Analyse asymptotique

Chapitre 19.1
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Définition 1 f est un « petit o » de g en a-

f
= f est négligeable devant g au voisinage dg/a si : gEi; —

On note : f(x) o(g(x)) ou f = o(g) .

xia
: . - . f

= On dit que f est dominée par g au voisinage de a si : — est
g

bornée au voisinage de a.
On note : f(x) = O(g(x)) ou f=0(g) .
xX—a a \
[f est un « grand O » de g en a]

Exemple 1 : Justifier

a) X = o(x*) b) X = o(x?) ) X o<1>

X—4-00 x3 x—too \ x2

L o<1> e) 27 — o3

x2 x—0
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. Si : a B
Sia<p: xX_>+OOo(x)

= Sia>0: (Inx)? =

X—-+00

= Sig>0:

b
I

X—>+00
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Théoreme 1 : Croissances comparées en +oco

" 1 o @ = B
Sia<p: X X_>+<>oo(>< )

L] i B 5 S c
Sia>0: (Inx) et o(x)

[ | i N a = gX
Sip>0: X = o(e”™)

Théoréme 2 :

» Sia<f: x# = o(x?)

1
= Sia>0: lIn x| joo(>
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sSia<f: xf = o(x*) wSia>0: |inx|? :00<1>

x—0 — P

Théoreme 4 : Opérations sur les o ou les O

1. Combinaisons linéaires.

Si f = o(lg) et £ = o(g) alors : afi + Bh = o(g).
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2 Regles de calcul

Théoreme 3 : Croissances comparées en 0

sSia<f: xf = o(x*) wSia>0: |inx|? :00<1>
X—

Théoreme 4 : Opérations sur les o ou les O

1.

|
’
N

x—0

Combinaisons linéaires.
Si f = o(g) et £h = o(g) alors: afi + fh = o(g).

Transitivité. Si f = o(g) etsi g = o(h) : f = o(h).
. Produit. Si f = o(gi) et £h = o(g) : fiH = o(g142)
. Produit par une fonction. Si f = o(g) : fh = o(gh).
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2 Regles de calcul

Théoreme 3 : Opérations sur les o ou les O

1. Combinaisons linéaires.

Si fi= o(g) et f = o(g) alors : af + ff = o(g).
2. Transitivité. Si f = o(g) etsi g = o(h) : f - o(h).
3. Produit. Si fi = o(g1) et £ = o(g2) : fifr = o(g182)
4. Produit par une fonction. Si f = o(g) : fh — o(gh).

Exercice 1

Démontrer les points 1 et 2 du théoreme.
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Si fi= o(g) et f = o(g) alors : af + ff = o(g).
2. Transitivité. Si f = o(g) etsi g = o(h) : f - o(h).
3. Produit. Si fi = o(g1) et £ = o(g2) : fiH = o(g182)
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1. Combinaisons linéaires.

Si fi= o(g) et f = o(g) alors : af + ff = o(g).
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2 Regles de calcul

Théoreme 3 : Opérations sur les o ou les O

1. Combinaisons linéaires.

Si fi= o(g) et f = o(g) alors : af + ff = o(g).
2. Transitivité. Si f = o(g) etsi g = o(h) : f - o(h).
3. Produit. Si fi = o(gi) et h = o(g) : fif = o(g182)
4. Produit par une fonction. Si f = o(g) : fh — o(gh).
Exemple 2

34 x24+x3+5Inx+x198 =

X——+00

Exemple 3 : admis : sinx = x+o(x) et & = 1+ x+o(x)
x—0 x—0

Que direde : a) e+ 2sinx ? b) e*sinx ?
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Théoréme 4 : Fonctions de limite nulle
i@a f(x)=0 < f(x) . o(1)

Exercice 2

Démontrer I'équivalence en revenant a la définition de « o ».
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Théoréme 4 : Fonctions de limite nulle
i@a f(x)=0 < f(x) . o(1)

Remarque

f(x) = O(1) signifie : f est bornée au voisinage de a.

Théoreme 5 : Changement de variable

Si f(x) =5,0(6() et u(t) e f(u(t) =, o(s(ut))

Exercice 3

Démontrer le théoréme en utilisant une composition de limites.
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Théoréme 4 : Fonctions de limite nulle
)liLna f(x)=0 < f(x) . o(1)

Remarque

f(x) = O(1) signifie : f est bornée au voisinage de a.

Théoreme 5 : Changement de variable

Si f(x) =5,0(6() et u(t) e f(u(t) =, o(s(ut))

Exemple 4 : Admis : sinx =Xt o(x)
X—

Que dire de :  a) sin(t?) ? b) sin(1> ? c) sin(ef)?
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La relation «~» est
a

une relation d’équivalence

Définition 1

On dit que f est équivalente 3 g au

On note :  f(x)

(g(x)) ou f~(g)

~
X—a a

Exercice 1

Démontrer le théoréeme précédent.
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On dit que f est une relation d’équivalence de asi: f(x) .

) —~ g(x) x>

Onnote: f(x) ~ (g(x)) ou f~(g)

X—a a

Exemple 1
= X2+ x ~ X2 s X2 4x ~ x
~~  x—+o0 ~—~ x—0
= o(x?) = o(x)
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" X2+ X ~ X2 " x2 +x ~ X
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La relation «~» est

On note :  f(x) (g(x)) ou $: (g)

~
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" X2+ X ~ X2 " x2 +x ~ X
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= o(x?) = o(x)
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= o2) = o(x)
X—>+00 X—~400
4x 20 83 Ax
= e x“7 + (In(x ~ e =n+ Inn ~ n
( ( )) X——400 ~~ n—+o0
= o(e™) =o(n)
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Remarque

Pour un polynéme P : x — agx? + ad+1xd+1 + -+ apx”
» Entoo: P(x) ~ apx” » En0: P(x) ~ agx?
X—
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L] X2+ X ~  x2 L] X2 +Xx ~ X
~~ X—+00 ~~ x—0
= o(x?) = o(x)

X—+00 X——+o0
Ax 20 83 Ax
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Remarque

Pour un polynéme P : x — agx? + ad+1xd+1 + -+ apx”
» Entoo: P(x) ~ apx" =En0: P(x) ~ agx?
x—0

x—+o0
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Si fr;g alors :




Exemple 2

L] X2+ X ~  x2 L] X2 +Xx ~ X
~~ X—+00 ~~ x—0
= o(x?) = o(x)

X—+00 X——+o0
Ax 20 83 Ax
= e x= + (In(x ~ e = n+Ilnn ~ n
( ( )) X——400 ~~ n—+oo
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Remarque

Pour un polynéme P : x — agx? + ad+1xd+1 + -+ apx”
» Entoo: P(x) ~ apx" =En0: P(x) ~ agx?
x—0
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Théoreme 2 : Equivalence et signe

Si f ~ g alors : f et g ont le méme signe au voisinage de a.
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Remarque

Pour un polynéme P : x — agx? + ad+1xd+1 + o4 apx"
= Entoo: P(x) ~ anx” » En0: P(x) ~ agx?
) X—

x—+o0

Théoreme 2 : Equivalence et signe

Si f ~ g alors : f et g ont le méme signe au voisinage de a.
a

Exercice 2 : Démonstration dans le cas des suites

On suppose que u, ~ v,. Démontrer que u, et v, ont méme signe a
partir d'un certain rang.
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Pour un polynéme P : x — agx? + ad+1xd+1 + o4 apx"
= Entoo: P(x) ~ anx” » En0: P(x) ~ agx?
X—
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Théoreme 2 : Equivalence et signe

Si f ~ g alors : f et g ont le méme signe au voisinage de a.
a

Théoreme 3 : Equivalence et limite

Soit /€ R. Si: f:g et g(x);;f alors :



Remarque

Pour un polynéme P : x — agx? + ad+1xd+1 + o4 apx"
= Entoo: P(x) ~ anx” » En0: P(x) ~ agx?
X—

x—+oo

Théoreme 2 : Equivalence et signe

Si f ~ g alors : f et g ont le méme signe au voisinage de a.
a

Théoreme 3 : Equivalence et limite

Soit /€ R. Si: ff:g et g(x)):;f alors : f(x) — (.

X—a
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Remarque
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a

Théoréme 3 : Equivalence et limite

Soit /€ R. Si: ff:g et g(x)):;f alors : f(x) — (.

X—a

Théoreme 4 : Equivalent par encadrement
Si: i) i)
Alors :




1 Définition

Remarque
P lvnd P - d d+1 , ... n .
our un polynome P : x — agx? + agi1Xx + o4 apx"

» Entoo: P(x) ~ apx" » En0: P(x) ~ agx?
X—

x—+oo

Théoreme 2 : Equivalence et signe

Si f ~ g alors : f et g ont le méme signe au voisinage de a.
a

Théoréme 3 : Equivalence et limite

Soit /€ R. Si: ff:g et g(x)):;f alors : f(x) — (.

X—a

Théoreme 4 : Equivalent par encadrement

Si : i) f < g < h au voisinage de a i)
Alors :
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1 Définition

Remarque
P lvnd P - d d+1 , ... n .
our un polynome P : x — agx? + agi1Xx + o4 apx"

» Entoo: P(x) ~ apx" » En0: P(x) ~ agx?
X—

x—+oo

Théoreme 2 : Equivalence et signe

Si f ~ g alors : f et g ont le méme signe au voisinage de a.
a

Théoréme 3 : Equivalence et limite

Soit /€ R. Si: ff:g et g(x)):;f alors : f(x) — (.

X—a

Théoreme 4 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h
a
Alors : g~ f~h.
a

a



2 Regles de calcul

Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h
a
Alors : g~ f~h.
a

a

Théoréme 6

1. Transitivité. Si: f~g et g~h, alors:
a a
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Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h
a
Alors : g~ f~h.
a

a

Théoréme 6

1. Transitivité. Si . f~g et g~ h, alors: f ~ h.
a a a



2 Regles de calcul

Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h

a

Alors : gravfwh.

a

Théoreme 6
1. Transitivité. Si : f ~vEg et g h, alors: f ~ h.
2. Produit. Si: f oS! et H Y &2, alors :
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Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h

a

Alors : gravfwh.

a

Théoreme 6
1. Transitivité. Si . f~g et g~ h, alors: f ~ h.
a a a
2. Produit. Si: f s et H Y 82 alors : 15 Y 8182
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Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h

a

Alors : gravfwh.

a

Théoreme 6
1. Transitivité. Si . f~g et g~ h, alors: f ~ h.
a a a
2. Produit. Si: f s et H Y 82 alors : 15 Y 8182

3. Quotient, inverse. Si fj ~ g1 et f, ~ g alors :
a a



2 Regles de calcul

Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h

a

Alors : gravfwh.

a

Théoreme 6

1. Transitivité. Si : f ~vEg et g h, alors: f ~ h.

2. Produit. Si: f s et H Y 82 alors : 15 Y 8182
f &

3. Quotient, inverse. Si fj ~ g1 et f, ~ go alors: —
a a fr a J-0)



2 Regles de calcul

Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h

a

Alors : gravfwh.

a

1. Transitivité. Si . f~g et g~ h, alors: f ~ h.

a a a
2. Produit. Si: f s et H Y 82 alors : 15 Y 8182
fl - g

3. Quotient, inverse. Si fj ~ g1 et f, ~ go alors: —
a a fr a J-0)

4. Puissances d’exposant constant. Si f ~ g alors :
a



2 Regles de calcul

Théoréme 5 : Equivalent par encadrement

Si: i) f < g < h au voisinage de a i) f~h

a

Alors : gravfwh.

a

1. Transitivité. Si . f~g et g~ h, alors: f ~ h.
a a a
2. Produit. Si: f s et H Y 82 alors : 15 Y 8182
f'
3. Quotient, inverse. Si fj ~ g1 et f, ~ g alors : SO
a a h a g
4. Puissances d’exposant constant. Si f Y8 alors : ¢ ~ g




2 Regles de calcul

1. Transitivité. Si . f ~8 et g h, alors : f ~ h.

2. Produit. Si: f ~vE et H Y 82 alors : f1fh ~ g1
a

fi
3. Quotient, inverse. Si fj ~ g1 et f» ~ g alors : d &
; ; hs e

4. Puissances d'exposant constant. Si f ~ g alors : % ~ g¢
a a

5. Equivalence avec une constante.  f(x) ~ (&
X—a
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1. Transitivité. Si . f ~8 et g h, alors : f ~ h.

2. Produit. Si: £ ~vE et H Y 82 alors : f1fh ~ g1
a

fi
3. Quotient, inverse. Si fj ~ g1 et f» ~ g alors : d &
: ; hs e

4. Puissances d'exposant constant. Si f ~ g alors : % ~ g¢
a a

5. Equivalence avec une constante.  f(x) o be f(x) — ¢
X



2 Regles de calcul

Théoréeme 5

1.
2.

Transitivité. Si :  f ~8 et g h, alors : f ~ h.
Produit. Si : £ ~vE et H Y 82 alors : fifh ~ g18»
a
81

. . . fi
. Quotient, inverse. Si fj ~ g et f» ~ g alors : .,
] B h 3 &
. Puissances d’exposant constant. Si f ~ g alors : % ~ g@
a a

Equivalence avec une constante.  f(x) i L& f(x) — ¢
X a X a
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Transitivité. Si :  f ~8 et g h, alors : f ~ h.
Produit. Si : £ ~vE et H Y 82 alors : fifh ~ g18»
a
81

. . . fi
. Quotient, inverse. Si fj ~ g et f» ~ g alors : .,
] B h 3 &
. Puissances d’exposant constant. Si f ~ g alors : % ~ g@
a a
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2 Regles de calcul

Théoréeme 5

1.
2.

Transitivité. Si :  f ~8 et g h, alors : f ~ h.
Produit. Si : £ ~vE et H Y 82 alors : fifh ~ g18»
a
81

. . . fi
. Quotient, inverse. Si fj ~ g et f» ~ g alors : .,
] B h 3 &
. Puissances d’exposant constant. Si f ~ g alors : % ~ g@
a a

Equivalence avec une constante.  f(x) i L& f(x) — ¢
X a X a

. Si f(x) e g(x) et Jim u(t)y=a: f(u(t)) o g(u(t))

Substitution . Si : f = o(lg) et g ~ h, alors



2 Regles de calcul

Théoréeme 5

1.
2.

Transitivité. Si :  f ~8 et g h, alors : f ~ h.
Produit. Si : £ ~vE et H Y 82 alors : fifh ~ g18»
a
81

. . . fi
. Quotient, inverse. Si fj ~ g et f» ~ g alors : .,
] B h 3 &
. Puissances d’exposant constant. Si f ~ g alors : % ~ g@
a a

Equivalence avec une constante.  f(x) i L& f(x) — ¢
X a X a

. Si f(x) e g(x) et Jim u(ty=a: f(u(t)) ~ o g(u(t))
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2 Regles de calcul

Théoréeme 5

1.
2.

Transitivité. Si :  f ~8 et g h, alors : f ~ h.
Produit. Si : £ ~vE et H Y 82 alors : fifh ~ g18»
a
81

. . . fi
. Quotient, inverse. Si fj ~ g et f» ~ g alors : .,
] B h 3 &
. Puissances d’exposant constant. Si f ~ g alors : % ~ g@
a a

Equivalence avec une constante.  f(x) i L& f(x) — ¢
X a X a

. Si f(x) e g(x) et Jim u(ty=a: f(u(t)) ~ o g(u(t))
)

Substitution . Si : f = o(lg) et g ~ h, alors F— o(h

Exemple 2 : Admis : sinx = x4+ o(x) et e = 1+ x+ o(x)

x—0 x—0

Que dire de :  a) eS"x ? b) e ?



2 Regles de calcul

“* Propriétés FAUSSES 4

1. Somme. ﬂ:gl et fzfavgz x ﬂ—i—fzf:g1+g2

10



2 Regles de calcul

“* Propriétés FAUSSES “*

1. Somme. fi~g et Hh~g x Ath~e+e
2. Composition.  f ~ g = ¢ Off ~¢og
i i N ~ ~ g
En particulier :  f ~ g = ~e

a

10



2 Regles de calcul

“* Propriétés FAUSSES “*
1. Somme. flr:gl et fgf;gz x f1+f2f:;g1+g2
2. Composition.  f ~ g =X ¢of ~¢og
En particulier :  f ~ g = ef ~ 8

3. Puissances d’exposant non constant.

Eviter le célébre : 1 + % e 1 x (1+ %)Xx 11X =1.

10



2 Regles de calcul

“* Propriétés FAUSSES 4
1. Somme. flf;gl et 1‘2ng x f1+f2f:;g1+g2
2. Composition.  f ~ g = o¢of ~¢og
En particulier :  f ~ g = ef ~ 8

3. Puissances d’exposant non constant.

. 71 . 1 1 X, X __
Eviter le célebre : 1+;)Hrjroolx<1+;) x1 =1.

Donner un contre-exemple pour 1 et 2 et prouver que 3 est fausse.




SF 5 : Lever une forme indéterminée « quotient » :

Exemple 3 : Calculer

) 3x3+x2+1

Y Sl X5y x2 4 2
e —1

11



SF 5 : Lever une forme indéterminée « quotient » :

Exemple 3 : Calculer

) i 334+ x2+1

YV AT B X212
e —1

11



SF 5 : Lever une forme indéterminée « quotient » :

Exemple 3 : Calculer
) i 334+ x2+1
YV AT B X212

b) lim e 1

x—0T \/;

. 1+ 1
) X0 |n(1+;1§) s In(l+u) ~ u

u—0
1 1

i llno In(1+x) x

11



SF 5 : Lever une forme indéterminée « quotient » :

Exemple 3 : Calculer

bl 3x3
? x—|> 0 x5 —|—x2
b) lim
x—0t
1+el/x 1—|-u)2—1 No%u
li
) H'Too ln(1+—z = In(l+u) ~ u
1
d) lim — —

pualt) In(1+x) x

11



Il Développements limités en un
point

I Développements limités en un point

12



1 Généralités

Exemple 1 : Exemple introductif

L’exponentielle admet en 0 les développements limités suivants :

a) e X_>01+x+o(x) (Ordre 1)
X2
b) e = 1+ x4+ = + o(x?) (Ordre 2)
x—0 2
) e = 1hxt o X o) (Ordre 3)
c) e = 1+x+ =+ +olx rdre

13
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1 Généralités

Définition 1
Soit n € N. On dit que f admet en a un développement limité
d'ordre n s'il existe ag, a1, ..., a, € R tels que



1 Généralités

Définition 1
Soit n € N. On dit que f admet en a un développement limité
d'ordre n s'il existe ag, a1, ..., a, € R tels que

f(x) = iak(x — a)f + o((x —a)")
k=0



1 Généralités
On approche f
Soj au voisinage de a e f admet en a un développement limité

d’ordre n s'il W ao, a1, - --,an € R tels que
f(x) = > a(x —a)k + o(x —a)")
k=0




1 Généralités

On approche f On approche f
Sol au voisinage de a | par un polynéme Py, bloppement limité
d’ordre n s'il e\&e aog, al, - - -, aye R tels que

f(x) = iak(x B o((x —a)")
k=0

14



1 Généralités

erreur
On approche f On approche f d'autant plus petite

Soj au voisinage de a | par un polynéme P, que 1 est grand

d'ordre n s'il e\ste ag, a1, ...,a /€ R tels que /

f(x) = iak(x — 3~ + o<(x — a)”)
k=0

14



1 Généralités

) b f 0 7 erreur
% AR Z H . applrocA © p d’'autant plus petite
Soj au voisinage de a | par un polynéme P, AP EdiEEnd

d’ordre n s'il e\&e ao,al,...,ayE]Rtels que /

f(x) = iak(x — a)f + o((x —a)")
k=0

Interprétation heuristique
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% AR Z H . applrocA © p d’'autant plus petite
Soj au voisinage de a | par un polynéme P, AP EdiEEnd

d’ordre n s'il e\&e ao,al,...,ayE]Rtels que /

f(x) = iak(x — a)f + o((x —a)")
k=0

Interprétation heuristique

o((x — a)") est I'erreur commise en approchant f par P,

14



1 Généralités

0 b f 0 7 erreur
% . :?p.proc Z H " applrocA € p d’'autant plus petite
Soj au voisinage de a | par un polynéme P, AP Edi R End

d’ordre n s'il e\&e ao,al,...,ayeRtels que /

f(x) = iak(x — a)f + o((x —a)")
k=0

Interprétation heuristique

o((x — a)") est I'erreur commise en approchant f par P,

Rappel Si f est dérivable en a € D elle admet le DL;
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1 Généralités

0 b f 0 7 erreur
% . :?p.proc Z H " applrocA € p d'autant plus petite
Soj au voisinage de a | par un polynéme P, REPeEdiTgitEnd

d’ordre n s'il e\&e ao,al,...,ayeRtels que /

f(x) = iak(x — a)f + o((x —a)")
k=0

Interprétation heuristique

o((x — a)") est I'erreur commise en approchant f par P,

Rappel Si f est dérivable en a € D elle admet le DL;

[f(x) =, f(a) + f'(a)(x — a) + o(x — a) ]

14



1 Généralités

0 b f 0 7 erreur
% . :?p.proc Z H " applrocA € p d'autant plus petite
Soj au voisinage de a | par un polynéme P, REPS e End

d’ordre n s'il e\&e ao,al,...,ayeRtels que /

f(x) = iak(x — a)f + o((x —a)")
k=0

Interprétation heuristique

o((x — a)") est I'erreur commise en approchant f par P,

. L. réciproque vraie :
Rappel Si f est dérivable en a € D elle admet |

[f(x) =, f(a) + f'(a)(x — a) + o(x — a) ]

14



1 Généralités

0 b f 0 7 erreur
% . :?p.proc Z H " applrocA € p d'autant plus petite
Soj au voisinage de a | par un polynéme P, REPS e End

d’ordre n s'il e\&e ao,al,...,ayeRtels que /

f(x) = iak(x — a)f + o((x —a)")
k=0

Interprétation heuristique

o((x — a)") est I'erreur commise en approchant f par P,

Rappel Si f est dérivable en a € D elle admet| étre dérivable en a

[f(x) =, f(a) + f'(a)(x — a) + o(x — a) ] ¢

posseder un DL; en a

14



1 Généralités

0 b f 0 7 erreur
% . :?p.proc Z H " applrocA € p d'autant plus petite
Soj au voisinage de a | par un polynéme P, AP Edi R End

d’ordre n s'il e\&e ao,al,...,ayeRtels que /
f(x) = kzoak(x —a)k + o((x —a)")

Interprétation heuristique

o((x — a)") est I'erreur commise en approchant f par P,

Rappel Si f est dérivable en a € D elle admet| étre dérivable en a

[f(x) =, f(a) + f'(a)(x — a) + o(x — a) ] ¢

posseder un DL; en a

Exemple 2 : Montrer

1 - k k n
1—Xx—>OZX +O b) 1+Xx—>0kz%(_1) X +O(X)

14



2 Propriétés des développements limités

Théoréme 1 : Unicité

Soit n € N. Si f posséde en a un DL, alors :

15



2 Propriétés des développements limités

Théoréme 1 : Unicité

Soit n € N. Si f posséde en a un DL, alors : il est unique

15



2 Propriétés des développements limités
i.e. la liste des coefficients
(ag, - .., an) est unique

Théoréme 1 : Unicité

Soit n € N. Si f posséde en a un DL, alors : il est unique
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2 Propriétés des développements limités
i.e. la liste des coefficients
(ag, - .., an) est unique

Théoréme 1 : Unicité

Soit n € N. Si f posséde en a un DL, alors : il est unique

Exercice 1

Démontrer ce théoreme.

115



2 Propriétés des développements limités

i.e. la liste des coefficients
(ag, - .., an) est unique

Théoréme 1 : Unicité

Soit n € N. Si f posséde en a un DL, alors : il est unique

Exercice 1

Démontrer ce théoreme.

Conséquence

En cas d'existence, le DL, en 0 d'une fonction paire ne comporte
que des puissances paires.

115



2 Propriétés des développements limités

i.e. la liste des coefficients
(ag, - .., an) est unique

Théoréme 1 : Unicité

Soit n € N. Si f posséde en a un DL, alors : il est unique

Exercice 1

Démontrer ce théoreme.

Conséquence

En cas d'existence, le DL, en 0 d'une fonction paire ne comporte
que des puissances paires.

Exercice 2

Démontrer la conséquence.

115



2 Propriétés des développements limités

Théoréme 2 : Primitivation

Si f' admet en ale DL,_1 :

n—1

f'(x) =, > ak(x —a)f+o((x—a)™ 1)

k=0
Alors f admet en a le DL, :

16



2 Propriétés des développements limités

Théoréme 2 : Primitivation

Si f' admet en ale DL,_1 :

n—1

f'(x) =, > ak(x —a)f+o((x—a)™ 1)

k=0
Alors f admet en a le DL, :

16



2 Propriétés des développements limités

Théoréme 2 : Primitivation
Si f' admet en ale DL,_1 :

n—1

f'(x) =, > ak(x —a)f+o((x—a)™ 1)

k=0
Alors f admet en a le DL, :

f(x) =, Fa) +3 gl + o((x—a)7)

k=0
on primitive
terme a terme

16



2 Propriétés des développements limités

Théoréme 2 : Primitivation
Si f' admet en ale DL,_1 :

n—1

f'(x) =, > ak(x —a)f+o((x—a)™ 1)

k=0

Alors f admet en a le DL, :

, F@) + 2 (=)t + o(x—a)")

im0 KT
on primitive on primitive
terme a terme aussi le « o »

16



2 Propriétés des développements limités

Théoréme 2 : Primitivation
Si f' admet en ale DL,_1 :

n—1

f'(x) =, > ak(x —a)f+o((x—a)™ 1)

k=0

Alors f admet en a le DL, :

n—1

f(x) =, fa) + 3 oz(x =) + o(x—a)")

/1 im0 KT
Constante on primitive on primitive
de primitivation terme a terme aussi le « o »

16



2 Propriétés des développements limités

Théoréme 2 : Primitivation
Si f' admet en ale DL,_1 :

Alors f admet en a le DL,

n—l

f(x) = = a)ktl + o((x — a)"
X a

Constante on primitive on primitive
de prlmltlvatlon terme a terme aussi le « o »

Exercice 3

Démontrer le théoréme.

16



2 Propriétés des développements limités

Théoréme 2 : Primitivation
Si f' admet en ale DL,_1 :

Zak x —a)+o((x—a)" 1

Alors f admet en a le DL,

x—>a

flx) = a/f(a) +>
Constante on primitive on primitive
Ex de primitivation terme a terme aussi le « o »

k
Montrer :  a) In(1+ x) = Z(—l)k_li

16



2 Propriétés des développements limités

Théoréme 2 : Primitivation
Si f' admet en ale DL,_1 :

Zak x —a)* + o((x

Alors f admet en a le DL,

x—>a

f(x)

X

L
-
S
+
L[~

Constante on primitive
Ex de primitivation terme a terme

Montrer : b) Arctanx = Z(—l)

0
X—r k—0

- a)

on primitive
aussi le « o »

16



2 Propriétés des développements limités

Théoreme 3 : Formule de Taylor-Young

Soit n € N. On suppose que a € D et que f est de classe " sur D.
Alors f admet en a le DL,, :

17



2 Propriétés des développements limités

Théoreme 3 : Formule de Taylor-Young

Soit n € N. On suppose que a € D et que f est de classe " sur D.
Alors f admet en a le DL,, :

n_ (K5
) =, 3 D = ) 4 of(x - )
k=0 ’

17



2 Propriétés des développements limités
Résultat d'existence

Théoréeme 3 : l[Jormule de Taylor-Young

Soit n € N. On suppose que a € D et que f est de classe " sur D.
Alors f admet en a le DL,, :

n_£(k)
) =, 3 D = ) 4 of(x - )

17



Résultat d'existence
« Justifier que f posséde un DL, en a»

Théoréme 3 : l[formule de Taylor-Young

Soit n € N. On suppose que a € D et que f est de classe " sur D.
Alors f admet en a le DL,, :

n_£(k)
) =, 3 D = ) 4 of(x - )

17



Résultat d'existence
« Justifier que f posséde un DL, en a»

— Réponse : « f est de classe ¢" sur D donc possede
LLLECUEEE & en 2 un DL, d'apres la formule de Taylor-Young »

Soit n € N. On suppose que a %ue f est de classe € sur D.
Alors f admet en a le DL,, :

n_ (K5
) =, 3 D = ) 4 of(x - )

17



Résultat d'existence
« Justifier que f posséde un DL, en a»

— Réponse : « f est de classe ¢" sur D donc possede
LLLECUEEE & en 2 un DL, d'apres la formule de Taylor-Young »

Soit n € N. On suppose que a %que f est de classe " sur D.
Alors f admet en a le DL,, :

Exercice 4

Démontrer le théoréme par récurrence sur n.

17



Résultat d'existence
« Justifier que f posséde un DL, en a»

— Réponse : « f est de classe ¢" sur D donc possede
LLLECUEEE & en 2 un DL, d'apres la formule de Taylor-Young »

Soit n € N. On suppose que a %ue f est de classe € sur D.
Alors f admet en a le DL,, :

n (k)5
) =, 3 D = ) 4 of(x - )

Exemple 4 : Calculer le développement limité en 0 de

a) exp a l'ordre n b) cos a I'ordre 2n c) tan a l'ordre 3

17



Opérations sur les
développements limités

Opérations sur les développements limités

18



1 Combinaisons linéaires

SF 2 : Obtenir un DL, de \f + ug
On combine les DL, de f et g.

Exemple 1 : Calculer un développement limité a I'ordre 3 en 0

p(x) = —e

19



SF 3 : Obtenir un DL, de fg
On multiplie les DL, de f et g.

Exemple 2

1. Donnerun DLz en 0 de: ¢(x)= T
2. Donner un DLy en 0 de:  ¢(x) = e“In(1 + x).

20



En pratique : le « gain d’ordre »

Lorsqu'on cherche un développement limité en 0 a l'ordre n de fg :

= si f admet un DL, de la forme  f(x) = apxP +...
X—

21



Le DL de f
« démarre par xP »

En pratique : le « gain d’ordre »

Lorsqu'on cherche un développement limité en 0 a |)érdre n de fg :

= si f admet un DL, de la forme  f(x) = apxP +...
X—

21



[ Le DL de f ]

. . 5 p
En pratique : le « gain d’ordre » « démarre par x”»

Lorsqu'on cherche un développement limité en 0 a |)érdre n de fg :
= si f admet un DL, de la forme  f(x) = apx? +...
x—0

il suffit de développer g a l'ordre n—p

21



Le DL de f
« démarre par xP »

En pratique : le « gain d’ordre »

Lorsqu'on cherche un développement limité en 0 a |)érdre n de fg :
= si f admet un DL, de la forme  f(x) o apxP +...

il suffit de développer g a l'ordre n—p
= si g admet un DL, de la forme  g(x) o bgx? + ...

21



[ Le DL de f ]
En pratique : le « gain d’ordre » «demarre par x” »
Lorsqu'on cherche un développement limité en 0 a l/ér
= si f admet un DL, de la forme  f(x) o apxP +...

il suffit de développer g a l'ordre n—p
= si g admet un DL, de la forme

g(x) = bgx? +...

x—0
Le DL de f
« démarre par xP »

21



Le DL de f
« démarre par xP »

En pratique : le « gain d’ordre »

Lorsqu'on cherche un développement limité en 0 a |)érdre n de fg :
= si f admet un DL, de la forme  f(x) o apxP +...

il suffit de développer g a l'ordre n—p
= si g admet un DL, de la forme  g(x) o bgx? + ...

il suffit de développer f a l'ordre n—q

Le DL de f
« démarre par xP »

21



[ Le DL de f ]

. i 4 p
En pratique : le « gain d’ordre » « démarre par x”»

Lorsqu'on cherche un développement limité en 0 a |)érdre n de fg :
= si f admet un DL, de la forme  f(x) o apxP +...

il suffit de développer g a l'ordre n—p
= si g admet un DL, de la forme  g(x) o bgx? + ...

il suffit de développer f a l'ordre n—q

Le DL de f
« démarre par xP »

Exemple 3
2. Déterminer un DLg en 0 de ¢(x) = (chx — 1) In(1 + x).
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3 Composition et quotients

SF 4 : Obtenir un DL, en 0 d’'une composée

Exemple 4 : Composition

Déterminer un DLz en 0 de :  p(x) = esi" .

22



3 Composition et quotients

En pratique : pour obtenir un DL, de %

. N 1
On essaie de se ramener 3 —————— avec u(x) — 0
1+ u(x) x—0

Exemple 5

1. Déterminer un DLy en 0 de: ¢(x) =

2. Déterminer un DLs en 0 de :  tanx.
1
3. Déterminer un DLz de:  9(x) = T
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3 Composition et quotients

En pratique : obtenir un DL, en 0 de é lorsque g(0) =0

Si: g(x) = bgx9+ ..

x—0

24



3 Composition et quotients

En pratique : obtenir un DL, en 0 d f(x)  a,x9 4 --- + o(x"9)

Si: g(x) = bgXx9+ ...
x—0
1. Développer f et g a l'ordre n+ q.

24



3 Composition et quotients

En pratique : obtenir un DL, en 0 d £(x)  a,x9 4 --- + o(x"+9)
g(x) 1. bgx9 + -+ o(x"t9)

Si: g(x) = bgXx9+ ... _ 2t tolx)

X:O q 2, bq+'--+O(X”)
1. Développer f et g a l'ordre n+ q.
2. Simplifier le quotient par x9 L )

24



3 Composition et quotients

En pratique : obtenir un DL, en 0 d £(x)  agx9 4 --- + o(x"+9)
g(x) 1. bgx9 + -+ o(x"t9)

. _ q :aq+...+o(xn)
Si: g(X) i qu + o — 5 —bq+---+O(X”)
1. Développer f et g a l'ordre n+ q. g+ -+ o(x")
2. Simplifier le quotient par x9 | ~ bg(14 -+ o(x")) )
N 1
On est ramené a : NG = N(x) X ———
1+ u(x) 1+ u(x)

24



3 Composition et quotients

En pratique : obtenir un DL, en 0 d £(x)  agx9 4 --- + o(x"+9)
g(x) 1. bgx9 + -+ o(x"t9)

. _ q :aq+...+o(xn)
Si: g(x))Hoqu S by £+ o(x)

>

1. Développer f et g a l'ordre n+ q. g+ -+ o(x")
2. Simplifier le quotient par x9 | ~ bg(14 -+ o(x")) )
N 1
On est ramené a : NG = N(x) X ———
1+ u(x) 1+ u(x)
Exemple 6
e’ —1
1. Déterminer un DLy en 0 de: o(x) = Sn(2)"
chx—1

2. Déterminer un DLz en 0 de :  1(x)

24



4 Développement limité en un point a autre que 0

SF 7 : On « pose » g(h) = f(a+ h)
= On effectue un DL, en 0 de g: h— f(a+ h)

= On «revient» 3 x en posant « h=x —a»

Exemple 7

1. Déterminer un DL3 au point 5 de : cosx.

2. Déterminer un DL au point 2 de :  Inx.
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