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Théorie de la dimension

Définition 1

Un K-espace vectoriel E est dit de dimension finie si : il possede une
famille génératrice finie.

Exemple 1 : Sont-ils de dimension finie ?

a) R? b) K" c) K,[X] d) K[X]



1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie]
N

» 4 =(g1,82,.-.,8n) est une famille génératrice finie de E .




1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie)
N

» 4 =(g1,82,.-.,8n) est une famille génératrice finie de E .

Théoreme 1 : Les libres ont moins d’elts que les génératrices

Toute famille libre de E possede au plus n éléments.



1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie]
J
» 4 =(g1,82,.-.,8n) est une famille génératrice finie de E .

Théoreme 1 : Les libres ont moins d’elts que les génératrices

Toute famille libre de E possede au plus n éléments.

Exercice 1

Montrer que dans un K-e.v. engendré par n vecteurs, toute famille a
n+ 1 éléments est liée.



1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie)
NI

» 4 =(g1,82,.-.,8n) est une famille génératrice finie de E .
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1 Théoreme de la base incompléte
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1 Théoreme de la base incompléte
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N
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1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie]
N
» 4 =(g1,82,.-.,8n) est une famille génératrice finie de

(2 I'aide de vecteurs de ¥)
Théoreme 2 : Théoreme de la base incompiete

Toute famille libre de E est complétable en une base de E .

Exercice 2 : Preuve par récurrence sur p € [0, n]

—

, - « Toute famille libre £ = ({1,...,0,) a p éléments est
complétable en une base de E »
1. Initialisation : cas p = n.
Montrer que si & = (Zl, .. ,Zn) est libre, c'est une base de E.



1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie]
N
» 4 =(g1,82,.-.,8n) est une famille génératrice finie de

(2 I'aide de vecteurs de ¥)
Théoreme 2 : Théoreme de la base incompiete

Toute famille libre de E est complétable en une base de E .

Exercice 2 : Preuve par récurrence sur p € [0, n]

—

, - « Toute famille libre £ = ({1,...,0,) a p éléments est
complétable en une base de E »
1. Initialisation : cas p = n.
Montrer que si & = (Zl, .. ,Zn) est libre, c'est une base de E.
2. Hérédité. Soit p € 1, n].
On suppose .7, vraie. Montrer que J%,_1 est vraie.



1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie]
N

» 4 =(g1,82,...,8n) est une famille généra ]
(a I'aide de vecteurs de ¥)

Théoreme 2 : Théoreme de la base incompiete

Toute famille libre de E est complétable en une base de E .

Exercice 2 : Preuve par récurrence sur p € [0, n]

—
712

, - « Toute famille libre £ = ({1,...,0,) a p éléments est
complétable en une base de E »

Remarque

En prenant . = @, le résultat montré dans |'exercice 2 assure que :
De toute famille génératrice de E on peut




1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie]
N

» 4 =(g1,82,...,8n) est une famille généra ]
(a I'aide de vecteurs de ¥)

Théoreme 2 : Théoreme de la base incompiete

Toute famille libre de E est complétable en une base de E .

Exercice 2 : Preuve par récurrence sur p € [0, n]

—
712

, - « Toute famille libre £ = ({1,...,0,) a p éléments est
complétable en une base de E »

Remarque

En prenant . = @, le résultat montré dans |'exercice 2 assure que :
De toute famille génératrice de E on peut extraire une base de E.




1 Théoreme de la base incompléte

Cadre (K—e.v. de dim finie]
N
» 4 =(g1,82,.-.,8n) est une famille génératrice finie de

(a I'aide de vecteurs de
Théoreme 2 : Théoreme de la base incompiete

4)

Toute famille libre de E est complétable en une base de E .

Remarque

En prenant . = &, le résultat montré dans I'exercice 2 assure que :
De toute famille génératrice de E on peut extraire une base de E.

N\

Exemple 2 [(théoréme de la base extraite))

Compléter ((1,0,1)) en une base de R3.
On admet que les bases de R? sont les familles libres & 3 vecteurs
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= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.
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Notation Si .% est une famille finie de vecteurs le cardinal
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2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de .% est : le nombre d'éléments de .%#, noté Card.#

Théoréme 3

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses
e

Remarque

Pour déterminer dim E il suffit de :



2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de .% est : le nombre d'éléments de .%#, noté Card.#

Théoréme 3

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses
e

Remarque

Pour déterminer dim E il suffit de : trouver une base de E



2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de % est : le nombre d'éléments de .%, noté Card.%.

Théoréme 3

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses
e

Remarque

Pour déterminer dim E il suffit de : trouver une base de E

Exercice 3

Démontrer le théoreme.



2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de .% est : le nombre d'éléments de .%#, noté Card.#

Théoréme 3

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses

bases.

Exemple 3 : Déterminer la dimension de F
F={PeRs[X] | P(1)=P(0)}.



2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de .% est : le nombre d'éléments de .%#, noté Card.#

Théoréme 3

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses

bases.

Exemple 4 : Deviner la dimension de T,

T, est I'ensemble des matrices triangulaires supérieures de .#,(K).



2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de .% est : le nombre d'éléments de .%#, noté Card.#

Théoréme 3

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses

bases.

Exemple 5 : Démontrer que
n(n+1)
2

n(n—l).

dim Z,(K) = 5

et dim ,(K) =



2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de .% est : le nombre d'éléments de .%#, noté Card.#

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses
e

Exemple 5 : Démontrer que

dim 7,() = "FD e dim ) =

/| AN

(Matrices symétriq ues) (I\/Iatrices antisymétriq ues)

n(n—l).
2




2 Dimension d’un espace vectoriel

Notation Si .% est une famille finie de vecteurs le cardinal

de .% est : le nombre d'éléments de .%#, noté Card.#

= Si E est de dimension finie, alors toutes ses bases : sont finies et
ont le méme cardinal.

= On appelle dimension de E : le cardinal commun a toutes ses

bases.

On admet que .%,(K) est un K—e.v.)

Exemple 5 :

dim Z,(K) = n(n2—|—1) et dim ,(K) =

/| AN

(Matrices symétriq ues) (I\/Iatrices antisymétriq ues)

n(n—l).
2




3 Exemples

Théoreme 4 : Exemples fondamentaux

s dimK"= = dimK,[X] = o dim 4, p(K) =
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en particulier dim .#,(K) = n?

Théoreme 4 : Exemples fondamentaux

s dimK"=n s dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {65} est de dimension 0, une base est la famille vide.



en particulier dim .#,(K) = n?
Théoreme 4 : Exemples fondamentaux

s dimK"=n o dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {65} est de dimension 0, une base est la famille vide.

Remarque

L dim(c(: = u dimR(C =




en particulier dim .#,(K) = n?
Théoreme 4 : Exemples fondamentaux

s dimK"=n o dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {65} est de dimension 0, une base est la famille vide.

Remarque

ldim(c@:]. -dimR(C:2




en particulier dim .#,(K) = n?

Théoreme 4 : Exemples fondamentaux

s dimK"=n o dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {65} est de dimension 0, une base est la famille vide.
Une base est (1, 1)

Remarque

ldim(c@:]. -dimR(C:2




2

en particulier dim .Z,(K) = n

Théoreme 4 : Exemples fondamentaux

s dimK"=n o dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {(_)’E$ est de dimension 0, une base est la famille vide.
Une base est (1) Une base est (1, 1)
Remarque

ldim(c@:]. -dimR(C:2




en particulier dim .#,(K) = n?

Théoreme 4 : Exemples fondamentaux

s dimK"=n o dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {(_)’E$ est de dimension 0, une base est la famille vide.

Une base est (1) Une base est (1, 1)
Remarque
ldim(c@:]. -dimR(C:2

Exemple 6 : F = {u ERY | VneEN, upio = 2upi1 — 2u,,}

Montrer que F est un plan vectoriel .

de dimension 2 .




en particulier dim .#,(K) = n?

Théoreme 4 : Exemples fondamentaux

s dimK"=n o dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {(_)’E$ est de dimension 0, une base est la famille vide.

Une base est (1) Une base est (1, 1)
Remarque
ldim(c@:]. -dimR(C:2

Exemple 7 : .7 : ensemble des solutions de (1+t2)y’ —ty =0

1.  Montrer que .77 est une droite vectorielle .
!

(de dimension 1]




en particulier dim .#,(K) = n?

Théoreme 4 : Exemples fondamentaux

s dimK"=n o dimK,[X]=n+1 = dim.#,,(K)=np

Remarque

[E = {(_)’E$ est de dimension 0, une base est la famille vide.

Une base est (1) Une base est (1, 1)
Remarque
ldim(c@:]. -dimR(C:2

Exemple 7 : .% : ensemble des solutions de y” — 8y’ + 15y =0

2. Montrer que %% est un plan vectoriel.




3 Exemples

Théoreme 5 : Espace produit

Si E et F sont deux K-e.v. de dimension finie alors E x F est de
dimension finie et :

dim(E x F) =



3 Exemples

Théoreme 5 : Espace produit

Si E et F sont deux K-e.v. de dimension finie alors E x F est de
dimension finie et :

dim(E x F) =dim E +dim F



M Utiliser la dimension finie

I Utiliser la dimension finie
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Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.
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1 Familles libres /génératrices en dimension finie

Cadre
= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E a au plus n éléments.

2. Toute famille génératrice de E a au moins n éléments.




1 Familles libres /génératrices en dimension finie

Cadre
= E est un K-espace vectoriel de dimension finie . = n =dimE.

Théoréeme 1

1. Toute famille libre de E a au plus n éléments.

2. Toute famille génératrice de E a au moins n éléments.

Exercice 1

Démontrer le théoréme.




1 Familles libres /génératrices en dimension finie

Cadre
= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E a au plus n éléments.

2. Toute famille génératrice de E a au moins n éléments.

Exercice 1

Démontrer le théoréme.

Exemple 1

Montrer que K[X] n'est pas de dimension finie.



1 Familles libres /génératrices en dimension finie

Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.

10



1 Familles libres /génératrices en dimension finie

Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E de cardinal n est une base de E.
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1 Familles libres /génératrices en dimension finie

Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E de cardinal n est une base de E.

2. Toute famille génératrice de E de cardinal n est une base de E.

10



ératrices en dimension finie

1 Familles libres /gén

Cadre
= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E de cardinal n est une base de E.
2. Toute famille génératrice de E de cardinal n est une base de E.

Exercice 2

Démontrer le théoréme.

10



1 Familles libres /génératrices en dimension finie

Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E de cardinal n est une base de E.

2. Toute famille génératrice de E de cardinal n est une base de E.

SF 4 : Montrer qu’une famille de cardinal n est une base de E

On vérifie uniquement la liberté

Exemple 2

Montrer que ((2,3), (4,5)) est une base de R?.

10



1 Familles libres /génératrices en dimension finie

Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E de cardinal n est une base de E.

2. Toute famille génératrice de E de cardinal n est une base de E.

SF 4 : Montrer qu’une famille de cardinal n est une base de E

On vérifie uniquement la liberté

Exemple 3

Montrer que (X +2X2 , 1 +2X , 2+ X?) est une base de Ry[X].

10



1 Familles libres /génératrices en dimension finie

Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E de cardinal n est une base de E.

2. Toute famille génératrice de E de cardinal n est une base de E.

SF 4 : Montrer qu’une famille de cardinal n est une base de E

On vérifie uniquement la liberté

Exemple 4

Montrer que la famille (X — a)%)o<k<n est une base de K,[X].

10



1 Familles libres /génératrices en dimension finie

Cadre

= E est un K-espace vectoriel de dimension finie . = n =dimE.

1. Toute famille libre de E de cardinal n est une base de E.

2. Toute famille génératrice de E de cardinal n est une base de E.

SF 4 : Montrer qu’une famille de cardinal n est une base de E

On vérifie uniquement la liberté
polyndmes de Lagrange]

Exemple 5 assoCiés aux X;.

Soient x1,Xxp,...,X, € tincts.
Montrer que (L1,...,L,) est une base de R,_1[X].

10



2 Sous-espaces et dimension

On suppose que E est dimension finie n. Soit F un sous-espace
vectoriel de E :
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= [ est de dimension finie et dim F < n.
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= [ est de dimension finie et dim F < n.

s [ = FE si et seulement si dim F = n.



2 Sous-espaces et dimension

Théoréme 3

On suppose que E est dimension finie n. Soit F un sous-espace
vectoriel de E :

= [ est de dimension finie et dim F < n.

s [ = FE si et seulement si dim F = n.

Exercice 3

Démontrer le théoréme.



2 Sous-espaces et dimension

Théoréme 3

On suppose que E est dimension finie n. Soit F un sous-espace
vectoriel de E :

= [ est de dimension finie et dim F < n.

s [ = FE si et seulement si dim F = n.

SF 5 : Montrer que F = G par « inclusion dimension »

On montre : s FCG s dim F =dim G.



2 Sous-espaces et dimension

Théoréme 3

On suppose que E est dimension finie n. Soit F un sous-espace
vectoriel de E :

= [ est de dimension finie et dim F < n.

s [ = FE si et seulement si dim F = n.

SF 5 : Montrer que F = G par « inclusion dimension »

On montre : s FCG s dim F =dim G.

Exemple 6
Montrer que Vect(X — 1, X +2) = Ry[X].



3 Rang d’une famille de vecteurs

Cadre

= E est un K-e.v. (de dimension quelconque)

» F# =(th,...,Up) estune famille finie de vecteurs de E.

12



3 Rang d’une famille de vecteurs

Cadre

= Eest {Vectgff\ est de dimension finieTque)
= F = (ih,.7.,lp) estune famille finie de vecteurs de E.

12



3 Rang d’une famille de vecteurs

Cadre

= Eest {Vectﬁz est de dimension finieTque)
= F = (ih,.7.,lp) estune famille finie de vecteurs de E.

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf o
@Eira




3 Rang d’une famille de vecteurs

Cadre

s F est l[vectgz est de dimension finie)]que)

n T = (Ul,.ﬁ L ille finie de vecteurs de E.
ou rg(dy, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf o
@Eira




3 Rang d’une famille de vecteurs

Cadre

s F est l[vectgz est de dimension finie)]que)

n T = (Ul,.ﬁ L ille finie de vecteurs de E.
ou rg(dy, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf o dim Vect.#
@Eira




3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf b dim Vect.#
er.

Théoreme 4

= On a toujours :

» rg(dy,...,Up) =pssi:

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) =pssi:

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rgﬁ" b dim Vectﬂ*]
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

Exercice 4

Démontrer les deux points ci-dessus.
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3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

Exemple 7 : Déterminer le rang de la famille

a) Z1=((1,1,0),(0,0,1))

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

Exemple 7 : Déterminer le rang de la famille

b) % =((1,1,0),(0,0,1), (1,1,1))
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3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

Exemple 7 : Déterminer le rang de la famille

a) 192‘1:(1’X7X2’X3)
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3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rggf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

Exemple 7 : Déterminer le rang de la famille

b) = (X,2X,3X, 4X)

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rgﬁf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

Exemple 7 : Déterminer le rang de la famille

) F=(X+1,X+2,X+3, X+4)

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rgﬁf b dim Vect.#
er.

Exemple 7 : Déterminer le rang de la famille

) F=(X+1,X+2,X+3, X+4)

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rga@’ b dim Vect.#
er.

Montrer que dim F > p :

. = [ possede une famille
libre de cardinal p

= F contient un sev de
dimension p

Exemple 7 : Déterminer le rang de la famille

) F3=(X+1,X+2,X+3,X+4)

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1
Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rgﬁ" b dim Vectﬂ*]
er.

Montrer que dim F > p :

Montrer que dim F < p : )

s (= F possede une famille < p. |" F posséde une famille
libre de cardinal p

libre génératrice de cardinal p
= F est contenu dans un
sev de dimension p
Exemple 7 : Déterminer le rang de la famille

F contient un sev de
dimension p

) F3=(X+1,X+2,X+3,X+4)

12



3 Rang d’une famille de vecteurs

ou rg(u, ..., Up)

Définition 1

Le rang de .%, noté rg.% , est la dimension du sous-espace vectoriel

engendré par .% : [rgﬁf b dim Vect.#
er.

Théoreme 4

= On a toujours : rg(dy, ..., Up) < p.

» rg(dy,...,Up) = pssi:.F estlibre

Exemple 8 : Trouver le rang de (fi,...,f;,) (n>2)

fx est la fonction x +— sin(k + x) pour tout k € N.

12



Ml Somme de sous-espaces

M Somme de sous-espaces
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1 Généralités

Cadre

F et G désignent deux sous-espaces vectoriels de E.

Définition 1

= Lasommede F et G est :
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= FCF+G




1 Généralités

Cadre
F et G désignent deux sous-espaces vectoriels de E.

. LasommedeFetGest:F+Gd;f{x+y;XEF,)/€G}
er.
s FCF4+G sGCF+G




1 Généralités

Cadre

F et G désignent deux sous-espaces vectoriels de E.

Définition 1

] LasommedeFetGest:F+Gd;f{x+y;XEF,)/€G}
er.

= FCF+G sGCF+G
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1 Généralités

Cadre

F et G désignent deux sous-espaces vectoriels de E.

Définition 1

] LasommedeFetGest:F+Gd;f{x+y;XEF,)/EG}
er.

= FCF+G sGCF+G
= Sot Hunsevde E: F+GCH ssi FCH e GCH



1 Généralités

Question :
« Montrer que F + G C H »

Cadre
F et G désignent deux sous-espaces vt ftoriels de E.

Définition 1

] LasommedeFetGest:FJer;f x+y; xeF,yeG}
er.

= FCF+G sGCF+G
= Sot Hunsevde E: F+GCH ssi FCH e GCH
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1 Généralités

Question :
« Montrer que F + G C H »

On montre :
=FCH
«sGCH

Cadre
F et G désignent deux sous-espaces vt ftoriels de E.

Définition 1

. LasommedeFetGest:FJer;f x+yZmeF, ye G}
er.

» FCF+G sGCF+G
= Sot Hunsevde E: F+GCH ssi FCH e GCH

Exercice 1 : Vérifier que :

a) F + G est un sous-espace vectorielde E b)) FC F+ G

14



1 Généralités

Exercice 2 :

F = Vect((1,0,0),(0,1,0)) et G = Vect((1,1,0),(1,0,1))

a) Montrer que F+ G=R3 b) Trouver une base de FN G

15}



1 Généralités

La somme de Vect est simple

Exercice 2 :
F = Vect((1,0,0), (Q, G = Vect((1,1,0),(1,0,1))

a) Montrer que F+ G=R3 b) Trouver une base de FN G

15}



1 Généralités

La somme de Vect est simple
VectX + VectY = Vect(X U Y)
pour toutes parties X, Y de E

Exercice 2 :

F = Vect((1,0,0), (Y, G = Vect((1,1,0),(1,0,1))

a) Montrer que F+ G=R3 b) Trouver une base de FN G
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1 Généralités

La somme de Vect est simple
VectX + VectY = Vect(X U Y)
pour toutes parties X, Y de E

Exercice 2 :

F = Vect((1,0,0), (Y, G = Vect((1,1,0), (1,0,

a) Montrer que F+ G=R3 b) Trouver une base de FN G

15}



1 Généralités

La somme de Vect est simple
VectX + VectY = Vect(X U Y)
pour toutes parties X, Y de E

Exercice 2 :
F = Vect((1,0,0), Q

a) Montrer que F+ G=R3 b) Trouver une base de FN G

Théoréme 1 : Formule de Grassmann

Si F, G sont de dimension finie alors F + G |'est aussi et :

115)



1 Généralités

La somme de Vect est simple
VectX + VectY = Vect(X U Y)
pour toutes parties X, Y de E

Exercice 2 :
F = Vect((1,0,0), Q

a) Montrer que F+ G=R3 b) Trouver une base de FN G

Théoréme 1 : Formule de Grassmann

Si F, G sont de dimension finie alors F + G |'est aussi et :

dim(F + G) = dim F +dim G — dim(F N G)

115)



2 Somme directe

On dit que F et G sont en somme directe si :



2 Somme directe

Définition 2

On dit que F et G sont en somme directe si : pour tout z € F + G,
il y a unicité de la décomposition sous la forme z = x + y avec

x € FetyeaG.



2 Somme directe

On dit que F et G sont en somme directe si : pour tout z € F + G,
il y a unicité de la décomposition sous la forme z = x + y avec
x € FetyeaG.

Notation

Lorsque F et G sont en somme directe, la somme est notée :
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2 Somme directe

Définition 2
On dit que F et G sont en somme directe si : pour tout z € F + G,

il y a unicité de la décomposition sous la forme z = x + y avec
x € FetyeaG.

Notation

Lorsque F et G sont en somme directe, la somme est notée : F & G



2 Somme directe

On dit que F et G sont en somme directe si : pour tout z € F + G,
il y a unicité de la décomposition sous la forme z = x + y avec

x € FetyeaG.
[ est directe = unicité

Indique que la somme]
Notation

Lorsque F et G sont en somme directe, la somme est notée : F & G
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2 Somme directe

On dit que F et G sont en somme directe si : pour tout z € F + G,
il y a unicité de la décomposition sous la forme z = x + y avec

est directe = unicité

N
Lorsque F et G sont en somme directe, la somme est notée : F & G

€ Fetyeg.
x sty [Indique que la somme]

Notation

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si :

16



2 Somme directe

Définition 2
On dit que F et G sont en somme directe si : pour tout z € F + G,

il y a unicité de la décomposition sous la forme z = x + y avec
x € FetyeaG. [

Indique que la somme
est directe = unicité

Notation

Lorsque F et G sont en somme directe, la somme est notée : F & G

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0}

Exercice 3

Démontrer cette équivalence.
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2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si FN G = {0}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe

16



2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si FN G = {0}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe
= Bonus : basede F@ G7

16



2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0g}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe
= Bonus : basede F@ G7

Remarque

Notons % une base de F et € une base de G.
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2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0g}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe
= Bonus : basede F@ G7

Remarque

Notons % une base de F et € une base de G.

= Si F et G sont en somme directe alors (A, €) est une base de
F @ G appelée base adaptée a la somme directe F & G .

16



2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0g}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe
= Bonus : basede F@ G7

En particulier
Remarque dim(F & G) =dimF +dim G

Notons % une base de F et € une base de G. J/
e base de

= Si F et G sont en somme directe alors (%, €) est

F @ G appelée base adaptée a la somme directe F & G .

16



2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0g}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe
= Bonus : basede F@ G7

En particulier
Remarque dim(F & G) =dimF +dim G

Notons % une base de F et € une base de G. J/
e base de

= Si F et G sont en somme directe alors (%, €) est

F @ G appelée base adaptée a la somme directe F & G .

= Réciproquement si (%, %) est libre F et G sont en somme
directe

16



2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0g}
Exemple 1 :

F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe

» Bonus: basede F& G?

Pour montrer F et G sont en En particulier
somme directe on peut : dim(F & G) =dim F +dim G

une base de G. J/
irecte alors (%, %) est uhe base de

se a la somme directeF @ G .

zY 4
= Réciproquement si (%, %) est libre F et G sont en somme
directe

16



2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0g}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe
= Bonus : basede F@ G7

Pour montrer F et G sont en En particulier
somme directe on peut : dim(F & G) =dim F +dim G
= Montrer que F N G = {Og} F une base de G. J/

irecte alors (A, %) est uhe base de

se a la somme directeF @ G .

zY 4
= Réciproquement si (%, %) est libre F et G sont en somme

directe
16



2 Somme directe

Théoreme 2 : Critére pratique

F et G sont en somme directe si et seulement si : si F N G = {0g}

Exemple 1 :
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))

= Montrer que F et G sont en somme directe
= Bonus : basede F@ G7

Pour montrer F et G sont en En particulier }
somme directe on peut : dim(F & G) =dim F +dim G
= Montrer que F N G = {Og} F une base de G. J/
= Montrer que (%, %) est irecte alors (A, %) est uhe base de

libre 2e 3 la somme directe F & G .

zY 4
= Réciproquement si (%, %) est libre F et G sont en somme

directe
16



3 Sous-espaces supplémentaires

Définition 2

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniere unique comme somme d’un vecteur de F et d'un

vecteur de G.



y+z=x
VxeE, A(y,z)eExXE | (ycF
ze G

Définition 2

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniere unique comme somme d’un vecteur de F et d'un
vecteur de G.
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y+z=x
VxeE, A(y,z)eExXE | (ycF
ze G

Définition 2

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniere unique comme somme d’un vecteur de F et d'un
vecteur de G.

Remarque

Autrement dit, F et G sont supplémentaires si :
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y+z=x
VxeE, A(y,z)eExXE | (ycF
ze G

Définition 2

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniere unique comme somme d’un vecteur de F et d'un
vecteur de G.

Remarque

Autrement dit, F et G sont supplémentaires si :
» FNG = {0} .
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y+z=x
VxeE, A(y,z)eExXE | (ycF
ze G

Définition 2

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniere unique comme somme d’un vecteur de F et d'un
vecteur de G.

Remarque

Autrement dit, F et G sont supplémentaires si :
» FNG = {0} » F+ G =E.

17



y+z=x
VxeE, A(y,z)eExXE | (ycF
ze G

Définition 2

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniere unique comme somme d’un vecteur de F et d'un

vecteur de G.

Remarque

Autrement dit, F et G sort supplémentaires si :
» FNG = {0} » F+ G =E.

17



y+z=x
VxeE, A(y,z)eExXE | (ycF
zeG

Définition 2
F et G sont supplémentaires si tout vecteur de E se décompose

d'une maniere unique comme somme d’un vecteur de F et d'un
vecteur de G.

Remarque

Autrement dit, F et G sort supplémentaires si : ‘
» FNG = {0} » F+ G =E.

17



y+z=x
VxeE, A(y,z)eExXE | {(ycF
ze G

Définition 2
F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniere unique comme somme d’un vecteur de F et d'un

vecteur de G.

Remarque

Autrement dit, F et G sort supplémentaires si : ‘
» FNG = {0} » F+ G =E.

Exemple 2 : Montrer que F & G = R3
F={(ab,c)eR® | a+b+c=0} et G=Vect((1,1,1))
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3 Sous-espaces supplémentaires

Exemple 2 : Montrer que F & G = R3
F=1{(a,b,c)eR® | a+b+c=0} et G=Vect((L,1,1))

G

u=(x,y,2)
(1,1,1) /
V

Oe

/
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3 Sous-espaces supplémentaires

Exemple 2 : Montrer que F & G = R3
F=1{(a,b,c)eR® | a+b+c=0} et G=Vect((L,1,1))

(1,1,1) /

Oe

18



3 Sous-espaces supplémentaires

Exemple 2 : Montrer que F & G = R3
F=1{(a,b,c)eR® | a+b+c=0} et G=Vect((L,1,1))

G
A1,1,1) f------- u=(x,y,z)
(1,1,1) ,’
OE I,(aa b7 C)
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3 Sous-espaces supplémentaires

Exemple 2 : Montrer que F & G = R3
F=1{(a,b,c)eR® | a+b+c=0} et G=Vect((L,1,1))

18



3 Sous-espaces supplémentaires

Exemple 2 : Montrer que F & G = R3
F=1{(a,b,c)eR® | a+b+c=0} et G=Vect((L,1,1))

G | A trouver en fonction de x, y, z]

\
/ (A trouver en fonction de x, y, z]

18



3 Sous-espaces supplémentaires

Définition 2
F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniére unique comme somme d'un vecteur de F et d’un
vecteur de G.

Exemple 3 : Montrer que F ® G = % (R,R)

F est I'ensemble des fonctions paires et G est I'ensemble des
fonctions impaires



3 Sous-espaces supplémentaires

y+z=x
Vx € E, (y,z)EEXE| {yeF

ze G

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniére unique comme somme d'un vecteur de F et d’un
vecteur de G.

Exemple 3 : Montrer que F & G = % (R,R)

F est I'ensemble des fonctions paires et G est I'ensemble des
fonctions impaires
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3 Sous-espaces supplémentaires

y+z=x
Vx € E, (y,z)EEXE| {yeF

ze G

F et G sont supplémentaires si tout vecteur de E se décompose
d'une maniére unique comme somme d'un vecteur de F et d’un
vecteur de G.

Exemple 4 : Montrer que BK[X] @& K,_1[X] = K[X]

B € K[X] est fixé de degré n > 1.
BK[X] = {BQ; QeK][X]} est I'ensemble des multiples de B .

19



4 Supplémentaires en dimension finie

Théoreme 3 : Supplémentaires en dimension finie

Si E de dimension finie, F et G sont en supplémentaires ssi
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4 Supplémentaires en dimension finie

Théoreme 3 : Supplémentaires en dimension finie

Si E de dimension finie, F et G sont en supplémentaires ssi

(FNG={0} et dimF+dimG=dimE|
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4 Supplémentaires en dimension finie

A utiliser pour montrer que
F®eG=E
(en dimension finie)
Théoreme 3 : Supplémentaires €l dimension finie

Si E de dimension finie, F et G so/ft en supplémentaires ssi

(FN6={0} et dimF+dimG=dimE|
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4 Supplémentaires en dimension finie

A utiliser pour montrer que
F®eG=E
(en dimension finie)
Théoreme 3 : Supplémentaires €l dimension finie

Si E de dimension finie, F et G so/ft en supplémentaires ssi

(FN6={0} et dimF+dimG=dimE|

Exemple 5 : Montrer que F & G = Ky[X]
F =Vect(2X +1) et G =Vect(X?+X,X?+X+1)

20



4 Supplémentaires en dimension finie

A utiliser pour montrer que
F®eG=E
(en dimension finie)
Théoreme 3 : Supplémentaires €l dimension finie

Si E de dimension finie, F et G so/ft en supplémentaires ssi

(FN6={0} et dimF+dimG=dimE|

Exemple 6 : Montrer que F & G = R3
F={(abc)eR® | a+b+c=0} et G=Vect((1,1,1))

20



4 Supplémentaires en dimension finie

Théoreme 4 : Existence de supplémentaires en dimension finie

Si E est de dimension finie alors tout sous-espace vectoriel F de E
possede :

21



4 Supplémentaires en dimension finie

Théoreme 4 : Existence de supplémentaires en dimension finie

Si E est de dimension finie alors tout sous-espace vectoriel F de E
posseéde : au moins un supplémentaire.

21



4 Supplémentaires en dimension finie

Théoreme 4 : Existence de supplémentaires en dimension finie

Si E est de dimension finie alors tout sous-espace vectoriel F de E
posseéde : au moins un supplémentaire.

Exercice 4

Démontrer ce théoréme a |'aide du théoreme de la base incompléte.
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4 Supplémentaires en dimension finie

Théoreme 4 : Existence de supplémentaires en dimension finie

Si E est de dimension finie alors tout sous-espace vectoriel F de E
posseéde : au moins un supplémentaire.

Exemple 7 : Trouver un supplémentaire de F dans E = R3[X]

F- {P€R3[X]|P /P dt—O}

21



Exercice 5

Démontrer la formule de Grassmann




dim(F 4+ G) = dim F +dim G — dim(F N G)

m—

Démontrer la formule de Grassmann

[Si F, G sont de dimension finie alors F + G I'est aussi et :}

22



dim(F 4+ G) = dim F +dim G — dim(F N G)

m—

Démontrer la formule de Grassmann

\

[Pour la preuve, on peut utiliser :]

[Si F, G sont de dimension finie alors F + G I'est aussi et :}

dim(F & G) =dim F +dim G
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