est linéaire si elle préserve les
combinaisons linéaires \e. si :

Vx,y € E, VA p\XK,  f(Ax+ py) = M (x) + pf(y)

forme linéaire

si F=K

Notation

L'ensemble des applications linéaires de E dans F est noté .Z(E, F)

Remarque
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1 Montrer qu’une application est linéaire

Exemples particuliers
= |'application nulle x —/&F de E dans F est : linéaire.

= L'identité de E, Idg : x+— x est un automorphisme de E

= L'homothétie de rapport A € K est I'endomorphisme : Aldg

2

[ i.e. |'application ]

X — A\x de E dans E

Exemple 1 : Montrer que f est linéaire de R? dans R3

L f3(X7)/)’_>(y72X—3)/7X+2)/)
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Exemples particuliers
= |'application nulle x —/&F de E dans F est : linéaire.
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[ i.e. |'application ]

X — Ax de E dans E
Exemple 1 : Montrer que D est un endomorphisme de R[X].

2. D:Pw— P
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Exemples particuliers
= |'application nulle x —/&F de E dans F est : linéaire.

= L'identité de E, Idg : x+— x est un automorphisme de E

= L'homothétie de rapport A € K est I'endomorphisme : Aldg

2

[ i.e. |'application ]

X — Ax de E dans E
Exemple 1 : Montrer que / une forme linéaire de ¢ ([0, 1], R).

1
3. /:fr—>/f(t)dt
0




1 Montrer qu’une application est linéaire

Exemples particuliers
= |'application nulle x —/&F de E dans F est : linéaire.

= L'identité de E, Idg : x+— x est un automorphisme de E

= L'homothétie de rapport A € K est I'endomorphisme : Aldg

2

[ i.e. |'application ]

x — Ax de E dans E
Exemple 1 : M.q. T est un endomorphisme de (R, R)

4, T :f—f"+2f +3f




1 Montrer qu’une application est linéaire

Exemple 2 : Les applications suivantes ne sont pas linéaires

f: R — R? g: R2 — R
(%, y) — (x,1+y) (x,y) — (x%,y)
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1 Montrer qu’une application est linéaire

dépend de x

Exercice 1
Soit h € Z(E) vérifiant :

Vxe E, 3 €K | h(x) = Ax

Montrer que h est une homothétie .

\

A montrer :
il existe A € K tel que: h= Aldg
ie.: INeK, VxeE, h(x)=Ax
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Démontrer ce théoreme.
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(dim Z(E, F) = dim E x dim F ]

Théoreme 3 : Composée

Sife Z(E,F)etge Z(F,G)alors: gof estlinéaire
ie. gofe Z(E,G)

Exercice 3

Démontrer ce théoreme.
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(Z(E), +, o0, ) est
Remarque une algebre

(ZL(EY,+,0)est: un anneau

Conséquence

Si f,g € Z(E) commutent, alors pour t{= ° = Idg

" /n s fk=fo...0of
" (f+g)n: Z<k>fkognk k fois

k=0

\.

n—1
s | fT—g"=(f—g)o kao g1k
k=0

Exemple3: f:P—P—-P et D:P— P

Dans Z(R,[X]), calculer : fo Zn: D*.
k=0
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Exercice 4

Démontrer ce résultat.
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Théoreme 4 : Réciproque

Si f est un isomorphisme de E sur F, alors : f~! est linéaire

Exemple 4 : f € Z(E) vérifie: 2 —2f + 3ldg = 0.
Montrer que f € GL(E) et déterminer 1.
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Remarque
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2 Opérations sur les applications linéaires

Théoreme 4 : Réciproque

Si f est un isomorphisme de E sur F, alors : f~! est linéaire

Remarque
(GL(E),o) est : un groupe  GL(E) = U(Z(E))

f € GL(E)
ssi
f est lin. + f est bij.
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2 Opérations sur les applications linéaires

Théoreme 4 : Réciproque

Si f est un isomorphisme de E sur F, alors : f—1 est linéaire

Remarque
(GL(E), o) est : un groupe  GL(E) i U(Z(E))
f € GL(E) f e U(Z(E))

f est lin. + f est bij. f est lin. + f est bij.

10
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Remarque
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Remarque

. [x € Ker f signifie : f(x) = OF]

. [y € Im f signifie : il existe x € E tel que f(x) = y]
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Exercice 1
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Définition 1

= Le noyau de f, noté Ker f, est I'ensemble des antécédents de Of
par f : Kerf={x€ E | f(x)=0f}

» L'imagede f, notée Imf, est: Imf =f(E)={f(x), x € E}

Remarque

. [x € Ker f signifie : f(x) = OF] f(?lu)s iinj;ale?\?r;te:/__

. [y € Imf signifie : il existe x € E tel Lsi E; est un s.e.vde E

» Kerf estunsous-e.v.de E w Imf estun sous-e.v. de F

Exercice 1

Démontrer le théoreme.
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1 Définitioxs

Définition 1

= Le noyau de f, noté Ker f, est I'ensemble des antécédents de Of
par f : Kerf={x€ E | f(x)=0f}

» L'imagede f, notée Imf, est: Imf =f(E)={f(x), x € E}

Remarque

Plus généralement : Plus généralement :
f~Y(F1) est un s.e.v de E f(E1) est un s.e.v de F
si Fy est uns.e.vde F |l existe x € E tel Lsi Ej est un s.e.v de E

» Kerf estunsous-e.v.de E w Imf estun sous-e.v. de F

Exercice 1

Démontrer le théoreme.
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SF 2 : Déterminer Ker f

Exemple 1: f:(x,y,z)— (2x+y — z, x — y) de R3 dans R?.

Trouver une base de Ker f
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SF 2 : Déterminer Ker f
Exemple 2 : D: P — P’ de R[X] dans R[X].

Déterminer le noyau de |I'endomorphisme D
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SF 2 : Déterminer Ker f

Exemple 3: T :f+— f"+2f 4+ 3f de ¥>°(R,R) dans (R, R)

Déterminer le noyau de I'endomorphisme T
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Remarque

Pour f € Z(E) et A € K| x € Ker(f — Mdg) signifie : f(x) =
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Remarque

Pour f € Z(E) et A € K| x € Ker(f — Aldg) signifie : f(x) = Ax

Théoreme 2 : Injectivité et noyau

f est injective si et seulement si Ker f = {0g}.
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Remarque

Pour f € Z(E) et A € K| x € Ker(f — Aldg) signifie : f(x) = Ax

Théoreme 2 : Injectivité et noyau

f est injective si et seulement si Ker f = {0g}.

Exercice 2

Démontrer cette équivalence.
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Remarque

Pour f € Z(E) et A € K| x € Ker(f — Aldg) signifie : f(x) = Ax

Théoreme 2 : Injectivité et noyau

f est injective si et seulement si Ker f = {0g}.

Exemple 4 : D: P — P’ de R[X] dans R[X].

L'endomorphisme D est-il injectif ?

14



SF 4 : Déterminer Imf (option n° 3)

Exemple 5: f : (x,y) — (x+2y, 2x+y, —x +y) de R? dans R3

Déterminer Im f

115)



Théoréeme 3 : Surjectivité et image
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Théoréeme 3 : Surjectivité et image

f est surjective si et seulement si Imf = F.
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Théoréme 3 : Surjectivité et image

f est surjective si et seulement si Imf = F.

Exemple 6 : f : (x,y) — (x+2y, 2x+y, —x +y) de R? dans R3

a. f est elle surjective?

(Etudiée a I'exemple 5)
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Théoréeme 3 : Surjectivité et image

f est surjective si et seulement si Imf = F.

Exemple 6 : D: P +— P’ de R[X] dans R[X].

b. L'endomorphisme D est-il surjectif ?

16



4 Exemples de raisonnements abstraits

Deux résultats a retenir

Exercice 3: f e L(E,F) et ge Z(F,G)

1. Démontrer : [Kerf C Ker(gof) et Im(gof)CIm g]
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4 Exemples de raisonnements abstraits

Deux résultats a retenir

Exercice 3: f e L(E,F) et ge Z(F,G)

1. Démontrer : [Kerf C Ker(gof) et Im(gof)CIm g]

2. Montrer que : [g of =0 sietseulementsi Imf C Kerg.]
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4 Exemples de raisonnements abstraits

Somme directe de noyaux

Exercice 4

Soit E un K-espace vectoriel et f € .Z(E) tel que f3 = Idg.
a) Démontrer : Ker(f —Idg) @ Ker(f2+f+1dg) =E
b) Montrer que :  Im(f2+ f +Idg) = Ker(f — Idg).




4 Exemples de raisonnements abstraits

[y € F signifie :}

Somme directe de n{ Yaux

Soit E un K-espace vectdyiel et f € .Z(E) tel que f3 = Idg.
a) Démontrer : Ker(f —Idg) @ Ker(f2+f +1dg) =E
b) Montrer que :  Im(f2+ f +Idg) = Ker(f — Idg).
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4 Exemples de raisonnements abstraits
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Il Applications linéaires et bases

I Applications linéaires et bases
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Cadre
» % = (bi)ic; est une base de E

= Pour x € E on note (x;);c/ ses coordonnées dans % : x = Z X;b;
icl

20



possiblement
infinie

» % = (bi)ic; est une base de E

= Pour x € E on note (x;);c/ ses coordonnées dans % : x = Z X;b;
icl
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possiblement
infinie

» % = (bi)ic; est une base de E

= Pour x € E on note (x;);c/ ses coordonnées dans % : x = Z X;b;
icl

seul un nb. fini

sont non nuls
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possiblement
infinie

» % = (bi)ic; est une base de E

= Pour x € E on note (x;);c/ ses coordonnées dans % : x = Z X bj
i€l

famille

I seul un nb. fini
presque nulle

sont non nuls

20



1 Déterminer Im f
possiblement
Cad infinie

» % = (bi)ic; est une base de E

= Pour x € E on note (x;);c/ ses coordonnées dans % : x = Z X bj

f famille

oresque nulle seul un nb. fini
ue nu

sont non nuls
Soit f € Z(E, F). L'image de f est engendrée par la famille

(f(bi)),'e/ :

Théoréme 1
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» % = (bi)ic; est une base de E

= Pour x € E on note (x;);c/ ses coordonnées dans % : x = Z X bj

f famille
presque nulle

seul un nb. fini
sont non nuls
Soit f € Z(E, F). L'image de f est engendrée par la famille

() Im = Veer(F(8)

Théoréme 1
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1 Déterminer Im f
possiblement
Cad infinie

» % = (bi)ic; est une base de E

= Pour x € E on note (x;);c/ ses coordonnées dans % : x = Z X bj

f famille

oresque nulle seul un nb. fini
ue nu

sont non nuls
Soit f € Z(E, F). L'image de f est engendrée par la famille

() Im = Veer(F(8)

Théoréme 1

Exercice 1

Démontrer |'égalité.
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1 Déterminer Im f

Théoréme 1

Soit f € Z(E,F). L'image de f est engendrée par la famille

(f(bi) ey : Imf = Vect(f(bi)),,

SF 4 : Déterminer Imf  (option n°1)

Exemple 1: f: (x,y) — (x+2y, 2x+y, —x+y) de R? dans R3

Déterminer I'image de I'application linéaire f



1 Déterminer Im f

Théoréme 1

Soit f € Z(E,F). L'image de f est engendrée par la famille
(f(bi) ;) :  Imf = Vect(f(b))

i€l

SF 4 : Déterminer Imf  (option n°1)

Exemple 2 : D: P— P de K,[X] dans K,[X]

Déterminer I'image de I'endomorphisme D.



2 Prouver I'injectivité/la surjectivité/ la bijectivité

Soit f € Z(E, F).

i) f est injective si et seulement si :

ii) f est surjective si et seulement si :

iii) f est bijective si et seulement si :
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2 Prouver I'injectivité/la surjectivité/ la bijectivité

Soit f € Z(E, F).

i) f estinjective si et seulement si : (f(b;)),_, est libre

ii) f est surjective si et seulement si :

iii) f est bijective si et seulement si :
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i) f estinjective si et seulement si : (f(b;)),_, est libre

i) f est surjective si et seulement si : (f(b;)),_, est génératrice de F

iii) f est bijective si et seulement si : (f(b;)),, est une base de F
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2 Prouver I'injectivité/la surjectivité/ la bijectivité

Soit f € Z(E, F).
i) f estinjective si et seulement si : (f(b;)),_, est libre

i) f est surjective si et seulement si : (f(b;)),_, est génératrice de F

iii) f est bijective si et seulement si : (f(b;)),, est une base de F

Exercice 2

Démontrer le théoreme.
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2 Prouver I'injectivité/la surjectivité/ la bijectivité

Soit f € Z(E, F).

i) f estinjective si et seulement si : (f(b;)),_, est libre

i) f est surjective si et seulement si : (f(b;)),_, est génératrice de F

iii) f est bijective si et seulement si : (f(b;)),, est une base de F

SF 6 : Montrer que f est un isomorphisme de E sur F

On peut montrer que f transforme une base de E en une base de F
Exemple3:f:P— P — P

Montrer que f est un automorphisme de K,[X].

22



3 Détermination par I'image d’une base

Soit j € I.
La jé forme coordonnée de E est :

Elle vérifie : = "



3 Détermination par I'image d’une base

Définition 1

Soit j € I.
La jé forme coordonnée de E est : ©j : E — K
X = ZX,‘b,‘ = Xj
i€l

Elle vérifie : = "



3 Détermination par I'image d’une base

Définition 1 J& coordonnée de X,

Soit j € I.
La jé forme coordonnée de E est : ©j : E K
%= inb,- — Xj
i€l

Elle vérifie : = "
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3 Détermination par I'image d’une base

Définition 1 J& coordonnée de X,

Soit j € I.
La jé forme coordonnée de E est : ©j : E K
%= inb,- — Xj
i€l

Elle vérifie : = j(b;) = =
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3 Détermination par I'image d’une base

Définition 1 J& coordonnée de X,

Soit j € I.
La jé forme coordonnée de E est : ©j : E K
%= inb,- — Xj
i€l

Elle vérifie : = j(bj) =1 =

23



3 Détermination par I'image d’une base

| Définition 1 (=S |
Soit j € I.
La jé forme coordonnée de E est : ©j : E K
%= inb,- — Xj
i€l
Elle vérifie : = j(bj) =1 = @;(bi) =0 pour i # j
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3 Détermination par I'image d’une base

| Définition 1 (=S |
Soit j € I.
La jé forme coordonnée de E est : ©j : E K
X = ZX,‘b,‘ = Xj
i€l
Elle vérifie : = j(bj) =1 = @;(bi) =0 pour i # j

Théoreme 3 : « Interpolation linéaire »

Soit (u;)ies une famille de vecteurs de F.
Il existe une unique f e Z(E, F) telle que :
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3 Détermination par I'image d’une base

Définition 1 J& coordonnée de X,

Soit j € I.
La jé forme coordonnée de E est : ©j : E K
X = ZX,‘b,‘ = Xj
i€l

Elle vérifie : = j(bj) =1 = @;(bi) =0 pour i # j

Pour définir f € Z(E, F)
il suffit de définir les f(b;)

Théoreme 3 : « Interpolation linéairg

Soit (u;)ies une famille de ve
Il existe une unique f €-Z(E,F) telle que : Vj e/, f(bj)=u;
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3 Détermination par I'image d’une base

| Définition 1 (=S |
Soit j € I.
La jé forme coordonnée de E est : ©j : E K
7= Zx,-b,- — Xj
i€l
Elle vérifie : = j(bj) =1 = @;(bi) =0 pour i # j
Pour définir f € Z(E, F)]

Théoréme 3 : « Interpolation linéaired suffit de définir les £(b;)

Soit (u;)ies une famille de ve
Il existe une unique f € Z(E,F) telle que : Vj € I, f(b;) = y;

Exercice 3

Démontrer I'existence et I'unicité par analyse-synthese.
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3 Détermination par I'image d’une base

Pour définir f € Z(E, F)
Théoreme 4 : « Interpolation liné2 gk Iy e P FA e s f(b))

Soit (u;)ies une famille de yeceetirs de F.
Il existe une unique f € Z(E,F) telle que : Vj e/, f(bj)=u;

Exemple 4
On définit f € Z(R?,R3) par

f(1,0) = (1,0,1) et £(0,1)=(1,1,2)
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3 Détermination par I'image d’une base

Pour définir f € Z(E, F)
Théoréme 4 : « Interpolation liné2g Ry T PR P T P f(b;)

Soit (u;)ies une famille de yeceetirs de F.
Il existe une unique f € Z(E,F) telle que : Vj e/, f(bj)=u;

Exemple 4
On définit f € Z(R?,R3) par
f(1,0) = (1,0,1) et £(0,1)=(1,1,2)

a) Pour (x,y) € R?, déterminer I'expression de f(x, y).

24



3 Détermination par I'image d’une base

Pour définir f € Z(E, F)
Théoreme 4 : « Interpolation liné2 gk Iy e P FA e s f(b))

Soit (u;)ies une famille de yeceetirs de F.
Il existe une unique f € Z(E,F) telle que : Vj e/, f(bj)=u;

Exemple 4
On définit f € Z(R?,R3) par

f(1,0) = (1,0,1) et £(0,1)=(1,1,2)

a) Pour (x,y) € R?, déterminer I'expression de f(x, y).

11
b) Y-a-t-il un lien entre f et la matrice A= [0 1| 7
1 2

24



3 Détermination par I'image d’une base

Théoréme 5 : Détermination sur une somme directe
On suppose que E = E; & E».

Soient i € Z(Ei1,F) et f, € Z(Ey, F).

Il existe une unique f € Z(E, F) telle que = .
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3 Détermination par I'image d’une base

Vy € E1, f(y)="f
Théoréme 5 : Détermination .,.. .. .. (y)

On suppose que E = E; & E».
Soient i € Z(Ei1,F) et f, € Z(Ey, F).
Il existe une unique f € Z(E, F) telle que = .

25



3 Détermination par I'image d’une base

Vy € E1, f(y)="f
Théoréme 5 : Détermination .,.. .. .. (y)

On suppose que E = E; & E».
Soient i € Z(Ei1,F) et f, € Z(Ey, F).
Il existe une unique f € Z(E, F) telle que = fie, =fi = flg, = f

25



On suppose que E = E; @ E;.
Soient f; € Z(E1,F) et f, € L(Ey, F).
Il existe une unique f € Z(E,F) telle que = fir, =fi = flg, = h

Théoreme 7

On suppose E de dimension finie.
F est isomorphe a E ssi F est de dimension finie et :
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On suppose que E = E; @ E;.
Soient f; € Z(E1,F) et f, € L(Ey, F).
Il existe une unique f € Z(E,F) telle que = fir, =fi = flg, = h

Théoreme 7

On suppose E de dimension finie.
F est isomorphe a E ssi F est de dimension finie et : dim £E = dim F

26



4 Espaces de dimension finie isomorphes

(: il existe un isomorphisme de E sur F]

Théoréme 6

On suppose £ de dimension finie.
F est isomorphe a E ssi F est de dimension finie et : dim E = dim F

Exercice 4

Démontrer |'équivalence du théoreme.
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4 Espaces de dimension finie isomorphes

(: il existe un isomorphisme de E sur FJ

Théoréme 6

On suppose £ de dimension finie.
F est isomorphe a E ssi F est de dimension finie et : dim E = dim F

Exemple 5 : F = {u eCN | Vne€N, upio = aupt1 + bu,,}

Prouver que F est un plan vectoriel.
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Rang d’une application linéaire

Rang d'une application linéaire
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1 Définition du rang

Définiti':.. 1

f est dite de rang fini si Im f est de dimension finie.
En ce cas on pose :
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Si E est muni d'une base (b, ..., by) : Imf =
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: f est de rang fini

Remarque

Si E est muni d'une base (b1, ..., bp) : Im f =Vect(f(b1), ..., f(by))
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1 Définition du rang

Définiti':.. 1

f est dite de rang fini si Im f est de dimension finie.

En ce cas on pose : rg(f) o dim(Im f)
: f est de rang fini

Remarque

Si E est muni d'une base (by, ..., by) :

rg(f) = dim Vect(f(b1), ..., f(bn))= rg(f(b1),...,f(bn))
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1 Définition du rang

Définiti':.. 1

f est dite de rang fini si Im f est de dimension finie.
En ce cas on pose : rg(f) = dlm(lm f)

f est de rang fini

Remarque

Si E est muni d'une base (by, ..., by) :

rg(f) = dimVect(f(b1), ... f(bn))= rg(f(by),....f(bn))

(rang de I ]
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En ce cas on pose : rg(f) = dlm(lm f)

f est de rang fini

Remarque
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1 Définition du rang

Définiti':.. 1

f est dite de rang fini si Im f est de dimension finie.

En ce cas on pose : rg(f) o dim(Im f)
: f est de rang fini

Remarque

Si E est muni d'une base (by, ..., by) :

rg(f) = dim Vect(f(b1), ..., f(bn))= rg(f(b1),...,f(bn))

(rang de I ] (rang de la ]
Exemple 1 : Ex. 72.1, banque INP
On suppose que :  f(by) =---=1f(b,) =v ol v E F est fixé.

Que vaut rg(f)?
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2 Théoréeme du rang

Théoreme 1 : Forme géométrique du théoreme du rang

On suppose que Ker f possede un supplémentaire S dans E.
Alors :
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Théoreme 1 : Forme géométrique du théoreme du rang

On suppose que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme

x — f(x)
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2 Théoréeme du rang

isomorphisme induit par f

de S sur Imf
Théoreme J: Forme géométrique du théoréeme du rang

On suppose/que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme

x — f(x)
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2 Théoréeme du rang

isomorphisme induit par f

de S sur Imf
Théoreme J: Forme géométrique du théoréeme du rang

On suppose/que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme
x — f(x)
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Démontrer le théoreme
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2 Théoréeme du rang

isomorphisme induit par f

de S sur Imf
Théoreme J: Forme géométrique du théoréeme du rang

On suppose/que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme
x — f(x)

Exercice 1

Démontrer le théoreme
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Si E est de dimension finie :
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2 Théoréeme du rang

isomorphisme induit par f

de S sur Imf
Théoreme J: Forme géométrique du théoréeme du rang

On suppose/que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme
x — f(x)

Exercice 1

Démontrer le théoreme

Théoréeme 2 : Théoreme du rang

Si E est de dimension finie : dim E = dim Ker f + rg(f)
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2 Théoréeme du rang

isomorphisme induit par f

de S sur Imf
Théoreme J: Forme géométrique du théoréeme du rang

On suppose/que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme
x — f(x)

Exercice 1

Démontrer le théoreme

Théoreme 2 : Théoréme du rang

Si E est de dimension finie : dim E = dim Ker f + rg(f)

Exercice 2

Déduire ce théoreme du précédent.
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2 Théoréeme du rang

isomorphisme induit par f
de S sur Imf
Théoreme J: Forme géométrique du théoréeme du rang

On suppose/que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme
x — f(x)

Exercice 1

Démontrer le théoreme

Théoreme 2 : Théoréme du rang

Si E est de dimension finie : dim E = dim Ker f + rg(f)

Exemple 2 : E est de dimension finie n

Soit f,g € Z(E) tels que go f = 0. Montrer : rg(f) +rg(g) <n
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2 Théoréeme du rang

isomorphisme induit par f
de S sur Imf
Théoreme J: Forme géométrique du théoréeme du rang

On suppose/que Ker f possede un supplémentaire S dans E.
Alors: ¢ : S— Imf est un isomorphisme
x — f(x)

Exercice 1

Démontrer le théoreme

Théoreme 2 : Théoréme du rang

Si E est de dimension finie : dim E = dim Ker f + rg(f)

Exemple 2 : E est de dimensio

Soit f,g € Z(E) tels que go f =0. Montrer : rg(f) +rg(g) < n
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2 Théoréeme du rang

Théoréme 3 : « Miracle de la dimension finie »

On suppose E et F de méme dimension finie.
Il'y a équivalence entre :

i) i) ii)
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2 Théoréeme du rang

Théoréme 3 : « Miracle de la dimension finie »

On suppose E et F de méme dimension finie.
Il'y a équivalence entre :
i) f estinjective i) f est surjective iii) f est bijective
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2 Théoréeme du rang

Théoréme 3 : « Miracle de la dimension finie »

On suppose E et F de méme dimension finie.
Il'y a équivalence entre :
i) f estinjective i) f est surjective iii) f est bijective

Exercice 3

Démontrer I'équivalence entre i) et ii) a I'aide de la formule du rang.
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2 Théogy S'aplique dans le cas

d'un endomorphisme en dimension finie

Théoréme 3 : « Miracle d\la dimension finie »

On suppose E et F de méme dimension finie.
Il'y a équivalence entre :
i) f estinjective i) f est surjective iii) f est bijective

Exercice 3

Démontrer I'équivalence entre i) et ii) a I'aide de la formule du rang.

30



S’applique dans le cas
d’un endomorphisme en dimension finie

Théoréme 3 : « Miracle d\la dimension finie »

On suppose E et F de méme dimension finie.
Il'y a équivalence entre :
i) f estinjective i) f est surjective iii) f est bijective

SF 6 : Montrer que f est un isomorphisme

Exemple 3

Montrer que

foxy,z2)=(y+z,z+x,x+y)

est un automorphisme de R3.
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S’applique dans le cas
d’un endomorphisme en dimension finie

Théoréme 3 : « Miracle d\la dimension finie »

On suppose E et F de méme dimension finie.
Il'y a équivalence entre :
i) f estinjective i) f est surjective iii) f est bijective

SF 6 : Montrer que f est un isomorphisme

Exemple 4 : ¥ cf. Ex. 87.1 et Ex. 90.1, banque INP

Soient x; < xp < - -+ < X,. Montrer que |'application

O Ry_q[X] — R"
P — (P(x1), ..., P(xn))

est un isomorphisme

30



S'applique dans le cas
d’un endomorphisme en dimension finie

Théoréme 3 : « Miracle d\la dimension finie »

On suppose E et F de méme dimension finie.
Il'y a équivalence entre :
i) f estinjective i) f est surjective iii) f est bijective

SF 6 : Montrer que f est un isomorphisme

Exemple 5

Soit T € GL,(K), triangulaire supérieure.
Montrer que T~! est triangulaire supérieure.
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3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que :
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3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que : gof =Idg et fog=Idg.
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3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que : gof =Idg et fog=Idg.

Théoréeme 4
Si E est de dimension finie et si f € Z(E), alors :
» f€GL(E)

» fEGL(E) =



3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que : gof =Idg et fog=Idg.

Théoréeme 4
Si E est de dimension finie et si f € Z(E), alors :
» fEGL(E) < Jgec Z(E) | gof =Ide

» fEGL(E) =



3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que : gof =Idg et fog=Idg.

Théoréeme 4
Si E est de dimension finie et si f € Z(E), alors :
» fEGL(E) < Jgec Z(E) | gof =Ide

« fEGL(E) < 3ge L(E)| fog=Ilde



3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que : gof =Idg et fog=Idg.

f est inversible a gauche

Théoreme 4

Si E est de dimension finie et si f € 7Y, alors :

» fEGL(E) < dgec Z(E) | gof =Ide

« fEGL(E) < 3ge L(E)| fog=Ilde
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3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que : gof =Idg et fog=Idg.

f est inversible a gauche

Théoreme 4

Si E est de dimension finie et si f € 7Y, alors :

» fEGL(E) < dgec Z(E) | gof =Ide

« fEGL(E) < 3ge L(E)| fog=Ilde

(f est inversible a droite)
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3 Deux compléments

Rappel
f € GL(E) ssi il existe g tel que : gof =Idg et fog=Idg.

f est inversible a gauche

Théoreme 4

Si E est de dimension finie et si f € 7Y, alors :

» fEGL(E) < dgec Z(E) | gof =Ide

« fEGL(E) < 3ge L(E)| fog=Ilde

Exercice 4 f est inversible a droite-
Démontrer le premier point.
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3 Deux compléments

Théoréme 5 : Rang d’'une composée
Soit ue Z(E,F) et ve Z(F,G) de rang fini.

v o u est de rang fini et :



3 Deux compléments

Théoréme 5 : Rang d’'une composée

Soit ue Z(E,F) et ve Z(F,G) de rang fini.
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3 Deux compléments

Théoréme 5 : Rang d’'une composée

Soit ue Z(E,F) et ve Z(F,G) de rang fini.
v o u est de rang fini et : [rg(v o u) < min(rg(u), rg(v))]

Exercice 5

Montrer : a) rg(vou) <rg(v) b) rg(vou)<rg(u)




3 Deux compléments

Théoréme 5 : Rang d’'une composée
Soit ue Z(E,F) et ve Z(F,G) de rang fini.
v o u est de rang fini et : [rg(v o u) < min(rg(u), rg(v))]

Exercice 6 : E est de dimension finie n.
Soit u,v € Z(E). Montrer :  rg(vou) >rg(v)+rg(u)—n
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3 Deux compléments

Théoréme 5 : Rang d’'une composée
Soit ue Z(E,F) et ve Z(F,G) de rang fini.
v o u est de rang fini et : [rg(v o u) < min(rg(u), rg(v))]

Théoreme 6 : Composer par un iso. ne modifie pas le rang

On suppose E, F et G de dimension finie.

Soient f € Z(E,F) et g € Z(F,G).

= Si f est un isomorphisme : rg(gof)=rg(g)
= Si g est un isomorphisme : rg(gof) = rg(f)
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3 Deux compléments

Théoréme 5 : Rang d’'une composée
Soit ue Z(E,F) et ve Z(F,G) de rang fini.
v o u est de rang fini et : [rg(v o u) < min(rg(u), rg(v))]

Théoreme 6 : Composer par un iso. ne modifie pas le rang

On suppose E, F et G de dimension finie.
Soient f € Z(E,F) et g € Z(F,G).

= Si f est un isomorphisme : rg(gof)=rg(g)
= Si g est un isomorphisme : rg(gof) = rg(f)

Exercice 7

Démontrer le premier point du théoreme.
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