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1 Intégrale d’une fonction en escalier

Vocabulaire : subdivision de [a , b]
famille (xi)0≤i≤n de réels telle que : a = x0 < x1 < · · · < xn = b.

Définition 1
f : [a , b] → K est en escalier s’il existe une subdivision (xi)0≤i≤n

telle que :

f est constante sur ]xi , xi+1[ pour tout i ∈ J0 , n − 1K

Définition 2
Pour tout i ∈ J0 , n − 1K, on note yi la valeur de f sur ]xi , xi+1[.
On définit l’intégrale de f sur [a , b] par :∫

[a ,b]
f =

déf.

n−1∑
i=0

(xi+1 − xi)yi

dite adaptée à f

Aire d’un
rectangle
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1 Intégrale d’une fonction en escalier

Définition 2
Pour tout i ∈ J0 , n − 1K, on note yi la valeur de f sur ]xi , xi+1[.
On définit l’intégrale de f sur [a , b] par :∫

[a ,b]
f =

déf.

n−1∑
i=0

(xi+1 − xi)yi

Exercice 1

Montrer que la quantité : S(σ) =
n−1∑
i=0

(xi+1 − xi)yi ne dépend

pas de la subdivision σ = (xi)0≤i≤n adaptée à f
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1 Intégrale d’une fonction en escalier

Définition 2
Pour tout i ∈ J0 , n − 1K, on note yi la valeur de f sur ]xi , xi+1[.
On définit l’intégrale de f sur [a , b] par :∫

[a ,b]
f =

déf.

n−1∑
i=0

(xi+1 − xi)yi

Exercice 2
Soit f : [a , b] → K en escalier. Montrer que :∣∣∣∣∣

∫
[a ,b]

f
∣∣∣∣∣ ≤ (b − a) ∥f ∥∞
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1 Intégrale d’une fonction en escalier

Définition 2
Pour tout i ∈ J0 , n − 1K, on note yi la valeur de f sur ]xi , xi+1[.
On définit l’intégrale de f sur [a , b] par :∫

[a ,b]
f =

déf.

n−1∑
i=0

(xi+1 − xi)yi

Exemple 1

Soit n ∈ N. Calculer :
∫ n+1

0
⌊t⌋ dt.
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1 Intégrale d’une fonction en escalier

Théorème 1 : Propriétés de l’intégrale des fonctions en escalier

1. Linéarité.

∫
[a ,b]

λf + µg = λ

∫
[a ,b]

f + µ

∫
[a ,b]

g .

2. Pour K = R • Positivité.

Si f ≥ 0 :
∫

[a ,b]
f ≥ 0.

• Croissance.

Si f ≤ g :
∫

[a ,b]
f ≤

∫
[a ,b]

g .

3. Relation de Chasles.

∫
[a ,b]

f =
∫

[a ,c]
f +

∫
[c ,b]

f

4. Si f et g sont « presque égales » :

∫
[a ,b]

f =
∫

[a ,b]
g

5. Lien avec Re et Im.

∫
[a ,b]

f =
∫

[a ,b]
Re(f ) + i

∫
[a ,b]

Im(f )

Exercice 3
Etablir la propriété de linéarité.

égales sauf en un
nombre fini de points
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2 Intégrale d’une fonction continue par morceaux

Définition 3
f : [a , b] → K est continue par morceaux s’il existe une
subdivision (xi)0≤i≤n telle que pour tout i ∈ J0 , n − 1K :

• f est continue sur ]xi , xi+1[.

•

lim
x+

i

f et lim
x−

i+1

f existent et sont finies.

Exercice 4
Soit f : [a , b] → K, continue par morceaux.
Montrer que f est bornée sur [a , b].

dite adaptée à f

ensemble noté
CM ([a , b],K)
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2 Intégrale d’une fonction continue par morceaux

Admis provisoirement. Soit f : [a , b] → K continue par morceaux.

Il existe une suite (φn)n∈N de fonctions en escalier qui converge
uniformément vers f i.e. : ∥f − φn ∥∞ −→

n→+∞
0 Figure

Exercice 5
Montrer que la suite

(∫
[a ,b]

φn
)

n∈N
est convergente

et que sa limite

ne dépend pas du choix de (φn)n∈N.

Définition 4
On définit l’intégrale de f par :

∫
[a ,b]

f =
déf.

lim
n→+∞

∫
[a ,b]

φn

pour n’importe quelle suite (φn)n∈N de fonctions en escalier telle
que ∥f − φn ∥∞ −→

n→+∞
0.

6

https://www.desmos.com/calculator/yqtupaohsv
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Exercice 5
Montrer que la suite

(∫
[a ,b]

φn
)

n∈N
est convergente

et que sa limite

ne dépend pas du choix de (φn)n∈N.

Définition 4
On définit l’intégrale de f par :

∫
[a ,b]

f =
déf.

lim
n→+∞

∫
[a ,b]

φn

pour n’importe quelle suite (φn)n∈N de fonctions en escalier telle
que ∥f − φn ∥∞ −→

n→+∞
0.
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2 Intégrale d’une fonction continue par morceaux

Définition 4
On définit l’intégrale de f par :

∫
[a ,b]

f =
déf.

lim
n→+∞

∫
[a ,b]

φn

pour n’importe quelle suite (φn)n∈N de fonctions en escalier telle
que ∥f − φn ∥∞ −→

n→+∞
0.

Remarque
Si f est en escalier, les deux définitions de

∫
[a ,b] f coïncident .

Conséquence
Le théorème 1 reste vrai pour les fonctions continues par morceaux

Exercice 6
Démontrer la linéarité de l’intégrale dans C M ([a , b],K)

On peut prendre φn = f
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2 Intégrale d’une fonction continue par morceaux

Notation définitive
Soit f ∈ C M ([a , b],K) et α, β ∈ [a , b] :

• si α < β :
∫ β

α
f (t) dt =

déf.

∫
[α ,β]

f

• si α > β :
∫ β

α
f (t) dt =

déf.
−

∫
[β ,α]

f

• si α = β :
∫ α

α
f (t) dt =

déf.
0

aussi notée
∫ β

α
f

donnés sans ordre
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II Propriétés de l’intégrale

I Définition de l’intégrale

II Propriétés de l’intégrale

III Intégrales et primitives
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1 Justifier que
∫ b

a f est bien définie

En pratique
On justifie que f est continue par morceaux sur [a , b]

Exemple 1

Justifier que
∫ 1

0
ln(1 + t) dt est bien définie

Exemple 2
Justifier que l’intégrale I est bien définie :

a) I =
∫ 1

0

ln(1 + t)
t dt.

b) I =
∫ 3

2

1
2

1
x − 1 − 1

ln x dx
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Justifier que
∫ 1

0
ln(1 + t) dt est bien définie

Exemple 2
Justifier que l’intégrale I est bien définie :

a) I =
∫ 1

0

ln(1 + t)
t dt. b) I =

∫ 3
2

1
2

1
x − 1 − 1

ln x dx
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2 Majorer/minorer des intégrales

SF 5 : pour majorer/minorer
∫ b

a
f (t) dt

1. On encadre « l’intérieur » : ∀t ∈ [a , b], g(t) ≤ f (t) ≤ h(t)

2. Par croissance de l’intégrale :
∫ b

a
g ≤

∫ b

a
f ≤

∫ b

a
h .

j a ≤ b est indispensable j

11
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2. Par croissance de l’intégrale :
∫ b

a
g ≤

∫ b

a
f ≤

∫ b

a
h .

Exemple 3 : Etudier la monotonie de (In)n∈N.

Pour tout n ∈ N : In =
∫ 1

0

tn

1 + et dt.

j a ≤ b est indispensable j
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a
g ≤
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a
f ≤
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Théorème 1 : Inégalité triangulaire

Soit f ∈ CM ([a , b],K) :

∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |

Exercice 1
Démontrer cette inégalité.

j a ≤ b est indispensable j
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2 Majorer/minorer des intégrales

Théorème 1 : Inégalité triangulaire

Soit f ∈ CM ([a , b],K) :
∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |

Exemple 4 : In =
∫ π

0

tn

n! cos t dt

Montrer que : |In| ≤ πn+1

(n + 1)!
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3 Déduire des information sur f à partir de son intégrale

Théorème 2
On suppose que a < b. Soit f : [a , b] → R. Si :
i)

f continue sur [a , b]

ii)

f ≥ 0 sur [a , b]

iii)

∫ b

a
f = 0

Alors :

f = 0 sur [a , b].

13
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Conséquence

Si f ≥ 0 et si f est continue et n’est pas la fonction nulle :

∫ b

a
f > 0
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∫ b

a
f = 0

Alors : f = 0 sur [a , b].

Conséquence

Si f ≥ 0 et si f est continue et n’est pas la fonction nulle :
∫ b

a
f > 0

Exercice 2
Démontrer le théorème

j conclusion fausse si
i) ou ii) n’est pas vérifiée. j
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3 Déduire des information sur f à partir de son intégrale

Théorème 2
On suppose que a < b. Soit f : [a , b] → R. Si :
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∫ b

a
f = 0

Alors : f = 0 sur [a , b].

Conséquence

Si f ≥ 0 et si f est continue et n’est pas la fonction nulle :
∫ b

a
f > 0

Exercice 3
Soit f ∈ CM ([a , b],R+) et x0 ∈ ]a , b[.
Montrer que si f (x0) > 0 et f est continue en x0 alors

∫ b

a
f > 0
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3 Déduire des information sur f à partir de son intégrale

Théorème 2
On suppose que a < b. Soit f : [a , b] → R. Si :
i) f continue sur [a , b] ii) f ≥ 0 sur [a , b] iii)

∫ b

a
f = 0

Alors : f = 0 sur [a , b].

Exemple 5

Soit f : [0 , 1] → R, continue, telle que :
∫ 1

0
f =

∫ 1

0
f 2 = 1.

Montrer : ∀t ∈ [0 , 1], f (t) = 1.

13



4 Application au calcul de limites d’intégrales

Objectif

Etudier des limites du type : lim
n→+∞

∫ b

a
fn(t) dt

14
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Objectif

Etudier des limites du type : lim
n→+∞

∫ b

a
fn(t) dt��ZZ=

∫ b

a
lim

n→+∞
fn(t) dt

Exemple 6 : Montrer que In −→
n→+∞

0

a) In =
∫ π

2

0
cosn(t)e−nt dt b) In =

∫ π
2

0
cosn(t) dt
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4 Application au calcul de limites d’intégrales

Objectif

Etudier des limites du type : lim
n→+∞

∫ b

a
fn(t) dt��ZZ=

∫ b

a
lim

n→+∞
fn(t) dt

Exemple 7

Soit f ∈ C M ([0 , 1],R). Montrer :
∫ 1

0
tnf (t) dt −→

n→+∞
0.

14



4 Application au calcul de limites d’intégrales

Objectif

Etudier des limites du type : lim
n→+∞

∫ b

a
fn(t) dt��ZZ=

∫ b

a
lim

n→+∞
fn(t) dt

Exemple 8 : H : x 7→ e−x
∫ x2

x

et

t dt

Etudier la limite lorsque x tend vers +∞ de H.

14



4 Application au calcul de limites d’intégrales

Objectif

Etudier des limites du type : lim
n→+∞

∫ b

a
fn(t) dt��ZZ=

∫ b

a
lim

n→+∞
fn(t) dt

Exemple 9 : Lemme de Riemann-Lebesgue

Soit f ∈ C 1([a , b],R). Montrer :
∫ b

a
f (t) sin nt dt −→

n→+∞
0

14



III Intégrales et primitives

I Définition de l’intégrale

II Propriétés de l’intégrale

III Intégrales et primitives
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1 Le théorème fondamental de l’analyse

Théorème 1
Soit f : I → K continue et a ∈ I.

• La fonction Φ : x 7→
∫ x

a
f (t) dt est dérivable sur I et Φ′ = f

• Φ est l’unique primitive de f qui s’annule en a.

16
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Exercice 1
Démontrer le théorème
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x − x0

= 1
x − x0

∫ x

x0
f (t) dt

f (x0) = 1
x − x0

∫ x

x0
f (x0) dt
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Soit f : I → K continue et a ∈ I.
• La fonction Φ : x 7→

∫ x

a
f (t) dt est dérivable sur I et Φ′ = f

• Φ est l’unique primitive de f qui s’annule en a.

Conséquences (rappels)

• Toute fonction continue sur I possède des primitives

• On peut calculer une intégrale au moyen d’une primitive
• Formule d’intégration par parties
• Formule du changement de variable.
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1 Le théorème fondamental de l’analyse

Théorème 1
Soit f : I → K continue et a ∈ I.
• La fonction Φ : x 7→

∫ x

a
f (t) dt est dérivable sur I et Φ′ = f

• Φ est l’unique primitive de f qui s’annule en a.

Exemple 1 : Figure

Soit f : R → R, continue et T -périodique.
Montrer :

∀a ∈ R,

∫ a+T

a
f (t) dt =

∫ T

0
f (t) dt
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1 Le théorème fondamental de l’analyse

Théorème 1
Soit f : I → K continue et a ∈ I.
• La fonction Φ : x 7→

∫ x

a
f (t) dt est dérivable sur I et Φ′ = f

• Φ est l’unique primitive de f qui s’annule en a.

Exemple 2
Soit f une fonction continue sur [−a , a].
Montrer que si f est paire :∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx
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1 Le théorème fondamental de l’analyse

Théorème 1
Soit f : I → K continue et a ∈ I.
• La fonction Φ : x 7→

∫ x

a
f (t) dt est dérivable sur I et Φ′ = f

• Φ est l’unique primitive de f qui s’annule en a.

Exemple 3
Soit f une fonction continue sur [a , b]. Montrer que :∫ b

x
f (t) dt −→

x→a+

∫ b

a
f (t) dt
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2 Etude d’une fonction définie par une intégrale

Théorème 2
Soit f : I → K continue et u, v deux fonctions dérivables sur un
intervalle J et à valeurs dans I.
La fonction φ : x 7→

∫ v(x)

u(x)
f (t) dt est dérivable sur J et :

∀x ∈ J , φ′(x) = v ′(x)f
(
v(x)

)
− u′(x)f

(
u(x)

)
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Théorème 2
Soit f : I → K continue et u, v deux fonctions dérivables sur un
intervalle J et à valeurs dans I.
La fonction φ : x 7→

∫ v(x)

u(x)
f (t) dt est dérivable sur J et :

∀x ∈ J , φ′(x) = v ′(x)f
(
v(x)

)
− u′(x)f

(
u(x)

)

Exercice 2
Démontrer la dérivabilité de φ et établir l’expression de φ′.
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2 Etude d’une fonction définie par une intégrale

Théorème 2
Soit f : I → K continue et u, v deux fonctions dérivables sur un
intervalle J et à valeurs dans I.
La fonction φ : x 7→

∫ v(x)

u(x)
f (t) dt est dérivable sur J et :

∀x ∈ J , φ′(x) = v ′(x)f
(
v(x)

)
− u′(x)f

(
u(x)

)

Exemple 4

Soit x > 0. Calculer :
∫ x

1/x

t Arctan t
t4 + 1 dt
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2 Etude d’une fonction définie par une intégrale

Théorème 2
Soit f : I → K continue et u, v deux fonctions dérivables sur un
intervalle J et à valeurs dans I.
La fonction φ : x 7→

∫ v(x)

u(x)
f (t) dt est dérivable sur J et :

∀x ∈ J , φ′(x) = v ′(x)f
(
v(x)

)
− u′(x)f

(
u(x)

)

Exemple 5 : H : x 7→
∫ x2

x

1
ln t dt

1. Montrer que H est de classe C 1 sur ]1 , +∞[ et calculer H ′
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∀x ∈ J , φ′(x) = v ′(x)f
(
v(x)

)
− u′(x)f

(
u(x)

)

Exemple 5 : H : x 7→
∫ x2

x

1
ln t dt

2. On note u la fonction x 7→ 1
ln x − 1

x − 1 sur R∗
+ \ {1}.

Montrer que u est prolongeable par continuité en 1.
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2 Etude d’une fonction définie par une intégrale

Théorème 2
Soit f : I → K continue et u, v deux fonctions dérivables sur un
intervalle J et à valeurs dans I.
La fonction φ : x 7→
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(
v(x)

)
− u′(x)f

(
u(x)

)

Exemple 5 : H : x 7→
∫ x2

x

1
ln t dt

3. A l’aide de la fonction u , calculer la limite en 1+ de la fonction H

u : x 7→ 1
ln x − 1

x − 1
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2 Etude d’une fonction définie par une intégrale

Théorème 2
Soit f : I → K continue et u, v deux fonctions dérivables sur un
intervalle J et à valeurs dans I.
La fonction φ : x 7→

∫ v(x)

u(x)
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(
v(x)

)
− u′(x)f

(
u(x)

)

Exemple 5 : H : x 7→
∫ x2

x

1
ln t dt

4. La fonction H est-elle prolongeable en une fonction de classe C 1

sur [1 ,+∞[ ?
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2 Etude d’une fonction définie par une intégrale

Théorème 2
Soit f : I → K continue et u, v deux fonctions dérivables sur un
intervalle J et à valeurs dans I.
La fonction φ : x 7→

∫ v(x)

u(x)
f (t) dt est dérivable sur J et :

∀x ∈ J , φ′(x) = v ′(x)f
(
v(x)

)
− u′(x)f

(
u(x)

)

Exemple 6 : f ∈ C (R ,R)
Dans chaque cas, montrer que φ est dérivable sur R et calculer φ′ :
a) φ : x 7→

∫ x

0
f (x + t) dt b) φ : x 7→

∫ x

0
f (x − t) cos t dt
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