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1 Définitions

Définition 1

• f est négligeable devant g au voisinage de a si :

f (x)
g(x) −→

x→a
0

On note : f (x) =
x→a

o
(
g(x)

)
ou f =

a
o(g) .

• On dit que f est dominée par g au voisinage de a si :

f
g est

bornée au voisinage de a.
On note :

f (x) =
x→a

O
(
g(x)

)
ou f =

a
O(g) .

Exemple 1 : Justifier

a) x2 =
x→+∞

o(x3) b) x3 =
x→0

o(x2) c) ln x
x3 =

x→+∞
o
( 1

x2

)
d) 1 + cos x

x2 =
x→0

O
(

1
x2

)
e) 2n =

n→+∞
o(3n)

f est un « petit o » de g en a

f est un « grand O » de g en a
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1 Définitions

Théorème 1 : Croissances comparées en +∞

• Si α < β : xα =
x→+∞

o(xβ)

• Si α > 0 : (ln x)β =
x→+∞

o(xα)

• Si β > 0 : xα =
x→+∞

o(eβx )

Théorème 2 : Croissances comparées en 0

• Si α < β : xβ =
x→0

o(xα)

• Si α > 0 : |ln x |β =
x→0

o
( 1

xα

)
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2 Règles de calcul

Théorème 3 : Croissances comparées en 0

• Si α < β : xβ =
x→0

o(xα) • Si α > 0 : |ln x |β =
x→0

o
( 1

xα

)

Théorème 4 : Opérations sur les o ou les O

1. Combinaisons linéaires.
Si f1 =

a
o(g) et f2 =

a
o(g) alors :

αf1 + βf2 =
a

o(g).

2. Transitivité. Si f =
a

o(g) et si g =
a

o(h) :

f =
a

o(h).

3. Produit. Si f1 =
a

o(g1) et f2 =
a

o(g2) :

f1f2 =
a

o(g1g2)

4. Produit par une fonction. Si f =
a

o(g) :

fh =
a

o(gh).

o(x104)
o(ex )

...
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2 Règles de calcul

Théorème 4 : Fonctions de limite nulle
lim
x→a

f (x) = 0 ⇐⇒

f (x) =
x→a

o(1)

Théorème 5 : Changement de variable
Si f (x) =

x→a
o
(
g(x)

)
et u(t) −→

t→α
a :

f
(
u(t)

)
=

t→α
o
(
g
(
u(t)

))

5
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2 Règles de calcul

Théorème 4 : Fonctions de limite nulle
lim
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II Equivalence

I Négligeabilité, domination

II Equivalence

III Développements limités en un point

IV Opérations sur les développements limités
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1 Définition

Définition 1

On dit que f est équivalente à g au voisinage de a si :

f (x)
g(x) −→

x→a
1

On note : f (x) ∼
x→a

(g(x)) ou f ∼
a

(g)

Théorème 1 : Equivalence et négligeabilité
f (x) ∼

x→a
g(x) ⇐⇒

f (x) =
x→a

g(x) + o
(
g(x)

)

La relation « ∼
a

» est

7
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1 Définition

Exemple 2
• x2 + x︸︷︷︸

=
x→+∞

o(x2)

∼
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x2 • x2︸︷︷︸
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∼
x→+∞

e4x • n + ln n︸︷︷︸
=o(n)
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n→+∞

n

Remarque
Pour un polynôme P : x 7→ adxd + ad+1xd+1 + · · · + anxn :
• En ±∞ :

P(x) ∼
x→±∞

anxn

• En 0 :

P(x) ∼
x→0

adxd

Théorème 2 : Equivalence et signe
Si f ∼

a
g alors :

f et g ont le même signe au voisinage de a.
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1 Définition

Remarque
Pour un polynôme P : x 7→ adxd + ad+1xd+1 + · · · + anxn :
• En ±∞ : P(x) ∼

x→±∞
anxn • En 0 : P(x) ∼

x→0
adxd

Théorème 2 : Equivalence et signe
Si f ∼

a
g alors : f et g ont le même signe au voisinage de a.

Exercice 2 : Démonstration dans le cas des suites
On suppose que un ∼ vn. Démontrer que un et vn ont même signe à
partir d’un certain rang.
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1 Définition

Remarque
Pour un polynôme P : x 7→ adxd + ad+1xd+1 + · · · + anxn :
• En ±∞ : P(x) ∼

x→±∞
anxn • En 0 : P(x) ∼

x→0
adxd

Théorème 2 : Equivalence et signe
Si f ∼

a
g alors : f et g ont le même signe au voisinage de a.

Théorème 3 : Equivalence et limite
Soit ℓ ∈ R. Si : f ∼

a
g et g(x) −→

x→a
ℓ alors :

f (x) −→
x→a

ℓ .

Théorème 4 : Equivalent par encadrement
Si : i)

f ≤ g ≤ h au voisinage de a

ii)

f ∼
a

h

Alors :

g ∼
a

f ∼
a

h.
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2 Règles de calcul

Théorème 5 : Equivalent par encadrement
Si : i) f ≤ g ≤ h au voisinage de a ii) f ∼

a
h

Alors : g ∼
a

f ∼
a

h.

Théorème 6

1. Transitivité. Si : f ∼
a

g et g ∼
a

h, alors :

f ∼
a

h.
2. Produit. Si : f1 ∼

a
g1 et f2 ∼

a
g2, alors :

f1f2 ∼
a

g1g2

3. Quotient, inverse. Si f1 ∼
a

g1 et f2 ∼
a

g2 alors :

f1
f2

∼
a

g1
g2

4. Puissances d’exposant constant. Si f ∼
a

g alors :

f α ∼
a

gα

5. Equivalence avec une constante. f (x) ∼
x→a

ℓ ⇔

f (x) −→
x→a

ℓ

6. Si f (x) ∼
x→a

g(x) et lim
t→α

u(t) = a :

f
(
u(t)

)
∼

t→α
g
(
u(t)

)

7. Substitution . Si : f =
a

o(g) et g ∼
a

h, alors :

f =
a

o(h)

Exemple 2 : Admis : sin x =
x→0

x + o(x) et ex =
x→0

1 + x + o(x)

Que dire de : a) esin x ? b) eex ?

ℓ ̸= 0
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7. Substitution . Si : f =

a
o(g) et g ∼

a
h, alors : f =

a
o(h)

Exemple 2 : Admis : sin x =
x→0

x + o(x) et ex =
x→0

1 + x + o(x)

Que dire de : a) esin x ? b) eex ?

ℓ ̸= 0

9



2 Règles de calcul

j Propriétés FAUSSES j

1. Somme. f1 ∼
a

g1 et f2 ∼
a

g2 =⇒ f1 + f2 ∼
a

g1 + g2

2. Composition. f ∼
a

g =⇒ ϕ ◦ f ∼
a
ϕ ◦ g

En particulier : f ∼
a

g =⇒ ef ∼
a

eg

3. Puissances d’exposant non constant.
Eviter le célèbre : 1 + 1

x ∼
x→+∞

1 donc
(
1 + 1

x
)x ∼

x→+∞
1x = 1.

Exercice 3
Donner un contre-exemple pour 1 et 2 et prouver que 3 est fausse.
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SF 5 : Lever une forme indéterminée « quotient » :

Exemple 3 : Calculer

a) lim
x→−∞

3x3 + x2 + 1
x5 + x2 + 2

b) lim
x→0+

ex − 1√
x

c) lim
x→+∞

√
1 + e1/x

x2 − 1
ln(1 + 1

x2 )

d) lim
x→0

1
ln(1 + x) − 1

x

ex − 1 ∼
x→0

x

• (1 + u) 1
2 − 1 ∼

u→0
1
2u

• ln(1 + u) ∼
u→0

u

11
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III Développements limités en un
point

I Négligeabilité, domination

II Equivalence

III Développements limités en un point

IV Opérations sur les développements limités
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1 Généralités

Exemple 1 : Exemple introductif
L’exponentielle admet en 0 les développements limités suivants :
a) ex =

x→0
1 + x + o(x) (Ordre 1)

b) ex =
x→0

1 + x + x2

2 + o(x2) (Ordre 2)

c) ex =
x→0

1 + x + x2

2 + x3

6 + o(x3) (Ordre 3)

Figure

13

https://www.desmos.com/calculator/nwwmm2wroe


1 Généralités

Définition 1
Soit n ∈ N. On dit que f admet en a un développement limité
d’ordre n s’il existe a0, a1, . . . , an ∈ R tels que

f (x) =
x→a

n∑
k=0

ak(x − a)k + o
(
(x − a)n)

Interprétation heuristique

o
(
(x − a)n) est l’erreur commise en approchant f par Pn

Rappel Si f est dérivable en a ∈ D elle admet le DL1

f (x) =
x→a

f (a) + f ′(a)(x − a) + o(x − a)

Exemple 2 : Montrer

a) 1
1 − x =

x→0

n∑
k=0

xk + o(xn) b) 1
1 + x =

x→0

n∑
k=0

(−1)kxk + o(xn)

On approche f
au voisinage de a

On approche f
par un polynôme Pn

erreur
d’autant plus petite

que n est grand
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2 Propriétés des développements limités

Théorème 1 : Unicité
Soit n ∈ N. Si f possède en a un DLn, alors :

il est unique

Exercice 1
Démontrer ce théorème.

Conséquence
En cas d’existence, le DLn en 0 d’une fonction paire ne comporte
que des puissances paires.

Exercice 2
Démontrer la conséquence.

i.e. la liste des coefficients
(a0, . . . , an) est unique

15
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2 Propriétés des développements limités

Théorème 2 : Primitivation
Si f ′ admet en a le DLn−1 :

f ′(x) =
x→a

n−1∑
k=0

ak(x − a)k + o
(
(x − a)n−1)

Alors f admet en a le DLn :

f (x) =
x→a

f (a) +
n−1∑
k=0

ak
k + 1(x − a)k+1 + o

(
(x − a)n)

Constante
de primitivation

on primitive
terme à terme

on primitive
aussi le « o »

16
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Démontrer le théorème.

Constante
de primitivation

on primitive
terme à terme

on primitive
aussi le « o »
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k + o(xn)
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ak
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(
(x − a)n)

Exemple 3

Montrer : b) Arctan x =
x→0

n∑
k=0

(−1)k x2k+1

2k + 1 + o(x2n+1)

Constante
de primitivation

on primitive
terme à terme

on primitive
aussi le « o »
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2 Propriétés des développements limités

Théorème 3 : Formule de Taylor-Young
Soit n ∈ N. On suppose que a ∈ D et que f est de classe C n sur D.
Alors f admet en a le DLn :

f (x) =
x→a

n∑
k=0

f (k)(a)
k! (x − a)k + o

(
(x − a)n)

Résultat d’existence

Réponse : « f est de classe C n sur D donc possède
en a un DLn d’après la formule de Taylor-Young »
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f (x) =
x→a

n∑
k=0

f (k)(a)
k! (x − a)k + o

(
(x − a)n)

Exercice 4
Démontrer le théorème par récurrence sur n.

Résultat d’existence
« Justifier que f possède un DLn en a »

Réponse : « f est de classe C n sur D donc possède
en a un DLn d’après la formule de Taylor-Young »

17



2 Propriétés des développements limités

Théorème 3 : Formule de Taylor-Young
Soit n ∈ N. On suppose que a ∈ D et que f est de classe C n sur D.
Alors f admet en a le DLn :

f (x) =
x→a

n∑
k=0

f (k)(a)
k! (x − a)k + o

(
(x − a)n)

Exemple 4 : Calculer le développement limité en 0 de
a) exp à l’ordre n b) cos à l’ordre 2n c) tan à l’ordre 3

Résultat d’existence
« Justifier que f possède un DLn en a »

Réponse : « f est de classe C n sur D donc possède
en a un DLn d’après la formule de Taylor-Young »
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IV Opérations sur les
développements limités

I Négligeabilité, domination

II Equivalence

III Développements limités en un point

IV Opérations sur les développements limités
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1 Combinaisons linéaires

SF 2 : Obtenir un DLn de λf + µg
On combine les DLn de f et g .

Exemple 1 : Calculer un développement limité à l’ordre 3 en 0

φ(x) = 1
1 − x − ex

19



2 Produit

SF 3 : Obtenir un DLn de fg
On multiplie les DLn de f et g .

Exemple 2

1. Donner un DL3 en 0 de : φ(x) = ex

(1 + x)2 .

2. Donner un DL2 en 0 de : φ(x) = ex ln(1 + x).

20



2 Produit

En pratique : le « gain d’ordre »
Lorsqu’on cherche un développement limité en 0 à l’ordre n de fg :
• si f admet un DLn de la forme f (x) =

x→0
apxp + . . .

il suffit de développer g à l’ordre n − p
• si g admet un DLn de la forme g(x) =

x→0
bqxq + . . .

il suffit de développer f à l’ordre n − q

Exemple 3
2. Déterminer un DL6 en 0 de ψ(x) = (ch x − 1) ln(1 + x).

Le DL de f
« démarre par xp »

Le DL de f
« démarre par xp »
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3 Composition et quotients

SF 4 : Obtenir un DLn en 0 d’une composée

Exemple 4 : Composition
Déterminer un DL3 en 0 de : φ(x) = esin x .
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3 Composition et quotients

En pratique : pour obtenir un DLn de 1
f

On essaie de se ramener à 1
1 + u(x) avec u(x) −→

x→0
0

Exemple 5

1. Déterminer un DL4 en 0 de : φ(x) = 1
cos x .

2. Déterminer un DL5 en 0 de : tan x .

3. Déterminer un DL3 de : ψ(x) = 1
1 + e2x .
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3 Composition et quotients

En pratique : obtenir un DLn en 0 de f
g lorsque g(0) = 0

Si : g(x) =
x→0

bqxq + ...

1. Développer f et g à l’ordre n + q.
2. Simplifier le quotient par xq

On est ramené à : N(x)
1 + u(x) = N(x) × 1

1 + u(x) .

Exemple 6

1. Déterminer un DL4 en 0 de : φ(x) = ex2 − 1
sin(x2) .

2. Déterminer un DL3 en 0 de : ψ(x) = ch x − 1
ln(1 + x) .

f (x)
g(x) =

1.

aqxq + · · · + o(xn+q)

bqxq + · · · + o(xn+q)
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4 Développement limité en un point a autre que 0

SF 7 : On « pose » g(h) = f (a + h)

• On effectue un DLn en 0 de g : h 7→ f (a + h)
• On « revient » à x en posant « h = x − a »

Exemple 7

1. Déterminer un DL3 au point π
3 de : cos x .

2. Déterminer un DL2 au point 2 de : ln x .
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