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est la multiplication x de K
e
(K, +, x) est un K-espace vectoriel .

[La multiplication « externe »]
Exemple 0

Exemple 1 : K"

L'ensemble des n-uplets a coefficients dans K est un K-espace
vectoriel.

Exercice 2

Donner la définition des deux opérations dans K” et préciser le
vecteur nul Ogn.
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[Par SR N (%+%’,Y+Y’)]
Exemple 5 : E X F det

L
Si E, F sont deux K-espaces vectoriels, on définit sur E x F une
structure de K-espace vectoriel.

Exercice 3

L'ensemble RY des suites réelles est-il un R-espace vectoriel ?
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K[X] est un K-espace vectoriel pour les opérations usuelles

[Par ex: (%,7)+ (%)) = R+ 7.7+ Y’)]
Exemple 5 : E X F def

A

Si E, F sont deux K-espaces vectoriels, on définit sur E x F une
structure de K-espace vectoriel.

A - X est déf. pour A € C
Remarque donc aussi si A € R

Tout C-espace vectoriel est aussi : un R espace vectoriel
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Les combinaison4’linéaires d'un seul vecteur d sont : les
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Exemple 6 : Dans R?
1. Montrer que 4= (3,2) est C.L. de &, = (1, 0) et & = (1, 1).
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Exemple 6 : Dans .7 (R, R)

2. Montrer que f : t + cos(t — Z) est C.L. de g = cos et h = sin.
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3 Combinaisons linéaires de vecteurs

Remarque

Une combinaison linéaire deux vecteurs i, vV € E est un vecteur de
la forme : - 4+ 3 - V pour certains «, § € K— — —
F (ul,uQ,...,un)]

Définition 2 famille de vecteurs E

s

Un vecteur X € E est une combinaison linéaire de .% si :

n
il existe ag,p,...a, € K tels que : X = Za,- - Uj
i=1

les A - 4 pour A € K
Remarque

Les combinaison4’linéaires d'un seul vecteur d sont : les

vecteurs colinéaires 3 i . C.L. de la famille vide ?
Une seule : le vecteur nul

Exemple 6 : Dans E = K[X]
4a) Montrer que P € K,[X] est C.L. des polynémes 1, X, ..., X".
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Exemple 6 : Dans E = K[X]
4b) Montrer que P € K,[X] est C.L. de 1, (X —1),...,(X —1)".



3 Combinaisons linéaires de vecteurs

Remarque

Une combinaison linéaire deux vecteurs i, vV € E est un vecteur de
la forme : o+ i+ (- V pour certains «, § € K ]

F = (1, Uy ..., Up)
Définition 2 famille de vecteurs E

s

Un vecteur X € E est une combinaison linéaire de .% si :

n
il existe ag,p,...a, € K tels que : X = Za,- - Uj
i=1

les A - i pour A € K

Remarque

Les combinaison4’linéaires d'un seul vecteur d sont : les

vecteurs colinéaires 3 i . C.L. de la famille vide ?
Une seule : le vecteur nul
Exercice 4 : Dans R3 e vecteur w = (—5, —4, —1)

Est-il CL. de 4 =(1,2,1) et v=(1,-1,-1)7



3 Combinaisons linéaires de vecteurs

Remarque

Une combinaison linéaire deux vecteurs i, vV € E est un vecteur de
la forme : o+ i+ (- V pour certains «, § € K ]

F = (1, U, ..., Up)
Définition 2 famille de vecteurs E

s

Un vecteur X € E est une combinaison linéaire de .% si :

n
il existe ag,p,...a, € K tels que : X = Za,- - Uj
i=1

les A - 4 pour A € K
Remarque

Les combinaison4’linéaires d'un seul vecteur d sont : les

vecteurs colinéaires 3 i . C.L. de la famille vide ?
Une seule : le vecteur nul
Exercice 5 : Dans R[X] le vecteur P = X° +3X + 1

Estil CLde A=1+X, B=14+2X+X?> et C=X+X2?
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Définition 1
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On dit qu'une partie F de E est un sous-espace vectoriel de E si :
» FA£O,
= F est stable par + : VX, yeF, X+yeF

= F est stable par - : VAeK, VXeF, AMEeEF
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vectoriels E et {O}}

Définition 1

On dit qu'une partie F de E :st un sous-espace vectoriel de E si :
» FA£O,
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= F est stable par - : VAeK, VXeF, AMEeEF




1 Définition

E a toujours deux sous-espaces
vectoriels E et {O}}

Définition 1

On dit qu'une partie F de E est un sous-espace vectoriel de E si :

» F#03,
= F est stable par + : VX,y e F, X+yeF
= F est stable par - : VAeK, VXeF, AMEeEF

SF 1 : Montrer que F est un sous-espace vectoriel de £

On vérifie que :



1 Définition

E a toujours deux sous-espaces
vectoriels E et {O}}

Définition 1

On dit qu'une partie F de E est un sous-espace vectoriel de E si :

» F#03,
= F est stable par + : VX,y e F, X+yeF
= F est stable par - : VAeK, VXeF, AMEeEF

SF 1 : Montrer que F est un sous-espace vectoriel de £

On vérifie que :
i) 65 eF



1 Définition

E a toujours deux sous-espaces
vectoriels E et {O}}
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Définition 1

On dit qu'une partie F de E est un sous-espace vectoriel de E si :

» F#03,
= F est stable par + : VX,y e F, X+yeF
= F est stable par - : VAeK, VXeF, AMEeEF

SF 1 : Montrer que F est un sous-espace vectoriel de £

On vérifie que :

i) Og e F

i) Feststablepar C.L.: VX, yeF, VYA\puekK, MN+uyeF



1 Définition :
E a toujours deux sous-espaces

vectoriels E et {0}}

Définition 1

On dit qu'une partie F de E :st un sous-espace vectoriel de E si :
» FA£O,

= F est stable par + : VX,y e F, X+yeF

= F est stable par - : VAeK, VXeF, AMEeEF

SF 1 : Montrer que F est un sous-espace vectoriel de £

On vérifie que :

i) Og e F

i) Feststablepar C.L.: VX, yeF, VYA\puekK, MN+uyeF

Exemple 1 : Montrer que F est un sous-espace vectoriel de R3

F ={(x,y,2) €R® | 2x =3y + 4z =0}



1 Définition :
E a toujours deux sous-espaces

vectoriels E et {0}}

Définition 1

On dit qu'une partie F de E :st un sous-espace vectoriel de E si :
» FA£O,

= F est stable par + : VX,y e F, X+yeF

= F est stable par - : VAeK, VXeF, AMEeEF

SF 1 : Montrer que F est un sous-espace vectoriel de £

On vérifie que :

i) Og e F

i) Feststablepar C.L.: VX, yeF, VYA\puekK, MN+uyeF

F={(x,y,z) €R3 | ax+ by +cz =0}
est un sous-espace vectoriel de R3

=éspace vectoriel de R3

F ={(x,y,2) €R® | 2x =3y + 4z =0}



1 Définition :
E a toujours deux sous-espaces

vectoriels E et {0}}

Définition 1

On dit qu'une partie F de E :st un sous-espace vectoriel de E si :
» FA£O,

= F est stable par + : VX,y e F, X+yeF

= F est stable par - : VAeK, VXeF, AMEeEF

SF 1 : Montrer que F est un sous-espace vectoriel de £

On vérifie que :

i) Og e F

i) Feststablepar C.L.: VX, yeF, VYA\puekK, MN+uyeF

Exemple 2 : Sont-ils des sous-espaces vectoriels de R? ?

Fr={(xy) | x+y=2} et FR={(xy)|y=x}.




1 Définition :
E a toujours deux sous-espaces

vectoriels E et {0}}

Définition 1

On dit qu'une partie F de E :st un sous-espace vectoriel de E si :
» FA£O,

= F est stable par + : VX,y e F, X+yeF

= F est stable par - : VAeK, VXeF, AMEeEF

SF 1 : Montrer que F est un sous-espace vectoriel de £

On vérifie que :

i) Og e F

i) Feststablepar C.L.: VX, yeF, VYA\puekK, MN+uyeF

Exemple 3 : Montrer que F est un sous-espace de % (R, R)

F={feZR,R) | f(0) =0}
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1 Définition

Remarque

Si F est un sous-e.v. de E alors (F,+, ) est : lui-méme un
K-espace vectoriel

En pratique : pour montrer que F est un espace vectoriel

Le plus simple est de montrer que F est un sous-espace vectoriel
d'un espace vectoriel de référence.

Exemple 4

Soit n € N. Montrer que K,[X] est un K-espace vectoriel.
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Remarque

Si F est un sous-e.v. de E alors (F,+, ) est : lui-méme un
K-espace vectoriel

En pratique : pour montrer que F est un espace vectoriel

Le plus simple est de montrer que F est un sous-espace vectoriel
d'un espace vectoriel de référence.

Exemple 5

L'ensemble des fonctions continues sur un intervalle / est un
R-espace vectoriel.
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Remarque

Si F est un sous-e.v. de E alors (F,+, ) est : lui-méme un
K-espace vectoriel

En pratique : pour montrer que F est un espace vectoriel

Le plus simple est de montrer que F est un sous-espace vectoriel
d'un espace vectoriel de référence.

dérivables
(6)1

(@/70C

Exemple 5

L'ensemble des fonctions continues sur un intervalle / est un
R-espace vectoriel.
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1 Définition

Toute intersection de sous-espaces vectoriels de E est : un
sous-espace vectoriel de E



Toute intersection de sous-espaces vectoriels de E est : un
sous-espace vectoriel de E

Exercice 1

a) Prouver le théoreme

b) Montrer que la réunion de deux sous-espaces vectoriels de E n'est
en général pas un sous-espace vectoriel de E



2 Sous-espaces vectoriels engendrés

On note Vect .% |'ensemble :
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de .7
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2 Sous-espaces vectoriels engendrés

F = (th, dy,...,Upy)
famille de vecteurs E

Définition 2

On note Vect .# |'ensemble : de toutes les combinaisons linéaires
de .7

Remarque

Vect(9) =

10



2 Sous-espaces vectoriels engendrés

F = (th, dy,...,Upy)
famille de vecteurs E
Définition 2

On note Vect .# |'ensemble : de toutes les combinaisons linéaires
de .7

Remarque
Vect(9) = {55}
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2 Sous-espaces vectoriels engendrés

F = (th, dy,...,Upy)
famille de vecteurs E

Définition 2

On note Vect .# |'ensemble : de toutes les combinaisons linéaires
de .7

Remarque
Vect(9) = {55}

Exemple 6 : Dans E = R?

Décrire géométriquement Vect((1, 2)).

10



2 Sous-espaces vectoriels engendrés

Exemple 7 : Dans E = K[X]
Vect(1, X, X?,...,X") =
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Exemple 7 : Dans E = K[X]
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Exemple 8 : Dans E = .#,(K)

a) Vect(Eij)i<;jcp = b) Vect(Eij)i<i<j<n =
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Exemple 7 : Dans E = K[X]
Vect(1, X, X2, ..., X") = K,[X]

Exemple 8 : Dans E = .#,(K)
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2 Sous-espaces vectoriels engendrés

Exemple 7 : Dans E = K[X]
Vect(1, X, X2, ..., X") = K,[X]

Exemple 8 : Dans E = .#,(K)
a) VeCt(EiJ)lgi,jgn = Mn(K) b) VeCt(EiJ)lgigjgn = T

11



2 Sous-espaces vectoriels engendrés

Exemple 7 : Dans E = K[X]
5 ) Ensemble des matrices
Vect(1, X, X=, ..., X7) = Kq[X] triangulaires sup.

Exemple 8 : Dans E = .#,(K) \

a) Vect(Eij)i<;jcp = #n(K) b) Vect(Eij)i<icjcn= Tn

11



2 Sous-espaces vectoriels engendrés

Exemple 7 : Dans E = K[X]
5 ) Ensemble des matrices
Vect(L, X, X*,..., X") = Kq[X] triangulaires sup.

Exemple 8 : Dans E = .#,(K) \

a) Vect(Eij)i<;jcp = #n(K) b) Vect(Eij)i<icjcn= Tn

Théoréme 2
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Exemple 7 : Dans E = K[X]
5 ) Ensemble des matrices
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Exemple 7 : Dans E = K[X]
5 ) Ensemble des matrices
Vect(L, X, X*,..., X") = Kq[X] triangulaires sup.

Exemple 8 : Dans E = .#,(K) \

a) Vect(Eij)i<;jcp = #n(K) b) Vect(Eij)i<icjcn= Tn
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Vect % est un sous.e.v. de E appelé sous-espace vectoriel engendré
par F.



2 Sous-espaces vectoriels engendrés

Exemple 7 : Dans E = K[X]
5 ) Ensemble des matrices
Vect(1, X, X=, ..., X7) = K [X] triangulaires sup.

Exemple 8 : Dans E = .#,(K) \

a) Vect(Eij)i<;jcp = #n(K) b) Vect(Eij)i<icjcn= Tn

Théoréme 2

Vect % est un sous.e.v. de E appelé sous-espace vectoriel engendré
par F.

Exercice 2

Démontrer ce théoréeme.



2 Sous-espaces vectoriels engendrés

Théoréme 2

Vect .% est un sous.e.v. de E appelé sous-espace vectoriel engendré
par F.

Théoréme 3 : Caractérisation de « Vect »

Vect .7 est le plus petit s.e.v. de E qui contienne {1, ..., Up} ie.:
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par F.

Théoréme 3 : Caractérisation de « Vect »

Vect .7 est le plus petit s.e.v. de E qui contienne {1, ..., Up} ie.:
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i) Pour tout s.e.v. G de E

11



2 Sous-espaces vectoriels engendrés

Vect .% est un sous.e.v. de E appelé sous-espace vectoriel engendré
par F.

Théoréme 3 : Caractérisation de « Vect »

Vect .7 est le plus petit s.e.v. de E qui contienne {1, ..., Up} ie.:
i) {d1,...,0n} C Vect &
i) Pour tout s.e.v. G de E si {{y,...,d,} C G, alors Vect.# C G
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2 Sous-espaces vectoriels engendrés

Vect .% est un sous.e.v. de E appelé sous-espace vectoriel engendré

ar . 5
p /[Questlon : « Montrer que]

Vect(dy, ..., Un) C G»

Théoréme 3 : Calfactérisation de « Vect »

Vect .7 est le plus petit s.e.v. de E qui contienne {1, ..., Up} ie.:
i) {d1,...,0n} C Vect &
i) Pour tout s.e.v. G de E si {{y,...,d,} C G, alors Vect.# C G



2 Sous-espaces vectoriels engendrés

Théoréme 2

Vect .% est un sous.e.v. de E appelé sous-espace vectoriel engendré
par 7[

Question : « Montrer que

Vect(iy,...,dn) C G» ; -
(d1, -, bn) [ Réponse : « Soit i € [1,n].
Théoréeme 3 : Calfactérisatisg Montrons que u; € G »

Vect .7 est le plus pefit s.e.v. de E qui contienne {u1,..., Uy} i€ :
i) {d1,...,0p} C Vect 7
i) Pour tout s.e.v. G de E si {{y,...,d,} C G, alors Vect.# C G
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2 Sous-espaces vectoriels engendrés

Théoréme 2

Vect .% est un sous.e.v. de E appelé sous-espace vectoriel engendré
par *7[

Question : « Montrer que

Vect(iy,...,Un) C G» ; -
(d1, .-, bn) [ Réponse : « Soit i € [1,n].
Théoreme 3 : Calfactérisatigs Montrons que u; € G »

Vect .7 est le plus pefit s.e.v. de E qui contienne {u1,..., Uy} i€ :
i) {d1,...,0p} C Vect 7

i) Pour tout s.e.v. G de E si {{y,...,d,} C G, alors Vect.# C G
Exercice 3

Démontrer le théoréme.

11



2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 9 : Montrer que F est un sous-espace vectoriel de R3

F={(x,y,z) €R3 | x+3y —z=0}.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 10 : Montrer que F est un sous-e.v. de .Z>(R)

F:{(Z 2) € M(R) | a+d:O}.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 11 : Montrer que F est un sous-e.v. de R[X]

F={(X-1)(aX+b) ; (ab)eR?.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 12 : Montrer que F est un sous-e.v. de .7 (R, R)

1. F est I'ensemble des solutions de y” + y = 0.
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2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 12 : Montrer que F est un sous-e.v. de .7 (R, R)

2. F est I'ensemble des solutions de y” — 8y’ + 15y = 0.

12



2 Sous-espaces vectoriels engendrés

SF 1 : Montrer que F est un sous-espace vectoriel de E (2)

On écrit F « comme un Vect »

Exemple 13 : Montrer que F est un sous-e.v. de RY

F={u€RY | ¥n €N, tnis—5uni1+6u, =0},

12
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1 Familles génératrices finies

Définition 1
La famille .7 est génératrice de E (ou engendre E) si tout vecteur
de E est combinaison linéaire de .% i.e. :

= OU encore :
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» VX € E,

= OU encore :
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DY3iTiNale 1WA famille de vecteurs E

La famille .7 est génératrice de E (ou engendre E) si tout vecteur
de E est combinaison linéaire de .% i.e. :

n
= VX € E, 3(&1,0[2,...,04,7)6}1{'7 | )?:Za,'ﬁ,'
i=1

= OU encore :
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1 Familles génératrices finies

DY3iTiNale 1WA famille de vecteurs E

La famille .7 est génératrice de E (ou engendre E) si tout vecteur
de E est combinaison linéaire de .% i.e. :

n
» VX € E, Jai,a2,...,ap) €K | X = ZQ,-L?,-
i=1
= ouencore: Vect# =E
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1 Familles génératrices finies

DY3iTinale 1WA famille de vecteurs E

La famille .7 est génératrice de E (ou engendre E) si tout vecteur
de E est combinaison linéaire de .% i.e. :

n
» VX € E, Jai,a2,...,ap) €K | X = Za,’ﬁ,’
i=1
= ouencore: Vect# =E

Exemple 1

1. Une famille génératrice de K,[X] est :
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1 Familles génératrices finies

DY3iTinale 1WA famille de vecteurs E

La famille .7 est génératrice de E (ou engendre E) si tout vecteur
de E est combinaison linéaire de .% i.e. :

n
» VX € E, Jai,a2,...,ap) €K | X = Za,’ﬁ,’
i=1
= ouencore: Vect# =E

Exemple 1
1. Une famille génératrice de K,[X] est : (1, X,..., X")

14



1 Familles génératrices finies

DIMNAGIN famille de vecteurs E
La famille .7 est génératrice de E (ou engendre E) si tout vecteur

de E est combinaison linéaire de .% j.e. :

n
= VX € E, 3(&1,&2,...,@,7)6Kn | )?:Za,'ﬁ,'

= ouencore: Vect# =E

Exemple 1

1. Une famille génératrice de K,[X] est : (1, X,..., X")
2. Une famille génératrice de ., p(KK) est :
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1 Familles génératrices finies

DY3iTihale 1WA famille de vecteurs E

La famille .7 est génératrice de E (ou engendre E) si tout vecteur
de E est combinaison linéaire de .% i.e. :

n
= VX € E, 3(&1,&2,...,@,7)6Kn | )?:Za,'ﬁ,'
i=1

= ouencore: Vect# =E

Exemple 1

1. Une famille génératrice de K,[X] est : (1, X,..., X")
2. Une famille génératrice de ), p(K) est : (Eij)i<i<n
15/<
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1 Familles génératrices finies

DY3iTinale 1WA famille de vecteurs E

La famille .7 est génératrice de E (ou engendre E) si tout vecteur
de E est combinaison linéaire de .% i.e. :

n
= VX € E, 3(&1,&2,...,@,7)6Kn | )?:Za,'ﬁ,'
i=1

= ouencore: Vect# =E

Exemple 1

1. Une famille génératrice de K,[X] est : (1, X,..., X")
2. Une famille génératrice de ), p(K) est : (Eij)i<i<n
15/<

Exemple 2
Montrer que ((1,0), (0,1)) engendre R
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1 Familles génératrices finies

DIMNAGIN famille de vecteurs E
La famille .7 est génératrice de E (ou engendre E) si tout vecteur

de E est combinaison linéaire de .% j.e. :

n
= VX € E, 3(&1,&2,...,@,7)6Kn | )?:Za,'ﬁ,'

= ouencore: Vect# =E

Exemple 1

1. Une famille génératrice de K,[X] est : (1, X,..., X")
2. Une famille génératrice de ), p(K) est : (Eij)i<i<n
15/<

Exemple 3
a) Le R-espace vectoriel C est engendré par :

b) Le C-espace vectoriel C est engendré par :
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1 Familles génératrices finies

Remarque

Toute sur-famille d'une famille génératrice de E est encore
génératrice de E
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1 Familles génératrices finies

Si .% C ¥ et si .# engendre E
Remarque alors ¢ engendre E

Toute sur-famille d'une famille génératrice de E est encore
génératrice de E
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1 Familles génératrices finies

Si .% C ¥ et si .# engendre E
Remarque alors ¢ engendre E

Toute sur-famille d'une famille génératrice de E est encore
génératrice de E

Soit tpy1 € E. Si :

= (0q,...,U0n+1) est génératrice de E

alors (1, ..., Up) est encore génératrice de E
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1 Familles génératrices finies

Si .% C ¥ et si .# engendre E
Remarque alors ¢ engendre E

Toute sur-famille d'une famille génératrice de E est encore
génératrice de E

Théoréme 1
Soit d,+1 € E. Si:

= (0q,...,U0n+1) est génératrice de E
= Upy1 est combinaison linéaire de (4, ..., Upy)
alors (1, ..., Up) est encore génératrice de E

Exercice 1

Démontrer le théoreme
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1 Familles génératrices finies

Si .% C ¥ et si .# engendre E
Remarque alors ¢ engendre E

Toute sur-famille d'une famille génératrice de E est encore
génératrice de E

Théoréme 1
Soit tpy1 € E. Si :

= (0q,...,U0n+1) est génératrice de E
= Upy1 est combinaison linéaire de (4, ..., Upy)
alors (1, ..., Up) est encore génératrice de E

Exemple 4 : « chasser » dans un Vect

Dans R[X], on pose :  F =Vect(1, X, 1+ X, 2X —3, 3X, 0).
Montrer que :  F = Vect(1, X)
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1 Familles génératrices finies

Si .% C ¥ et si .# engendre E
Remarque alors ¢ engendre E

Toute sur-famille d’une famille génératrice de E est encore
génératrice de E

Théoréme 1
Soit d,+1 € E. Si:

= (0q,...,U0n+1) est génératrice de E
= Upy1 est combinaison linéaire de (4, ..., Upy)
alors (1, ..., Up) est encore génératrice de E

Exemple 5 : Trouver une famille génératrice de F

F={(x,y,z,t)ER* | x—=2y—z=0 et x—y+t=0}

115)



2 Bases

Définition 2
= La famille .% est une base de E si tout vecteur de E est d'une
maniére unique combinaison linéaire de .%

= QOu encore :
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2 Bases

Définition 2
= La famille .% est une base de E si tout vecteur de E est d'une
maniére unique combinaison linéaire de .%

n
» Quencore: VX € E, I (a1,00,...,a,) €K" | X = Z(y,ﬂ;
i=1



ISITATIIPAN || existe un unique

= La famille .% est une | Jase de E si tout vecteur de E est d'une

maniére unique combilfaison linéaire de .%
n

= Quencore: VX € E, I (ag,02,...,a,) €K" | X= Z(y,ﬂ;
i=1



ISITATIIPAN || existe un unique

= La famille .% est une | Jase de E si tout vecteur de E est d'une
maniére unique combilfaison linéaire de .%

n
= Quencore: VX € E, I (ag,00,...,a,) €K" | X= Z(y,ﬂ;
N i=1
[coordonnées de x]

dans la base .#




DTS T1a{e ) VA || existe un unique_

= La famille .% est une | Jase de E si tout vecteur de E est d'une
maniére unique combilfaison linéaire de .%

n

» Quencore: VX € E, I (a1,00,...,a,) €K" | X = Zoz,ﬂ,-
N i=1

coordonnées de x
dans la base .#
Remarque

La famille vide est une base de {65}




ISITATIIPAN || existe un unique

= La famille .% est une | Jase de E si tout vecteur de E est d'une

maniére unique combilfaison linéaire de .%
n

» Quencore: VX € E, I (a1,00,...,a,) €K" | X = Za,-ﬁ,-
N i=1
coordonnées de x
dans la base .#

Exemple 6
a) Montrer que ((1,1), (1,—2)) est une base de R2



ISITATIIPAN || existe un unique

= La famille .% est une | Jase de E si tout vecteur de E est d'une
maniére unique combilfaison linéaire de .%

n
» Quencore: VX € E, I (a1,00,...,a,) €K" | X = Za,-ﬁ,-
N i=1
[coordonnées de x]

dans la base .#

Exemple 6
b) Montrer que (X2 + X, X? + 1, X + 1) est une base de Ry[X]



Familles génératrices quelconques

Cadre

F = (Uj)ies est une famille indexée par un ensemble quelconque /
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Familles génératrices quelconques

Cadre

F = (Uj)ies est une famille indexée par un ensemble quelconque /

Définition 3

X € E est combinaison linéaire de .% s'il est combinaison linéaire
d'une sous-famille finie de &% .



Familles génératrices quelconques
d'ou les définitions de :

Cadre
ble quelconque /
Définition 3

X € E est combinaison linéairé
d'une sous-famille finie de &% .

de .# s'il est combinaison linéaire
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Familles génératrices quelconques

d'ou les définitions de :
s Vect.#

Cadre

F = (Uj)ies est ung

» Famille génératrice ble quelconque /

= Base
Définition 3

X € E est combinaison linéairé
d'une sous-famille finie de &% .

de .# s'il est combinaison linéaire

Vocabulaire : famille («;);c; presque nulle

Un vecteur X est combinaison linéaire de .% si: X = E o i
iel
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Familles génératrices quelconques
d'ou les définitions de :

s Vect.#

Cadre

F = (Uj)ies est ung

» Famille génératrice ble quelconque /

= Base
Définition 3

X € E est combinaison linéairé
d'une sous-famille finie de &% .

de .# s'il est combinaison linéaire

Vocabulaire : famille («;);c; presque nulle
Un vecteur X est combinaison linéaire de .% si: X = Za,-[i,-

i€l
pour certains «; € K tous nuls sauf un nombre fini d’entre eux
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Familles génératrices quelconques
d'ou les définitions de :

s Vect.#

Cadre

F = (Uj)ies est ung

» Famille génératrice ble quelconque /

— = Base
Définition 3

X € E est combinaison linéairé
d'une sous-famille finie de &% .

de .# s'il est combinaison linéaire

Vocabulaire : famille («;);c; presque nulle

Un vecteur X est combinaison linéaire de .% si: X = E o i
_ el
pour certains «; € K tous nuls sauf un nombre fini d’entre eux

Exercice 2

Montrer que Vect(d;);c/ est aussi l'intersection de tous les
sous-espaces de E contenant {ii};.,
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Parties génératrices

Cadre
A est une partie de £
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Parties génératrices

Cadre
A est une partie de £

Définition 4

On définit Vect A comme l'intersection de tous les sous-espaces
vectoriels de E contenant A.



Parties génératrices

Rien ne change : si A= {U,-},-G,, alors,
Vect A est |I'ensemble des CL de ()¢

Cadre

A est une partie de

Définition 4

On définit Vect A comme |'intersection de tous les sous-espaces
vectoriels de E contenant A.
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Familles libres, bases
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1 Familles libres

= 7 est libre si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.

20



1 Familles libres
F = (ur, U, ..., Upy)
famille de vecteurs E

= 7 est libre si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
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1 Familles libres
F = (ur, U, ..., Upy)
famille de vecteurs E

= 7 est libre si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :
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1 Familles libres

F = (uh, Uy, ..
famille de vecteurs E

- Un)

Z est libre si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :

n
i=1
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1 Familles libres
F = (U, U, ..., Upy)
famille de vecteurs E

= 7 est libre si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :

n
Za;ﬁ;:OE = ap=ay=---=a,=0
i=1

» 7 est liée si elle n'est pas libre i.e. si :
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1 Familles libres
F = (U, U, . . ., i)

famille de vecteurs E

= 7 est libre si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :

n
Za,-ﬁ,-:OE — ar=ar=--=a,=0
i=1
= 7 est liée si elle n'est pas libre i.e. si : il existe aq,...,a, € K

n
non tous nuls tels que : Za,-ﬁ,- = Of.
i=1
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1 Familles libres
F = (U, U, . . ., i)

famille de vecteurs E

ou :« les u; sont
I linéairement indépendants »

= 7 est libre’si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
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1 Familles libres
F = (U, U, . . ., i)

famille de vecteurs E

ou :« les u; sont
I linéairement indépendants »

= 7 est libre’si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :

n
Za,-ﬁ,-:OE — ar=ar=--=a,=0
i=1
= 7 est liée si elle n'est pas libre i.e. si : il existe aq,...,a, € K
n
non tous nuls tels que : Za,-ﬁ,- = Of.
i=1

Exemple 1 : i = (1,0,0), &> = (0,1,0), ¥ = (1,1,0), w = (0,1,1)
Montrer que :  a) (i, U, V) est liée b) (dy, tp, W) est libre
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1 Familles libres
F = (U, U, . . ., i)

famille de vecteurs E

ou :« les u; sont
I linéairement indépendants »

= 7 est libre’si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :

n
Za,-ﬁ,-:OE — ar=ar=--=a,=0
i=1
= 7 est liée si elle n'est pas libre i.e. si : il existe aq,...,a, € K
n
non tous nuls tels que : Za,-ﬁ,- = Of.
i=1

Exemple 2 : La famille (&, i, U3) est-elle libre ?
i =(1,02), w=(1,13), u3=(2,-3,1)
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1 Familles libres
F = (U, U, . . ., i)

famille de vecteurs E

ou :« les u; sont
I linéairement indépendants »

= 7 est libre’si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :

n
Za,-ﬁ,-:OE — ar=ar=--=a,=0
i=1
= 7 est liée si elle n'est pas libre i.e. si : il existe aq,...,a, € K
n
non tous nuls tels que : Za,-ﬁ,- = Of.
i=1

Exemple 3 : La famille (P, Q, R) est-elle libre ?
P=—-1+3X+2X? Q=X+X? R=-X-2X?
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1 Familles libres
F = (U, U, . . ., i)

famille de vecteurs E

ou :« les u; sont
I linéairement indépendants »

= 7 est libre’si la seule combinaison linéaire de .% donnant le
vecteur nul est celle ot tous ou tous les coefficients sont nuls.
Autrement dit .% est libre si pour tout (a;)1<i<n € K" :

n
Za,-ﬁ,-:OE — ar=ar=--=a,=0
i=1
= 7 est liée si elle n'est pas libre i.e. si : il existe aq,...,a, € K
n
non tous nuls tels que : Za,-ﬁ,- = Of.
i=1

Exemple 4 : Montrer que (fi, >, f3, 2) est libre dans .7 (R, R)

fi x> cosx fhixrrsinx f3:xr Xcosx f4: X xsinx
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Une famille est liée ssi
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Une famille est liée ssi I'un des vecteurs est C.L. des autres



1 Familles libres

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Exemple 5 : Montrer que (fi, >, 3) est liée dans .7 (R, R)

fi:xrcosx , fhixmrsinx , f3ixcos(x —3)



1 Familles libres

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

= Une famille de 2 vecteurs (@, V) est liée ssi :
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Remarque

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires



1 Familles libres

i=0F ou V=i
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires

21



1 Familles libres

i=0F ou V=i
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

—

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires

= Une famille d'un seul vecteur (&) est libre ssi :
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1 Familles libres

i=0F ou V=i
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

—

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires

)

= Une famille d’un seul vecteur () est libre ssi : i # O
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1 Familles libres

i=0F ou V=i
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

—

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires

= Une famille d’un seul vecteur () est libre ssi : i # O

= |La famille vide est :
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1 Familles libres

i=0F ou V=i
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

—

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires

= Une famille d’un seul vecteur () est libre ssi : i # O

= |La famille vide est : libre
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1 Familles libres
i=0g ou v=\i
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

est liée ssi : ils sont colinéaires

)
i) est libre ssi : 7 # O

= Une famille de 2 vecteurs (4, v
= Une famille d'un seul vecteur (

= |La famille vide est : libre

Théoréme 2

s Si.Z est libre :
s Si.Z estlibreetsi:

21



1 Familles libres
i=0g ou Vv=M\0
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

est liée ssi : ils sont colinéaires

)
i) est libre ssi : 7 # O

= Une famille de 2 vecteurs (4, v
= Une famille d'un seul vecteur (

= |La famille vide est : libre

Théoréme 2

s Si % est libre : toute sous-famille de .% est libre

s Si.Z estlibreetsi:
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1 Familles libres

AU
K

vV =
Théoréme 1 ur un certain \ €

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires
= Une famille d'un seul vecteur (&) est libre ssi : 0 # Of

= |La famille vide est : libre

|
’

Théoréme 2

s Si % est libre : toute sous-famille de .% est libre

» Si.Z est libre et si : G,11 n'est pas combinaison linéaire de .7
alors (dy, . .., Un, Upy1) est encore libre
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1 Familles libres

V=i
Théoreme 1 pour un certain A € K

Une famille est liée ssi I'un des vecteurs est C.L. des autres

Remarque

= Une famille de 2 vecteurs (@, V) est liée ssi : ils sont colinéaires

= Une famille d’un seul vecteur () est libre ssi : i # O

= |La famille vide est : libre

|
’

Théoréme 2

s Si % est libre : toute sous-famille de .% est libre

» Si.Z est libre et si : G,11 n'est pas combinaison linéaire de .7
alors (dy, . .., Un, Upy1) est encore libre

Exercice 1

Démontrer le second point
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1 Familles libres

= Une famille (Po, ..., P,) de polyndmes est dite de degrés étagés
Si :
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= Une famille (Po, ..., P,) de polyndmes est dite de degrés étagés
Si Vk € [0,n], degPx =k



1 Familles libres

= Une famille (Po, ..., P,) de polyndmes est dite de degrés étagés
si ¢ Vk € 0,n], degPr=k
= Une famille de polynéme de degrés étagés est libre.



1 Familles libres

= Une famille (Po, ..., P,) de polyndmes est dite de degrés étagés
Si Vk € [0,n], degPx =k

= Une famille de polyndme de degrés étagés est libre.

Exercice 2

Démontrer la propriété de liberté par récurrence sur n.
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Une famille est une base de E ssi elle est a la fois :
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Une famille est une base de E ssi elle est a la fois : libre et
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Une famille est une base de E ssi elle est a la fois : libre et
génératrice.

Exercice 3

Démontrer le théoreme.




2 Bases

Théoreme 4

Une famille est une base de E ssi elle est a la fois : libre et
génératrice.

Exemple 6 : Trouver une base du sous-espace suivant

a) {(x,y,z,t)eR* | x—2y—z=0 et x—y+t=0}
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Une famille est une base de E ssi elle est a la fois : libre et
génératrice.

Exemple 6 : Trouver une base du sous-espace suivant
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Exemple 7 : Montrer que .# est une base de K,[X]
F =(1,X-a),(X—-a)3?,...,(X—a)"
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Une famille est une base de E ssi elle est a la fois : libre et
génératrice.

Exemple 6 : Trouver une base du sous-espace suivant

b) {PeRyX] | P(X+1)=XP'}
Exemple 7 : Montrer que .# est une base de K,[X]
F =(1,X-a),(X—a)3?,...,(X—a)"

n
{Bonus : Coordonnées de P = Zaka dans la base . ?
k=0




2 Bases

Une famille est une base de E ssi elle est a la fois : libre et
génératrice.

Exemple 6 : Trouver une base du sous-espace suivant

b) {PeRyX] | P(X+1)=XP'}
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