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Cadre

E est un K-espace vectoriel.
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Théorie de la dimension

Définition 1
Un K-espace vectoriel E est dit de dimension finie si :

il possède une
famille génératrice finie.

Exemple 1 : Sont-ils de dimension finie ?
a) R2 b) Kn c) Kn[X ] d) K[X ]
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1 Théorème de la base incomplète

Cadre
• G = (g⃗1, g⃗2, . . . , g⃗n) est une famille génératrice finie de E .

K-e.v. de dim finie

(à l’aide de vecteurs de G )
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1 Théorème de la base incomplète

Cadre
• G = (g⃗1, g⃗2, . . . , g⃗n) est une famille génératrice finie de E .

Théorème 1 : Les libres ont moins d’elts que les génératrices
Toute famille libre de E possède au plus n éléments.

Exercice 1
Montrer que dans un K-e.v. engendré par n vecteurs, toute famille à
n + 1 éléments est liée.

K-e.v. de dim finie

(à l’aide de vecteurs de G )
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1 Théorème de la base incomplète

Cadre
• G = (g⃗1, g⃗2, . . . , g⃗n) est une famille génératrice finie de E .

Théorème 2 : Théorème de la base incomplète

Toute famille libre de E est complétable en une base de E .

Exercice 2 : Preuve par récurrence descendante sur p ∈ J0 , nK

Hp : « Toute famille libre L = (ℓ⃗1, . . . , ℓ⃗p) à p éléments est
complétable en une base de E »

1. Initialisation : cas p = n.
Montrer que si L = (ℓ⃗1, . . . , ℓ⃗n) est libre, c’est une base de E .

2. Hérédité. Soit p ∈ J1 , nK.
On suppose Hp vraie. Montrer que Hp−1 est vraie.

K-e.v. de dim finie

(à l’aide de vecteurs de G )
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Exercice 2 : Preuve par récurrence descendante sur p ∈ J0 , nK

Hp : « Toute famille libre L = (ℓ⃗1, . . . , ℓ⃗p) à p éléments est
complétable en une base de E »

Remarque
En prenant L = ∅, le résultat montré dans l’exercice 2 assure que :
De toute famille génératrice de E on peut

extraire une base de E .
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1 Théorème de la base incomplète

Cadre
• G = (g⃗1, g⃗2, . . . , g⃗n) est une famille génératrice finie de E .

Théorème 2 : Théorème de la base incomplète
Toute famille libre de E est complétable en une base de E .

Remarque
En prenant L = ∅, le résultat montré dans l’exercice 2 assure que :
De toute famille génératrice de E on peut extraire une base de E .

Exemple 2
Compléter

(
(1, 0, 1)

)
en une base de R3.

On admet que les bases de R3 sont les familles libres à 3 vecteurs

K-e.v. de dim finie

(à l’aide de vecteurs de G )

(théorème de la base extraite)
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2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est :

le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases :

sont finies et
ont le même cardinal.

• On appelle dimension de E :

le cardinal commun à toutes ses
bases.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.

5



2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases :

sont finies et
ont le même cardinal.

• On appelle dimension de E :

le cardinal commun à toutes ses
bases.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.

5



2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases :

sont finies et
ont le même cardinal.

• On appelle dimension de E :

le cardinal commun à toutes ses
bases.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.

5



2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le même cardinal.

• On appelle dimension de E :

le cardinal commun à toutes ses
bases.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.

5



2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le même cardinal.

• On appelle dimension de E :

le cardinal commun à toutes ses
bases.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.

5



2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le même cardinal.

• On appelle dimension de E : le cardinal commun à toutes ses
bases.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.

5



2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le même cardinal.

• On appelle dimension de E : le cardinal commun à toutes ses
bases.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.

5



2 Dimension d’un espace vectoriel
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de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le même cardinal.

• On appelle dimension de E : le cardinal commun à toutes ses
bases.

Remarque
Pour déterminer dim E il suffit de :

trouver une base de E

Exercice 3
Démontrer le théorème.

noté dim E
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On admet que Sn(K) est un K-e.v.
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Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le même cardinal.

• On appelle dimension de E : le cardinal commun à toutes ses
bases.

Exemple 3 : Déterminer la dimension de F
F = {P ∈ R3[X ] | P(1) = P(0)}.

noté dim E

Matrices symétriques Matrices antisymétriques

On admet que Sn(K) est un K-e.v.
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2 Dimension d’un espace vectoriel

Notation Si F est une famille finie de vecteurs le cardinal
de F est : le nombre d’éléments de F , noté CardF .

Théorème 3

• Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le même cardinal.

• On appelle dimension de E : le cardinal commun à toutes ses
bases.

Exemple 4 : Deviner la dimension de Tn

Tn est l’ensemble des matrices triangulaires supérieures de Mn(K).
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On admet que Sn(K) est un K-e.v.
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3 Exemples

Théorème 4 : Exemples fondamentaux
• dimKn =

n

• dimKn[X ] =

n + 1

• dim Mn,p(K) =

np

Remarque
E =

{
0⃗E

}
est de dimension 0, une base est la famille vide.

Remarque
• dimCC =

1

• dimRC =

2

en particulier dim Mn(K) = n2

Une base est (1, i)Une base est (1)
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3 Exemples

Théorème 4 : Exemples fondamentaux
• dimKn = n • dimKn[X ] = n + 1 • dim Mn,p(K) = np

Remarque
E =

{
0⃗E

}
est de dimension 0, une base est la famille vide.

Remarque
• dimCC = 1 • dimRC = 2

Exemple 6 : F =
{

u ∈ RN | ∀n ∈ N, un+2 = 2un+1 − 2un
}

Montrer que F est un plan vectoriel .

en particulier dim Mn(K) = n2

Une base est (1, i)Une base est (1)

de dimension 2 6



3 Exemples

Théorème 4 : Exemples fondamentaux
• dimKn = n • dimKn[X ] = n + 1 • dim Mn,p(K) = np

Remarque
E =

{
0⃗E

}
est de dimension 0, une base est la famille vide.

Remarque
• dimCC = 1 • dimRC = 2

Exemple 7 : S1 : ensemble des solutions de (1 + t2)y ′ − ty = 0
1. Montrer que S1 est une droite vectorielle .

en particulier dim Mn(K) = n2

Une base est (1, i)Une base est (1)

de dimension 1
6



3 Exemples

Théorème 4 : Exemples fondamentaux
• dimKn = n • dimKn[X ] = n + 1 • dim Mn,p(K) = np

Remarque
E =

{
0⃗E

}
est de dimension 0, une base est la famille vide.

Remarque
• dimCC = 1 • dimRC = 2

Exemple 7 : S2 : ensemble des solutions de y ′′ − 8y ′ + 15y = 0
2. Montrer que S2 est un plan vectoriel.

en particulier dim Mn(K) = n2

Une base est (1, i)Une base est (1)

6



3 Exemples

Théorème 5 : Espace produit
Si E et F sont deux K-e.v. de dimension finie alors E × F est de
dimension finie et :

dim(E × F ) =

dim E + dim F
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1 Familles libres /génératrices en dimension finie

Cadre
• E est un K-espace vectoriel de dimension finie . • n = dim E .

Théorème 1

1. Toute famille libre de E a au plus n éléments.
2. Toute famille génératrice de E a au moins n éléments.

Exercice 1
Démontrer le théorème.

Exemple 1
Montrer que K[X ] n’est pas de dimension finie.
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Montrer que K[X ] n’est pas de dimension finie.
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• E est un K-espace vectoriel de dimension finie . • n = dim E .

Théorème 2

1. Toute famille libre de E de cardinal n est une base de E .
2. Toute famille génératrice de E de cardinal n est une base de E .
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1 Familles libres /génératrices en dimension finie

Cadre
• E est un K-espace vectoriel de dimension finie . • n = dim E .

Théorème 2

1. Toute famille libre de E de cardinal n est une base de E .
2. Toute famille génératrice de E de cardinal n est une base de E .

SF 4 : Montrer qu’une famille de cardinal n est une base de E
On vérifie uniquement la liberté

Exemple 2
Montrer que ((2, 3) , (4, 5)) est une base de R2.
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1 Familles libres /génératrices en dimension finie

Cadre
• E est un K-espace vectoriel de dimension finie . • n = dim E .

Théorème 2

1. Toute famille libre de E de cardinal n est une base de E .
2. Toute famille génératrice de E de cardinal n est une base de E .

SF 4 : Montrer qu’une famille de cardinal n est une base de E
On vérifie uniquement la liberté

Exemple 3
Montrer que (X + 2X 2 , 1 + 2X , 2 + X 2) est une base de R2[X ].
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1 Familles libres /génératrices en dimension finie

Cadre
• E est un K-espace vectoriel de dimension finie . • n = dim E .

Théorème 2

1. Toute famille libre de E de cardinal n est une base de E .
2. Toute famille génératrice de E de cardinal n est une base de E .

SF 4 : Montrer qu’une famille de cardinal n est une base de E
On vérifie uniquement la liberté

Exemple 4
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1 Familles libres /génératrices en dimension finie

Cadre
• E est un K-espace vectoriel de dimension finie . • n = dim E .

Théorème 2

1. Toute famille libre de E de cardinal n est une base de E .
2. Toute famille génératrice de E de cardinal n est une base de E .

SF 4 : Montrer qu’une famille de cardinal n est une base de E
On vérifie uniquement la liberté

Exemple 5
Soient x1, x2, . . . , xn ∈ R distincts.
Montrer que (L1, . . . , Ln) est une base de Rn−1[X ].

polynômes de Lagrange
associés aux xi .
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2 Sous-espaces et dimension

Théorème 3
On suppose que E est dimension finie n. Soit F un sous-espace
vectoriel de E :

• F est de dimension finie et dim F ≤ n.
• F = E si et seulement si dim F = n.
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11



2 Sous-espaces et dimension

Théorème 3
On suppose que E est dimension finie n. Soit F un sous-espace
vectoriel de E :
• F est de dimension finie et dim F ≤ n.
• F = E si et seulement si dim F = n.

SF 5 : Montrer que F = G par « inclusion dimension »
On montre : • F ⊂ G • dim F = dim G .

Exemple 6
Montrer que Vect(X − 1 , X + 2) = R1[X ].

11



3 Rang d’une famille de vecteurs

Cadre

• E est un K-e.v. (de dimension quelconque)
• F = (u⃗1, . . . , u⃗p) est une famille finie de vecteurs de E .

Définition 1
Le rang de F , noté rgF , est la dimension du sous-espace vectoriel
engendré par F : rgF =

déf.

dim VectF

Théorème 4

• On a toujours :

rg(u⃗1, . . . , u⃗p) ≤ p.

• rg(u⃗1, . . . , u⃗p) = p ssi :

F est libre

VectF est de dimension finie

ou rg(u⃗1, . . . , u⃗p)
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• rg(u⃗1, . . . , u⃗p) = p ssi : F est libre
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ou rg(u⃗1, . . . , u⃗p)

12



3 Rang d’une famille de vecteurs

Définition 1
Le rang de F , noté rgF , est la dimension du sous-espace vectoriel
engendré par F : rgF =

déf.
dim VectF

Théorème 4
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ou rg(u⃗1, . . . , u⃗p)

12



3 Rang d’une famille de vecteurs

Définition 1
Le rang de F , noté rgF , est la dimension du sous-espace vectoriel
engendré par F : rgF =

déf.
dim VectF

Théorème 4

• On a toujours : rg(u⃗1, . . . , u⃗p) ≤ p.
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3 Rang d’une famille de vecteurs
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Exemple 7 : Déterminer le rang de la famille
a) F1 = (1 , X , X 2 , X 3)
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3 Rang d’une famille de vecteurs
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b) F2 = (X , 2X , 3X , 4X )

ou rg(u⃗1, . . . , u⃗p)
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3 Rang d’une famille de vecteurs
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Le rang de F , noté rgF , est la dimension du sous-espace vectoriel
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•
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•
•
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c) F3 = (X + 1 , X + 2 , X + 3 , X + 4)

Montrer que dim F ≥ p :
• F possède une famille

libre de cardinal p
• F contient un sev de

dimension p

Montrer que dim F ≤ p :
• F possède une famille

génératrice de cardinal p
• F est contenu dans un

sev de dimension p
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3 Rang d’une famille de vecteurs

Définition 1
Le rang de F , noté rgF , est la dimension du sous-espace vectoriel
engendré par F : rgF =

déf.
dim VectF

Théorème 4

• On a toujours : rg(u⃗1, . . . , u⃗p) ≤ p.
• rg(u⃗1, . . . , u⃗p) = p ssi : F est libre

Exemple 8 : Trouver le rang de (f1, . . . , fn) (n ≥ 2)

fk est la fonction x 7→ sin(k + x) pour tout k ∈ N.

ou rg(u⃗1, . . . , u⃗p)
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1 Généralités

Cadre
F et G désignent deux sous-espaces vectoriels de E .

Définition 1

• La somme de F et G est :

F + G =
déf.

{x + y ; x ∈ F , y ∈ G}

• F ⊂ F + G •

G ⊂ F + G

• Soit H un sev de E :

F + G ⊂ H ssi F ⊂ H et G ⊂ H

Exercice 1 : Vérifier que :
a) F + G est un sous-espace vectoriel de E b) F ⊂ F + G

Question :
« Montrer que F + G ⊂ H »

On montre :
•F ⊂ H
•G ⊂ H
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1 Généralités

Exercice 2 :
F = Vect

(
(1, 0, 0), (0, 1, 0)

)
et G = Vect

(
(1, 1, 0), (1, 0, 1)

)
a) Montrer que F + G = R3 b) Trouver une base de F ∩ G

Théorème 1 : Formule de Grassmann
Si F , G sont de dimension finie alors F + G l’est aussi et :

dim(F + G) = dim F + dim G − dim(F ∩ G)

La somme de Vect est simple
j Pas de formule pour

VectX ∩ VectY j

15
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2 Somme directe

Définition 2
On dit que F et G sont en somme directe si :

pour tout z ∈ F + G ,
il y a unicité de la décomposition sous la forme z = x + y avec
x ∈ F et y ∈ G .

Notation
Lorsque F et G sont en somme directe, la somme est notée :

F ⊕ G

Théorème 2 : Critère pratique
F et G sont en somme directe si et seulement si :

si F ∩ G = {0E }

Indique que la somme
est directe = unicité

En particulier
dim(F ⊕ G) = dim F + dim G

Pour montrer F et G sont en
somme directe on peut :

• Montrer que F ∩ G = {0E }
• Montrer que (B, C ) est

libre

16
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2 Somme directe

Théorème 2 : Critère pratique
F et G sont en somme directe si et seulement si : si F ∩ G = {0E }

Exemple 1 :
F =

{
(a, b, c) ∈ R3 | a + b + c = 0

}
et G = Vect

(
(1, 1, 1)

)
• Montrer que F et G sont en somme directe

• Bonus : base de F ⊕ G ?

Remarque
Notons B une base de F et C une base de G .

• Si F et G sont en somme directe alors (B, C ) est une base de
F ⊕ G appelée base adaptée à la somme directe F ⊕ G .

• Réciproquement si (B, C ) est libre F et G sont en somme
directe

En particulier
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3 Sous-espaces supplémentaires

Définition 2
F et G sont supplémentaires si tout vecteur de E se décompose
d’une manière unique comme somme d’un vecteur de F et d’un
vecteur de G .

Remarque
Autrement dit, F et G sont supplémentaires si :

•

F ∩ G = {0}

•

F + G = E .

Unicité Existence

∀x ∈ E , ∃!(y , z) ∈ E × E |


y + z = x
y ∈ F
z ∈ G

17
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3 Sous-espaces supplémentaires

Définition 2
F et G sont supplémentaires si tout vecteur de E se décompose
d’une manière unique comme somme d’un vecteur de F et d’un
vecteur de G .

Exemple 3 : Montrer que F ⊕ G = F (R,R)
F est l’ensemble des fonctions paires et G est l’ensemble des
fonctions impaires
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y ∈ F
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Définition 2
F et G sont supplémentaires si tout vecteur de E se décompose
d’une manière unique comme somme d’un vecteur de F et d’un
vecteur de G .

Exemple 4 : Montrer que BK[X ] ⊕ Kn−1[X ] = K[X ]
B ∈ K[X ] est fixé de degré n ≥ 1.
BK[X ] = {BQ ; Q ∈K[X ]} est l’ensemble des multiples de B .
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4 Supplémentaires en dimension finie

Théorème 3 : Supplémentaires en dimension finie
Si E de dimension finie, F et G sont en supplémentaires ssi

F ∩ G = {0} et dim F + dim G = dim E

A utiliser pour montrer que
F ⊕ G = E

(en dimension finie)

20
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4 Supplémentaires en dimension finie

Théorème 4 : Existence de supplémentaires en dimension finie
Si E est de dimension finie alors tout sous-espace vectoriel F de E
possède :

au moins un supplémentaire.
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4 Supplémentaires en dimension finie

Théorème 4 : Existence de supplémentaires en dimension finie
Si E est de dimension finie alors tout sous-espace vectoriel F de E
possède : au moins un supplémentaire.

Exercice 4
Démontrer ce théorème à l’aide du théorème de la base incomplète.
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4 Supplémentaires en dimension finie

Théorème 4 : Existence de supplémentaires en dimension finie
Si E est de dimension finie alors tout sous-espace vectoriel F de E
possède : au moins un supplémentaire.

Exemple 7 : Trouver un supplémentaire de F dans E = R3[X ]

F =
{

P ∈ R3[X ] | P(0) = 0 et
∫ 1

0
P(t) dt = 0

}
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Pour finir

Exercice 5
Démontrer la formule de Grassmann

Si F , G sont de dimension finie alors F + G l’est aussi et :
dim(F + G) = dim F + dim G − dim(F ∩ G)

Pour la preuve, on peut utiliser :
dim(F ⊕ G) = dim F + dim G
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