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1 La structure d’espace vectoriel

Définition 1
Un espace vectoriel sur K est un ensemble E muni de deux lois :

i)une L.C.I. +, addition, telle que

(E , +) est un groupe commutatif

ii)une multiplication externe i.e. une application

K × E

→

E
( λ , x⃗ )

7→

λ · x⃗

qui vérifie les quatre propriétés suivantes :

1.

∀x⃗ ∈ E , 1 · x⃗ = x⃗

2.

∀x⃗ ∈ E , ∀λ, µ ∈ K, λ · (µ · x⃗) =

(λµ) · x⃗

3.

∀x⃗ ∈ E , ∀λ, µ ∈ K, (λ + µ) · x⃗ =

λ · x⃗ + µ · x⃗

4.

∀x⃗ , y⃗ ∈ E , ∀λ ∈ K, λ · (x⃗ + y⃗) =

λ · x⃗ + λ · y⃗

Exercice 1

ou K-espace vectoriel

vecteurscalaire

Elément neutre de (E , +) :
vecteur nul
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2 Espaces vectoriels de références

Exemple 0
(K, +, ×) est un K-espace vectoriel .

Exemple 1 : Kn

L’ensemble des n-uplets à coefficients dans K est un K-espace
vectoriel.

Exercice 2
Donner la définition des deux opérations dans Kn et préciser le
vecteur nul 0⃗Kn .

La multiplication « externe »
est la multiplication × de K

3
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2 Espaces vectoriels de références

Exemple 2 : Mn,p(K)

Mn,p(K) est un K-espace vectoriel pour les opérations usuelles

Exemple 3 : K[X ]
K[X ] est un K-espace vectoriel pour les opérations usuelles

A + B = (ai ,j + bi ,j) 1≤i≤n
1≤j≤p

et λA = (λai ,j) 1≤i≤n
1≤j≤p

P + Q et λP

Par ex : (x⃗ , y⃗) + (x⃗ ′, y⃗ ′) =
déf.

(x⃗ + x⃗ ′, y⃗ + y⃗ ′)

λ · x⃗ est déf. pour λ ∈ C
donc aussi si λ ∈ R

4
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3 Combinaisons linéaires de vecteurs

Remarque
Une combinaison linéaire deux vecteurs u⃗, v⃗ ∈ E est un vecteur de
la forme :

α · u⃗ + β · v⃗ pour certains α, β ∈ K

Définition 2
Un vecteur x⃗ ∈ E est une combinaison linéaire de F si :

il existe α1, α2, . . . αn ∈ K tels que :

x⃗ =
n∑

i=1
αi · u⃗i

Remarque
Les combinaisons linéaires d’un seul vecteur u⃗ sont :

les
vecteurs colinéaires à u⃗ .

F = (u⃗1, u⃗2, . . . , u⃗n)
famille de vecteurs E

les λ · u⃗ pour λ ∈ K

C.L. de la famille vide ?
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1 Définition

Définition 1
On dit qu’une partie F de E est un sous-espace vectoriel de E si :

• F ̸= ∅,
• F est stable par + :

∀x⃗ , y⃗ ∈ F , x⃗ + y⃗ ∈ F

• F est stable par · :

∀λ ∈ K, ∀x⃗ ∈ F , λx⃗ ∈ F

SF 1 : Montrer que F est un sous-espace vectoriel de E
On vérifie que :

i) 0⃗E ∈ F
ii) F est stable par C.L. : ∀x⃗ , y⃗ ∈ F , ∀λ, µ ∈ K, λx⃗ + µy⃗ ∈ F

E a toujours deux sous-espaces
vectoriels

7
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vectoriels E et

{
0⃗E
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F =
{
(x , y , z) ∈ R3 | ax + by + cz = 0

}
est un sous-espace vectoriel de R3
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vectoriels E et
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1 Définition

Définition 1
On dit qu’une partie F de E est un sous-espace vectoriel de E si :
• F ̸= ∅,
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i) 0⃗E ∈ F
ii) F est stable par C.L. : ∀x⃗ , y⃗ ∈ F , ∀λ, µ ∈ K, λx⃗ + µy⃗ ∈ F

Exemple 3 : Montrer que F est un sous-espace de F (R,R)
F = {f ∈ F (R,R) | f (0) = 0}

E a toujours deux sous-espaces
vectoriels E et

{
0⃗E
}
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1 Définition

Remarque
Si F est un sous-e.v. de E alors (F , +, ·) est :

lui-même un
K-espace vectoriel

En pratique : pour montrer que F est un espace vectoriel
Le plus simple est de montrer que F est un sous-espace vectoriel
d’un espace vectoriel de référence. dérivables

C 1

C ∞

. . .
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1 Définition

Remarque
Si F est un sous-e.v. de E alors (F , +, ·) est : lui-même un
K-espace vectoriel

En pratique : pour montrer que F est un espace vectoriel
Le plus simple est de montrer que F est un sous-espace vectoriel
d’un espace vectoriel de référence.

Exemple 4
Soit n ∈ N. Montrer que Kn[X ] est un K-espace vectoriel.

dérivables
C 1

C ∞

. . .

8



1 Définition

Remarque
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K-espace vectoriel

En pratique : pour montrer que F est un espace vectoriel
Le plus simple est de montrer que F est un sous-espace vectoriel
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Exemple 5
L’ensemble des fonctions continues sur un intervalle I est un
R-espace vectoriel.

dérivables
C 1

C ∞

. . .
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1 Définition

Théorème 1
Toute intersection de sous-espaces vectoriels de E est :

un
sous-espace vectoriel de E

Exercice 1

a) Prouver le théorème
b) Montrer que la réunion de deux sous-espaces vectoriels de E n’est

en général pas un sous-espace vectoriel de E

9
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2 Sous-espaces vectoriels engendrés

Définition 2
On note Vect F l’ensemble :

de toutes les combinaisons linéaires
de F

Remarque
Vect(∅) =

{
0⃗E
}

Exemple 6 : Dans E = R2

Décrire géométriquement Vect((1, 2)).

F = (u⃗1, u⃗2, . . . , u⃗n)
famille de vecteurs E
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2 Sous-espaces vectoriels engendrés

Exemple 7 : Dans E = K[X ]
Vect(1, X , X 2, . . . , Xn) =

Kn[X ]

Exemple 8 : Dans E = Mn(K)
a) Vect(Ei ,j)1≤i ,j≤n =

Mn(K)

b) Vect(Ei ,j)1≤i≤j≤n =

Tn

Théorème 2

Vect F est un sous.e.v. de E appelé sous-espace vectoriel engendré
par F .

Exercice 3
Démontrer le théorème.

Question : « Montrer que
Vect(u⃗1, . . . , u⃗n) ⊂ G » Réponse : « Soit i ∈ J1 , nK.

Montrons que u⃗i ∈ G »

11
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Ensemble des matrices
triangulaires sup.

Question : « Montrer que
Vect(u⃗1, . . . , u⃗n) ⊂ G » Réponse : « Soit i ∈ J1 , nK.

Montrons que u⃗i ∈ G »
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 9 : Montrer que F est un sous-espace vectoriel de R3

F =
{
(x , y , z) ∈ R3 | x + 3y − z = 0

}
.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 10 : Montrer que F est un sous-e.v. de M2(R)

F =
{(

a c
b d

)
∈ M2(R) | a + d = 0

}
.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 11 : Montrer que F est un sous-e.v. de R[X ]
F =

{
(X − 1)(aX + b) ; (a, b) ∈ R2}.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 12 : Montrer que F est un sous-e.v. de F (R,R)
1. F est l’ensemble des solutions de y ′′ + y = 0.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 12 : Montrer que F est un sous-e.v. de F (R,R)
2. F est l’ensemble des solutions de y ′′ − 8y ′ + 15y = 0.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 13 : Montrer que F est un sous-e.v. de RN

F =
{

u ∈ RN | ∀n ∈ N, un+2 − 5un+1 + 6un = 0
}

.

12
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1 Familles génératrices finies

Définition 1
La famille F est génératrice de E (ou engendre E ) si tout vecteur
de E est combinaison linéaire de F i.e. :

• ∀x⃗ ∈ E , ∃(α1, α2, . . . , αn) ∈ Kn | x⃗ =
n∑

i=1
αi u⃗i

• ou encore :

VectF = E

Exemple 1

1. Une famille génératrice de Kn[X ] est :

(1, X , . . . , Xn)
2. Une famille génératrice de Mn,p(K) est :

(Ei ,j)1≤i≤n
1≤j≤p

F = (u⃗1, u⃗2, . . . , u⃗n)
famille de vecteurs E
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1≤j≤p

Exemple 2
Montrer que

(
(1, 0) , (0, 1)

)
engendre R2.

F = (u⃗1, u⃗2, . . . , u⃗n)
famille de vecteurs E
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1 Familles génératrices finies

Remarque
Toute sur-famille d’une famille génératrice de E est encore
génératrice de E

Théorème 1
Soit u⃗n+1 ∈ E . Si :
• (u⃗1, . . . , u⃗n+1) est génératrice de E

• u⃗n+1 est combinaison linéaire de (u⃗1, . . . , u⃗n)

alors (u⃗1, . . . , u⃗n) est encore génératrice de E

Si F ⊂ G et si F engendre E
alors G engendre E

15
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Théorème 1
Soit u⃗n+1 ∈ E . Si :
• (u⃗1, . . . , u⃗n+1) est génératrice de E
• u⃗n+1 est combinaison linéaire de (u⃗1, . . . , u⃗n)
alors (u⃗1, . . . , u⃗n) est encore génératrice de E

Exercice 1
Démontrer le théorème

Si F ⊂ G et si F engendre E
alors G engendre E
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1 Familles génératrices finies

Remarque
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• u⃗n+1 est combinaison linéaire de (u⃗1, . . . , u⃗n)
alors (u⃗1, . . . , u⃗n) est encore génératrice de E

Exemple 4 : « chasser » dans un Vect
Dans R[X ], on pose : F = Vect(1 , X , 1 + X , 2X − 3 , 3X , 0).
Montrer que : F = Vect(1, X )

Si F ⊂ G et si F engendre E
alors G engendre E
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alors (u⃗1, . . . , u⃗n) est encore génératrice de E

Exemple 5 : Trouver une famille génératrice de F
F =

{
(x , y , z , t) ∈ R4 | x − 2y − z = 0 et x − y + t = 0

}

Si F ⊂ G et si F engendre E
alors G engendre E
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2 Bases

Définition 2

• La famille F est une base de E si tout vecteur de E est d’une
manière unique combinaison linéaire de F

• Ou encore :

∀x⃗ ∈ E , ∃! (α1, α2, . . . , αn) ∈ Kn | x⃗ =
n∑

i=1
αi u⃗i

Il existe un unique

coordonnées de x
dans la base F

16
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• Ou encore : ∀x⃗ ∈ E , ∃! (α1, α2, . . . , αn) ∈ Kn | x⃗ =
n∑

i=1
αi u⃗i

Remarque
La famille vide est une base de

{
0⃗E
}

Il existe un unique

coordonnées de x
dans la base F
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Exemple 6
a) Montrer que

(
(1,1) , (1, −2)

)
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• La famille F est une base de E si tout vecteur de E est d’une
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• Ou encore : ∀x⃗ ∈ E , ∃! (α1, α2, . . . , αn) ∈ Kn | x⃗ =
n∑

i=1
αi u⃗i

Exemple 6
b) Montrer que (X 2 + X , X 2 + 1, X + 1) est une base de R2[X ]

Il existe un unique

coordonnées de x
dans la base F
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Familles génératrices quelconques

Cadre
F = (u⃗i)i∈I est une famille indexée par un ensemble quelconque I

Définition 3
x⃗ ∈ E est combinaison linéaire de F s’il est combinaison linéaire
d’une sous-famille finie de F .

Vocabulaire : famille (αi)i∈I presque nulle

Un vecteur x⃗ est combinaison linéaire de F si : x⃗ =
∑
i∈I

αi u⃗i

pour certains αi ∈ K tous nuls sauf un nombre fini d’entre eux

Exercice 2
Montrer que Vect(u⃗i)i∈I est aussi l’intersection de tous les
sous-espaces de E contenant {u⃗i}i∈I

d’où les définitions de :

• VectF
• Famille génératrice
• Base
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Parties génératrices

Cadre
A est une partie de E

Définition 4
On définit Vect A comme l’intersection de tous les sous-espaces
vectoriels de E contenant A.

Rien ne change : si A = {u⃗i}i∈I , alors,
Vect A est l’ensemble des CL de (u⃗i)i∈I
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1 Familles libres

Définition 1

• F est libre si la seule combinaison linéaire de F donnant le
vecteur nul est celle où tous où tous les coefficients sont nuls.

Autrement dit F est libre si pour tout (αi)1≤i≤n ∈ Kn :
n∑

i=1
αi u⃗i = 0⃗E =⇒ α1 = α2 = · · · = αn = 0

• F est liée si elle n’est pas libre i.e. si :

il existe α1, . . . , αn ∈ K

non tous nuls tels que :
n∑

i=1
αi u⃗i = 0⃗E .

F = (u⃗1, u⃗2, . . . , u⃗n)
famille de vecteurs E

ou :« les u⃗i sont
linéairement indépendants »
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Exemple 1 : u⃗1 = (1,0,0), u⃗2 = (0,1,0), v⃗ = (1, 1, 0), w⃗ = (0, 1, 1)
Montrer que : a) (u⃗1, u⃗2, v⃗) est liée b) (u⃗1, u⃗2, w⃗) est libre
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u⃗1 = (1,0,2), u⃗2 = (1,1,3), u⃗3 = (2, −3, 1)
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Exemple 3 : La famille (P, Q, R) est-elle libre ?

P = −1 + 3X + 2X 2, Q = X + X 2, R = −X − 2X 2

F = (u⃗1, u⃗2, . . . , u⃗n)
famille de vecteurs E
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non tous nuls tels que :
n∑

i=1
αi u⃗i = 0⃗E .

Exemple 4 : Montrer que (f1, f2, f3, f4) est libre dans F (R,R)
f1 : x 7→ cos x f2 : x 7→ sin x f3 : x 7→ x cos x f4 : x 7→ x sin x

F = (u⃗1, u⃗2, . . . , u⃗n)
famille de vecteurs E

ou :« les u⃗i sont
linéairement indépendants »
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1 Familles libres

Théorème 1
Une famille est liée ssi

l’un des vecteurs est C.L. des autres

Théorème 2

• Si F est libre :

toute sous-famille de F est libre

• Si F est libre et si :

u⃗n+1 n’est pas combinaison linéaire de F
alors (u⃗1, . . . , u⃗n, u⃗n+1) est encore libre

Exercice 1
Démontrer le second point

u⃗ = 0⃗E ou v⃗ = λu⃗
pour un certain λ ∈ K
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1 Familles libres

Théorème 3

• Une famille (P0, . . . , Pn) de polynômes est dite de degrés étagés
si :

∀k ∈ J0 , nK, deg Pk = k

• Une famille de polynôme de degrés étagés est libre.

Exercice 2
Démontrer la propriété de liberté par récurrence sur n.
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2 Bases

Théorème 4
Une famille est une base de E ssi elle est à la fois :

libre et
génératrice.

Exemple 7 : Montrer que F est une base de Kn[X ]
F =

(
1 , (X − a) , (X − a)2 , . . . , (X − a)n)

Bonus : Coordonnées de P =
n∑

k=0
akX k dans la base F ?

23
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3 familles libres quelconques / parties libres

Définition 2
La famille (u⃗i)i∈I est dite dite libre si

toutes ses sous-familles finies
sont libres.

Remarque
(u⃗i)i∈I est libre si pour toute famille (αi)i∈I ∈ KI

presque nulle :

∑
i∈I

αi u⃗i = 0⃗E =⇒ ∀i ∈ I, αi = 0

I ensemble
quelconque Pour montrer la liberté

d’une famille concrète

Pour les exercices abstraits

24
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