
Arithmétique dans K[X ]
Fractions rationnelles
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1 Polynômes irréductibles

Définition 1
Un polynôme P non constant est dit irréductible dans K[X ] si :

ses seuls diviseurs dans K[X ] sont 1 et P

à une constante multiplicative non nulle près

diviseurs triviaux de P
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1 Polynômes irréductibles

Définition 1
Un polynôme P non constant est dit irréductible dans K[X ] si :
ses seuls diviseurs dans K[X ] sont 1 et P

Exemple 1
a) P = X 2 + 1 n’est pas irréductible dans C[X ].
b) P = 2X + 2 est irréductible dans K[X ].

à une constante multiplicative non nulle près
(les diviseurs sont les λ et les λP pour tout λ ∈ K∗)

diviseurs triviaux de P
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1 Polynômes irréductibles

Définition 1
Un polynôme P non constant est dit irréductible dans K[X ] si :
ses seuls diviseurs dans K[X ] sont 1 et P

Exemple 2
1. Montrer que tout polynôme de degré 1 est irréductible.
2. Montrer que tout polynôme de R[X ] de degré 2 à discriminant

strictement négatif est irréductible dans R[X ]

à une constante multiplicative non nulle près
(les diviseurs sont les λ et les λP pour tout λ ∈ K∗)

diviseurs triviaux de P
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1 Polynômes irréductibles

Définition 1
Un polynôme P non constant est dit irréductible dans K[X ] si :
ses seuls diviseurs dans K[X ] sont 1 et P

Remarque
Les polynômes irréductibles sont les analogues dans K[X ] des
nombre premiers dans Z.

Théorème 1 : Lemme d’euclide
Soit P ∈ K[X ] irréductible et soient A, B ∈ K[X ].

Si : P | AB alors : P | A ou P | B.
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2 Factorisation dans C[X ]

Théorème 2 : d’Alembert-Gauss (Rappel)

Tout polynôme non constant de C[X ] possède au moins une racine
complexe. En conséquence tout polynôme non constant de C[X ] est
scindé sur C.

Exercice 1
Soient P, Q ∈ C[X ], non tous deux nuls.
Montrer que P et Q sont premiers entre eux si et seulement si ils
n’ont aucune racine commune dans C.
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2 Factorisation dans C[X ]

SF 6 : Factoriser P dans C[X ]
Si P est de degré n, on cherche ses n racines

comptées avec multiplicité
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2 Factorisation dans C[X ]

SF 6 : Factoriser P dans C[X ]
Si P est de degré n, on cherche ses n racines

Exemple 3 : Factoriser dans C[X ]
a) P = X 4 + 1.
b) Q = 1 + X + · · · + Xn−1 (où n ≥ 2).

comptées avec multiplicité
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2 Factorisation dans C[X ]

SF 6 : Factoriser P dans C[X ]
Si P est de degré n, on cherche ses n racines

Exercice 2
Montrer que si α ∈ C est racine de P ∈ R[X ] alors α est aussi
racine de P, de même multiplicité.

Exemple 4
a) Montrer que j est racine de P = X 8 + 2X 6 + 3X 4 + 2X 2 + 1
b) Factoriser P dans C[X ].

comptées avec multiplicité
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2 Factorisation dans C[X ]

SF 6 : Factoriser P dans C[X ]
Si P est de degré n, on cherche ses n racines

Exercice 2
Montrer que si α ∈ C est racine de P ∈ R[X ] alors α est aussi
racine de P, de même multiplicité.

Exercice 3 : Bonus
Soit P ∈ R[X ] de degré supérieur ou égal à 3.
Montrer que P n’est pas irréductible dans R[X ].

comptées avec multiplicité
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3 Factorisation dans R[X ]

Théorème 3 : Factorisation dans R[X ]
Tout polynôme non constant R[X ] se factorise en un produit :

• de polynômes de degré 1
• de polynômes de degré 2 à discriminant strictement négatif
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• de polynômes de degré 1
• de polynômes de degré 2 à discriminant strictement négatif

SF 7 : Factoriser dans R[X ]
1. On factorise dans C[X ]

2. On regroupe les facteurs conjugués en utilisant :

(X − α)(X − α) =

X 2 − 2 Re(α)X + |α|2

Exemple 5 : Factoriser P dans R[X ]
a) P = X 4 + 1 b) P = X 5 − 1 c) P = X 2n+1 − 1
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3 Factorisation dans R[X ]

Théorème 3 : Factorisation dans R[X ]
Tout polynôme non constant R[X ] se factorise en un produit :
• de polynômes de degré 1
• de polynômes de degré 2 à discriminant strictement négatif

Exemple 6 : cf. Ex. 85.2, banque INP
Factoriser P = X 5 − 4X 2 + 3X dans R[X ] sachant que 1 est racine
double.

5



4 Décomposition en facteurs irréductibles

Théorème 4

1. Les polynômes irréductibles de C[X ] sont exactement les
polynômes de degré 1.

2. Les polynômes irréductibles de R[X ] sont :
• les polynômes de degré 1
• les polynômes de degré 2 à discriminant strictement négatif.

Théorème 5
Tout polynôme non nul de K[X ] est le produit d’un élément de K∗

et de polynômes unitaires irréductibles dans K[X ]

Exemple 7
On pose A = 2X (X + 1)2(X + 2)3 et B = X 2(X + 2)(X 2 + X + 1)
Calculer A ∧ B.

décomposition en
facteurs irréductibles
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II Décomposition en éléments
simples : la théorie

I Factorisation irréductible

II Décomposition en éléments simples : la théorie

III Pratique de la décomposition en éléments simples

IV Application au calcul de primitives
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1 Le corps K(X ) des fractions rationnelles

Admis

Il existe un corps K(X ) dont tout élément F s’écrit F = P
Q

i) Dans K(X ) P1
Q1

= P2
Q2

ssi P1Q2 = P2Q1.

ii) K(X ) contient K[X ] via l’identification P= P
1

iii) • P1
Q1

+ P2
Q2

=
déf.

P1Q2 + P2Q1
Q1Q2

• P1
Q1

× P2
Q2

=
déf.

P1P2
Q1Q2

avec P ∈ K[X ]
et Q ∈ K[X ] \ {0}.

Ne dépend pas du couple (A, B) choisi
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P1Q2 + P2Q1
Q1Q2

• P1
Q1

× P2
Q2

=
déf.

P1P2
Q1Q2

Exemple 1 : Simplifier

a) F = X
X (1 + X ) b) G = X 3 − X

(X 2 − 3X + 2)(X 2 + 1)

avec P ∈ K[X ]
et Q ∈ K[X ] \ {0}.

Ne dépend pas du couple (A, B) choisi
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Le degré de F = A
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2 Zéros et pôles

Définition 2

Le degré de F = A
B ∈ K(X ) est : deg F =

déf.
deg A − deg B

Dans K[X ] :
• deg(F + G) ≤ max(deg F , deg G) • deg(FG) = deg F + deg G

Définition 3

Soit F = P
Q ∈ K(X ), irréductible

• a ∈ K est un zéro de F si :

P(a) = 0

• a ∈ K est un pôle de F si :

Q(a) = 0

P ∧ Q = 1

Ne dépend pas du couple (A, B) choisi
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2 Zéros et pôles

Définition 2

Le degré de F = A
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Dans K[X ] :
• deg(F + G) ≤ max(deg F , deg G) • deg(FG) = deg F + deg G

Définition 3

Soit F = P
Q ∈ K(X ), irréductible

• a ∈ K est un zéro de F si : P(a) = 0
• a ∈ K est un pôle de F si : Q(a) = 0

Exercice 1
a peut-il être à la fois zéro et pôle de F ?

P ∧ Q = 1

Ne dépend pas du couple (A, B) choisi
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2 Zéros et pôles

Définition 2

Le degré de F = A
B ∈ K(X ) est : deg F =

déf.
deg A − deg B

Dans K[X ] :
• deg(F + G) ≤ max(deg F , deg G) • deg(FG) = deg F + deg G

Définition 3

Soit F = P
Q ∈ K(X ), irréductible

• a ∈ K est un zéro de F si : P(a) = 0
• a ∈ K est un pôle de F si : Q(a) = 0

Exemple 2

Quels sont les zéros et pôles de F = X 5 − 4X 4 + 3X 3

X 3 − 5X 2 + 6X ∈ R(X ) ?

P ∧ Q = 1

Ne dépend pas du couple (A, B) choisi
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3 Partie entière

Théorème 1

Soit F = A
B ∈ K(X ).

Il existe un unique polynôme E ∈ K[X ] et une unique fraction
G ∈ K(X ) tels que : •

F = E + G

•

deg G < 0

partie entière de F
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3 Partie entière

Théorème 1

Soit F = A
B ∈ K(X ).

Il existe un unique polynôme E ∈ K[X ] et une unique fraction
G ∈ K(X ) tels que : • F = E + G • deg G < 0

Exercice 2
Démontrer l’existence et l’unicité du couple (E , G) du théorème.

partie entière de F
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3 Partie entière

Théorème 1

Soit F = A
B ∈ K(X ).

Il existe un unique polynôme E ∈ K[X ] et une unique fraction
G ∈ K(X ) tels que : • F = E + G • deg G < 0

Exemple 3 : Déterminer les parties entières

a) X 4 − 3X 3 + 5X 2 − 1
X 2 − 3X + 1 b) X 3 − 2

X 4 − 1 c) X 2 + 3X

partie entière de F

10



Cas : K = C

Cadre

Après factorisation du dénominateur : F = P
Q = P

λ
k∏

i=1
(X − ai)mi

Théorème 2
F s’écrit de manière unique sous la forme :

F = E +
k∑

i=1

( αi ,1
X − ai

+ αi ,2
(X − ai)2 + · · · + αi ,mi

(X − ai)mi

)

Exemple 4 : Quelle forme pour les fractions suivantes ?

a) F = X 10 + 16
(X − 1)3X (X 2 + 1)2 b) G = X 8 + 1

(X 2 + 1)(X 2 − 2)2

A découper en C.L.
de morceaux plus simples

Partie
entière

somme de k
paquets de terme

partie polaire
associée à ai
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Cas : K = R

Cadre

Après factorisation : F = P

λ
k∏

i=1
(X − ai)mi

ℓ∏
i=1

(X 2 + piX + qi)ni

Théorème 3
F s’écrit de manière unique sous la forme :

F = E +
k∑

i=1

mi∑
j=1

αi ,j
(X − ai)j +

ℓ∑
i=1

ni∑
j=1

ai ,jX + bi ,j
(X 2 + piX + qi)j

Exemple 5 : Quelle forme pour les fractions suivantes ?

a) G = X 8 + 1
(X 2 + 1)(X 2 − 2)2 b) H = 1

X 3(1 + X + X 2)2
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III Pratique de la décomposition en
éléments simples

I Factorisation irréductible

II Décomposition en éléments simples : la théorie

III Pratique de la décomposition en éléments simples

IV Application au calcul de primitives
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But

SF 11 : Les étapes pour décomposer F en élément simples

1. Partie entière :

se détermine par une division euclidienne

2. Pôles et multiplicités :

on factorise le dénominateur
3. On écrit la D.E.S. avec des coefficients à déterminer
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1 Cas des pôles simples

SF 11 : Les étapes pour décomposer F en élément simples

1. Partie entière : se détermine par une division euclidienne
2. Pôles et multiplicités : on factorise le dénominateur
3. On écrit la D.E.S. avec des coefficients à déterminer

Cadre

La D.E.S. est de la forme :

(⋆) F (X ) = α

X − a + G

La méthode du « cache »

On multiplie (⋆) par (X − a) puis on évalue en a.

a n’est pas
pôle de GOn cherche à

calculer α

15
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Cadre

La D.E.S. est de la forme : (⋆) F (X ) = α

X − a + G

La méthode du « cache »
On multiplie (⋆) par (X − a) puis on évalue en a.

Exemple 1 : Décomposer en éléments simples dans R(X )

a) 1
X 2 − 1 b) X 3 + 2

X 2 − X

a n’est pas
pôle de GOn cherche à

calculer α
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X − a + G
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On multiplie (⋆) par (X − a) puis on évalue en a.

Exemple 2

Décomposer dans C(X ) la fraction 1
X 5 − 1

a n’est pas
pôle de GOn cherche à

calculer α
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1 Cas des pôles simples

Théorème 1

Soit F = P
Q , avec P ∧ Q = 1, admettant a pour pôle simple

Alors : α = P(a)
Q′(a)

F = α

X − a + G où a n’est pas pôle de G
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1 Cas des pôles simples

Théorème 1

Soit F = P
Q , avec P ∧ Q = 1, admettant a pour pôle simple

Alors : α = P(a)
Q′(a)

Exercice 1
Démontrer le théorème précédent.

F = α

X − a + G où a n’est pas pôle de G
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1 Cas des pôles simples

Théorème 1

Soit F = P
Q , avec P ∧ Q = 1, admettant a pour pôle simple

Alors : α = P(a)
Q′(a)

Exemple 3

Décomposer en éléments simples dans C(X ) la fraction 1
Xn − 1.

F = α

X − a + G où a n’est pas pôle de G

16



2 Cas général

SF 12 : Calculer les coefficients de la D.E.S.

• Méthode du « cache ».

Pour le coef. de 1
(X − a)m on mutliplie

par (X − a)m puis on évalue en a.

• Méthode lim
x→+∞

xF (x).

Lorsque deg F < 0, le calcul de
lim

x→+∞
xF (x) fournit une relation entre certains coef.

• Evaluer en des points particulier

(hors pôles)

m : multiplicité de a

eiθ

X − eiθ + e−iθ

X − e−iθ =

17
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Exemple 4 : Décomposer en éléments simples dans R(X )

a) X + 3
(X + 1)2(X + 2)

m : multiplicité de a
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X − eiθ + e−iθ

X − e−iθ =

17



2 Cas général

SF 12 : Calculer les coefficients de la D.E.S.

• Méthode du « cache ». Pour le coef. de 1
(X − a)m on mutliplie

par (X − a)m puis on évalue en a.
• Méthode lim

x→+∞
xF (x). Lorsque deg F < 0, le calcul de

lim
x→+∞

xF (x) fournit une relation entre certains coef.

• Evaluer en des points particulier (hors pôles)

Exemple 4 : Décomposer en éléments simples dans R(X )
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X 2n − 1 .

m : multiplicité de a

eiθ

X − eiθ + e−iθ

X − e−iθ =

17



2 Cas général

SF 12 : Calculer les coefficients de la D.E.S.

• Méthode du « cache ». Pour le coef. de 1
(X − a)m on mutliplie

par (X − a)m puis on évalue en a.
• Méthode lim

x→+∞
xF (x). Lorsque deg F < 0, le calcul de

lim
x→+∞

xF (x) fournit une relation entre certains coef.

• Evaluer en des points particulier (hors pôles)

Exemple 5 : Décomposer en éléments simples dans R(X )
2n

X 2n − 1 .

m : multiplicité de a

eiθ

X − eiθ + e−iθ

X − e−iθ = 2 cos(θ)X − 2
X 2 − 2 cos(θ)X + 1

17



3 Décomposition de P′

P

Théorème 2
Soit P ∈ C[X ], non constant, soient a1, . . . , ak ∈ C les racines de P
et m1, . . . , mk ∈ N leurs ordres :

P ′

P =

k∑
i=1

mi

X − ai

P = λ
k∏

i=1
(X − ai)mi

18
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3 Décomposition de P′

P

Théorème 2
Soit P ∈ C[X ], non constant, soient a1, . . . , ak ∈ C les racines de P
et m1, . . . , mk ∈ N leurs ordres :

P ′

P =
k∑

i=1

mi
X − ai

Exercice 2
Etablir la décomposition donnée par le théorème.

P = λ
k∏

i=1
(X − ai)mi
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3 Décomposition de P′

P

Théorème 2
Soit P ∈ C[X ], non constant, soient a1, . . . , ak ∈ C les racines de P
et m1, . . . , mk ∈ N leurs ordres :

P ′

P =
k∑

i=1

mi
X − ai

Exemple 6

Décomposer en éléments simples dans C(X ) la fraction Xn−1

Xn − 1.

P = λ
k∏

i=1
(X − ai)mi

18



IV Application au calcul de
primitives

I Factorisation irréductible

II Décomposition en éléments simples : la théorie

III Pratique de la décomposition en éléments simples

IV Application au calcul de primitives
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Application au calcul de primitives

Cadre

Etant donné F ∈ R(X ) on cherche à calculer :
∫ b

a
F (t) dt.

Type 1

• Fonction :
Polynôme

• Primitive :

Polynôme

Type 2

• Fonction :
x 7→ 1

(x − a)k

• Primitive :

• Si k = 1

x 7→ ln |x − a|

• Si k ≥ 2 :

x 7→ 1
−k + 1(x−a)−k+1

Type 3

• Fonction :
x 7→ ax + b

x2 + px + q
• Primitive

i) On fait apparaître u′

u en
factorisant par a

2
ii) Le morceau restant se

primitive à l’aide d’un
arctangente

Rappel :
1

(x+α)2+β2 →
P

1
β Arctan

( x+α
β

)

On décompose F
puis on primitive les morceaux

20
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u en
factorisant par a

2
ii) Le morceau restant se

primitive à l’aide d’un
arctangente

Exemple 1 : Déterminer une primitive

a) x 7→ 3 + 4x
x2 + 4

Rappel :
1

(x+α)2+β2 →
P

1
β Arctan

( x+α
β

)
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Application au calcul de primitives

Type 1
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u en
factorisant par a

2
ii) Le morceau restant se

primitive à l’aide d’un
arctangente

Exemple 1 : Déterminer une primitive

b) x 7→ x + 3
x2 + 2x + 5

Rappel :
1

(x+α)2+β2 →
P

1
β Arctan

( x+α
β

)

20



Application au calcul de primitives

Type 1

• Fonction :
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factorisant par a

2
ii) Le morceau restant se

primitive à l’aide d’un
arctangente

Exemple 2 : Calculer∫ 1
2

0

4t5

t4 − 1 dt

Rappel :
1

(x+α)2+β2 →
P

1
β Arctan

( x+α
β

)
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Application au calcul de primitives
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u en
factorisant par a

2
ii) Le morceau restant se

primitive à l’aide d’un
arctangente

Exemple 3 : Calculer

lim
x→+∞

∫ x

0

t
(t2 + t + 1)(1 + t)3 dt

Rappel :
1

(x+α)2+β2 →
P

1
β Arctan

( x+α
β

)
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