Arithmétique dans K[X]
Fractions rationnelles

Chapitre 18
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Définition 1
2me P non constant est dit irréductible dans K[X] si :
ses seuls diviseurs dans K[X] sont 1 et P
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Exemple 1
a) P = X241 n'est pas irréductible dans C[X].
b) P =2X + 2 est irréductible dans K[X].



1 Polynoémes irréductibles

a une constante multiplicative non nulle pres
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Exemple 2

1. Montrer que tout polynéme de degré 1 est irréductible.

2. Montrer que tout polyndme de R[X] de degré 2 a discriminant
strictement négatif est irréductible dans R[X]
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Théoréme 1 : Lemme d’euclide

Soit P € K[X] irréductible et soient A, B € K[X].




1 Polynoémes irréductibles

a une constante multiplicative non nulle pres
(les diviseurs sont les A et les AP pour tout A € K*)

Définition 1
3me P non constant est dit irréductible dans K[X] si :
ses seuls diviseurs dans K[X] sont 1 et P

N\

diviseurs triviaux de P

Remarque

Les polyndmes irréductibles sont les analogues dans K[X] des
nombre premiers dans 7Z.

Théoréme 1 : Lemme d’euclide

Soit P € K[X] irréductible et soient A, B € K[X].
Si: P|AB alors: P|A ou P|B.
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scindé sur C.
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Théoréeme 2 : d’Alembert-Gauss (Rappel)

Tout polyndme non constant de C[X] posséde au moins une racine
complexe. En conséquence tout polyndme non constant de C[X] est
scindé sur C.

Exercice 1

Soient P, Q@ € C[X], non tous deux nuls.
Montrer que P et @ sont premiers entre eux si et seulement si ils
n'ont aucune racine commune dans C.
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[comptées avec muItipIicité]
SF 6 : Factoriser P dans C[X] /

Si P est de degré n, on cherche ses n racines

Exemple 3 : Factoriser dans C[X]
a) P=X*+1.
b) Q=1+ X+--- 4 X1 (ot n >2).
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[comptées avec muItipIicité]
SF 6 : Factoriser P dans C[X] /

Si P est de degré n, on cherche ses n racines

Exercice 2

Montrer que si « € C est racine de P € R[X] alors @ est aussi
racine de P, de méme multiplicité.

Exemple 4

a) Montrer que j est racine de P = X® 4 2X% +3X* +2X? 41
b) Factoriser P dans C[X].



2 Factorisation dans C[X]

[comptées avec muItipIicité]
SF 6 : Factoriser P dans C[X] /

Si P est de degré n, on cherche ses n racines

Exercice 2

Montrer que si « € C est racine de P € R[X] alors @ est aussi
racine de P, de méme multiplicité.

Exercice 3 : Bonus

Soit P € R[X] de degré supérieur ou égal a 3.
Montrer que P n'est pas irréductible dans R[X].
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Théoréme 3 : Factorisation dans R[X]

Tout polyndme non constant R[X] se factorise en un produit :
= de polyndmes de degré 1
= de polyndmes de degré 2 a discriminant strictement négatif

SF 7 : Factoriser dans R[X]
1. On factorise dans C[X]

2. On regroupe les facteurs conjugués en utilisant :

(X —a)(X —a) = X2 — 2Re(a)X + |af?

Exemple 5 : Factoriser P dans R[X]
a) P=X*"+1 b) P=X°>-1 c) P=Xx21_1



3 Factorisation dans R[X]

Théoréme 3 : Factorisation dans R[X]

Tout polyndme non constant R[X] se factorise en un produit :
= de polyndmes de degré 1

= de polyndmes de degré 2 a discriminant strictement négatif

Exemple 6 : cf. Ex. 85.2, banque INP

Factoriser P = X® — 4X2 + 3X dans R[X] sachant que 1 est racine
double.



4 Décomposition en facteurs irréductibles

1. Les polyndémes irréductibles de C[X] sont exactement les
polynémes de degré 1.

2. Les polynémes irréductibles de R[X] sont :
= |es polynomes de degré 1
= |es polyndmes de degré 2 a discriminant strictement négatif.
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4 Décomposition en facteurs irréductibles

1. Les polyndémes irréductibles de C[X] sont exactement les
polynémes de degré 1.

2. Les polynémes irréductibles de R[X] sont :
= les polyndmes de degré 1 [

décomposition en
= |es polynomes de degré 2 a discrimin R ]

facteurs irréductibles

Théoréeme 5

Tout polyndme non nul de K[X] est le produit d'un élément de K*
et de polynémes unitaires irréductibles dans K[X]
Exemple 7

On pose A =2X(X +1)3(X +2)3 et B= X3(X +2)(X2 + X + 1)
Calculer AN B.
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1 Le corps K(X) des fractions rationnelles

avec P € K[X]

Admis et Q € K[X]\ {0}.
wp

I existe un corps K(X) dont tout élément F s'écrit F = —

Q

P P

) Dans K(X) —=-2 ssi PQ=PQs.
& @

P

i) K(X) contient K[X] via I'identification =~ P= 1

i) - Py +P2 _ PQ+ PG| [P P PP

Q1 Q def Q1 Q2 [} . Q2 déf. QL Q

Exemple 1 : Simplifier
X X3 - X

N F=xatx Y Eoaxraeen
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1 Le corps K(X) des fractions rationnelles

avec P € K[X]

Admis et Q € K[X]\ {0}.
wp

I existe un corps K(X) dont tout élément F s'écrit F = —

Q

A_ R
@ @

P
i) K(X) contient K[X] via I'identification =~ P= 1

i+& _ P+ P@ (P P PP
Q  Qdef. Q@ Q Qo déf. Q1@

[Ne dépend pas du couple (A, B) choisi)

I) Dans K(X) ssi Ple = P2Q1.

iii) =

Définition 1
Le degré de F = g € K(X)est: degF = deg A — deg B

e
Dans K[X] :
= deg(F + G) < max(deg F,deg G) = deg(FG) = deg F + deg G
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2 Zéros et poles

Ne dépend pas du couple (A, B) choisi
Définition 2

A
Le degré de F = 5 € K(X)est: degF b deg A —deg B

é

Dans K[X] :
= deg(F + G) < max(deg F,deg G) = deg(FG) = deg F +deg G

Définition 3

Soit F = 0 € K(X), irréductible

» acKestunzérode Fsi: P(a)=
» acKestunpodlede Fsi: Q(a)

0
0



2 Zéros et poles

Ne dépend pas du couple (A, B) choisi
Définition 2

A
Le degré de F = 5 € K(X)est: degF b deg A —deg B

i
Dans K[X] :
= deg(F + G) < max(deg F,deg G) = deg(FG) = deg F +deg G

Définition 3 m
P
Soit F = 0 € K(X), irréductible
» acKestunzérode Fsi: P(a)=0
» acKestunpdlede Fsi: Q(a)=0

Exercice 1

a peut-il étre a la fois zéro et pdle de F7?



2 Zéros et poles

Ne dépend pas du couple (A, B) choisi
Définition 2

A
Le degré de F = 5 € K(X)est: degF b deg A —deg B

i
Dans K[X] :
= deg(F + G) < max(deg F,deg G) = deg(FG) = deg F +deg G

Définition 3 m
P
Soit F = 0 € K(X), irréductible
» acKestunzérode Fsi: P(a)=0
» acKestunpdlede Fsi: Q(a)=0
Exemple 2
X5 —ax*4+3Xx3

Quels sont les zéros et pdles de F =

?
X3 _5x2 5 6x © RX)



3 Partie entiére

A
Soit F = B € K(X).
I existe un unique polynéme E € K[X] et une unique fraction
G € K(X) tels que : . .
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3 Partie entiére

A
Soit F = B € K(X).
I existe un unique polynéme E € K[X] et une unique fraction
G € K(X) tels que : « F=E +G = deg G <0

N

partie entiére de F

Démontrer |'existence et |'unicité du couple (E, G) du théoréme.




3 Partie entiére

Théoréme 1
A
Soit F = B € K(X).

I existe un unique polynéme E € K[X] et une unique fraction

G € K(X) tels que : « F=E +G = deg G <0
]
(partie entiere de FJ

Exemple 3 : Déterminer les parties entieres

) X4 —3X34+5X2 -1 X3 -2
a

b) &= < X2 43X
X2 _3X +1 ) Xa 1 g) SR
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A découper en C.L.
de morceaux plus simples

Cadre
< actorstion do cénom P \r
Apreés factorisation du dénominateur : F = — =

Q k

somme de k partie polaire
paquets de terme associée a a;

- i j & m;
> <X—’3i+(X—,a,-)2 "'+4(X_'a,)m,->

Exemple 4 : Quelle forme pour les fractions suivantes ?
X1+ 16 b) G— X8+1
(X —1)3X(X2 +1)2 (X2 +1)(X2-2)2

a) F=

11



Cadre

P

k 15
ML - a)m T2+ pX + )
i=1 i=1

Aprés factorisation : F =

12



Cadre

P

k l
AL = ai)™ TLOC2 + piX + i)

Apreés factorisation : F =

N
/
Il
N
Il
—

Théoréme 3

F s'écrit de maniere unique sous la forme :
k m;j nj

ajjX + bjj
- E+ZZ +ZZ (X2 + piX + g

I]._/l =1j=1




Cadre

P

Apreés factorisation : F = p ;
ATLX = @)™ TLOC + piX + )

Théoréme 3

N
/
Il
N
Il
—

F s'écrit de maniere unique sous la forme :
k m;j nj

a,-JX—l— b,'J
- E+ZZ +ZZ (X2 + piX + g

I]._/l i=1j=1

Exemple 5 : Quelle forme pour les fractions suivantes ?
X8 +1 1

A C=merne—2r DM eaexexep
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SF 11 : Les étapes pour décomposer F en élément simples

1. Partie entiére : se détermine par une division euclidienne

2. Pdles et multiplicités : on factorise le dénominateur

3. On écrit la D.E.S. avec des coefficients 3 déterminer | @ N'est pas
pole de G

Cadre

La D.ES. estdelaforme: (x) F(X)= @ +
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1 Cas des poles simples

SF 11 : Les étapes pour décomposer F en élément simples

1. Partie entiére : se détermine par une division euclidienne
2. Pdles et multiplicités : on factorise le dénominateur

3. On écrit la D.E.S. avec des coefficients 3 déterminer | @ N €st pas
On cherche a pole de G
Cadre calculer a

La D.ES. est de la forme: (x) F(X)= +

15)



1 Cas des poles simples

SF 11 : Les étapes pour décomposer F en élément simples

1. Partie entiére : se détermine par une division euclidienne

2. Pdles et multiplicités : on factorise le dénominateur

3. On écrit la D.E.S. avec des coefficients a déterminer |2 E"es’ﬁ pas
On cherche a pole de G
Cadre calculer
La D.ES. estdelaforme: (x) F(X)= XQ +
—a

La méthode du « cache »

On multiplie (%) par (X — a) puis on évalue en a.

115)



1 Cas des poles simples

SF 11 : Les étapes pour décomposer F en élément simples

1. Partie entiére : se détermine par une division euclidienne
2. Pdles et multiplicités : on factorise le dénominateur

3. On écrit la D.E.S. avec des coefficients 3 déterminer | @ N €st pas

On cherche a pole de G
Cadre calculer
La D.ES. estdelaforme: (x) F(X)= X(i . +

La méthode du « cache »

On multiplie (%) par (X — a) puis on évalue en a.

Exemple 1 : Décomposer en éléments simples dans R(X)
1 X3+2
[3) Qi

X2 -1
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1 Cas des poles simples

SF 11 : Les étapes pour décomposer F en élément simples

1. Partie entiére : se détermine par une division euclidienne
2. Pdles et multiplicités : on factorise le dénominateur

3. On écrit la D.E.S. avec des coefficients 3 déterminer | @ N €st pas

On cherche a pole de G
Cadre calculer
La D.ES. estdelaforme: (x) F(X)= X(i . +

La méthode du « cache »

On multiplie (%) par (X — a) puis on évalue en a.
Exemple 2

Décomposer dans C(X) la fraction

X>—-1

115)



1 Cas des poles simples

P
Soit F = 0 avec P A @ = 1, admettant a pour pole simple



1 Cas des poles simples

[F_ _a 4+ G ou a n'est pas pdle de G]
X —a

Théoréme 1

p 4
Soit F = 0 avec P A @ = 1, admettant a pour pdle simple



1 Cas des poles simples

[F_ _a 4+ G ou a n'est pas pdle de G}
X —a

Théoréme 1

p 4
Soit F = 0 avec P A @ = 1, admettant a pour pdle simple

P(a)
Q'(a)

Alors : o=




1 Cas des poles simples

[F - a 4+ G ou a n'est pas péle de G]

X —a

Théoréme 1

p 4
Soit F = — , avec PA @ = 1, admettant a pour pdle simple

Q
. _ P(a)
Alors : o= Q’(a)
Exercice 1

Démontrer le théoréme précédent.



1 Cas des poles simples

[F_ e 4+ G ou a n'est pas péle de G]
X —a

Théoréme 1

p 4
Soit F = — , avec PA @ = 1, admettant a pour pdle simple

Q
Alors : o= g/((z))
Exemple 3

Décomposer en éléments simples dans C(X) la fraction

Xn—1



2 Cas général

SF 12 : Calculer les coefficients de la D.E.S.

= Meéthode du « cache ».

= Méthode lim xF(x).

X—>—+00

= Evaluer en des points particulier

17



2 Cas général

SF 12 : Calculer les coefficients de la D.E.S.

1
s Méthode du « cache ». Pour le coef. de ——— on mutliplie
(X —a)m

par (X — a)™ puis on évalue en a.
= Méthode lim xF(x).
X

—+00

= Evaluer en des points particulier

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

= Meéthode du « cache ». Pour le coef. de
par (X — a)™ puis on évalue en a.

= Méthode lim xF(x).

—+00

= Evaluer en des points particulier

1
(X —a)m

on mutliplie

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
s Méthode du « cache ». Pour le coef. de ——— on mutliplie
(X —a)m

par (X — a)™ puis on évalue en a.
= Méthode lim xF(x). Lorsque deg F < 0, le calcul de
X—r+00

lim xF(x) fournit une relation entre certains coef.
X——+00

= Evaluer en des points particulier

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
s Méthode du « cache ». Pour le coef. de ——— on mutliplie
(X —a)m

par (X — a)™ puis on évalue en a.
= Méthode lim xF(x). Lorsque deg F < 0, le calcul de
X—r+00

lim xF(x) fournit une relation entre certains coef.
X——+00

» Evaluer en des points particulier (hors pdles)

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

= Meéthode du « cache ». Pour le coef. de ﬁ on mutliplie
—a m

par (X — a)™ puis on évalue en a.
» Meéthode lim xF(x). Lorsque deg F < 0, le calcul de
X—r+00

lim xF(x) fournit une relation entre certains coef.
X——+00

= Evaluer en des points particulier (hors pdles)

Exemple 4 : Décomposer en éléments simples dans R(X)
2) X+3
(X +1)2(X+2)

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
Meéthode du « cache ». Pour le coef. de ————— on mutliplie
(X —a)m
par (X — a)™ puis on évalue en a.
Méthode lim xF(x). Lorsque degF < 0, le calcul de
X—r+00
lim xF(x) fournit une relation entre certains coef.
X—400

Evaluer en des points particulier (hors pdles)

Exemple 4 : Décomposer en éléments simples dans R(X)

X3

D) o1tk —2p

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
s Méthode du « cache ». Pour le coef. de ——— on mutliplie
(X —a)m

par (X — a)™ puis on évalue en a.
» Meéthode lim xF(x). Lorsque deg F < 0, le calcul de
X——+00

lim xF(x) fournit une relation entre certains coef.
X——+00

= Evaluer en des points particulier (hors pdles)

Exemple 4 : Décomposer en éléments simples dans R(X)
25
c)
(X —1)%(X?+4)

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
Meéthode du « cache ». Pour le coef. de ————— on mutliplie
(X —a)m
par (X — a)™ puis on évalue en a.
Méthode lim xF(x). Lorsque degF < 0, le calcul de
X—r+00
lim xF(x) fournit une relation entre certains coef.
X—400

Evaluer en des points particulier (hors pdles)

Exemple 4 : Décomposer en éléments simples dans R(X)

3(X —2)?

) XXX <1

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
Meéthode du « cache ». Pour le coef. de ————— on mutliplie
(X —a)m
par (X — a)™ puis on évalue en a.
Méthode lim xF(x). Lorsque degF < 0, le calcul de
X—r+00
lim xF(x) fournit une relation entre certains coef.
X—400

Evaluer en des points particulier (hors pdles)

Exemple 4 : Décomposer en éléments simples dans R(X)

X2
? peoiyp

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
s Méthode du « cache ». Pour le coef. de ——— on mutliplie
(X —a)m

par (X — a)™ puis on évalue en a.
= Méthode lim xF(x). Lorsque deg F < 0, le calcul de
X—r+00

lim xF(x) fournit une relation entre certains coef.
X——+00

» Evaluer en des points particulier (hors pdles)

Exemple 5 : Décomposer en éléments simples dans R(X)
2n
X2 —1°

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
s Méthode du « cache ». Pour le coef. de ——— on mutliplie
(X —a)m

par (X — a)™ puis on évalue en a.
= Méthode lim xF(x). Lorsque deg F < 0, le calcul de
X—r+00

lim xF(x) fournit une relation entre certains coef.
X——+00

» Evaluer en des points particulier (hors pdles)

Exemple 5 : Décomp

17



2 Cas général

m : multiplicité de a

SF 12 : Calculer les coefficients de la D.E.SV

1
s Méthode du « cache ». Pour le coef. de ——— on mutliplie
(X —a)m

par (X — a)™ puis on évalue en a.
= Méthode lim xF(x). Lorsque deg F < 0, le calcul de
X—r+00

lim xF(x) fournit une relation entre certains coef.
X——+00

» Evaluer en des points particulier (hors pdles)
e e 0 2cos(f)X — 2

X_—el " X—e X2 —2cos()X +1

Exemple 5 : Décomp

17



3 Décomposition de %

Soit P € C[X], non constant, soient aj, ..., ax € C les racines de P
et my,...,m, € N leurs ordres :



Soit P € C[X], non constant, soient4q, ..., ax € C les racines de P

18



Soit P € C[X], non constant, soient4q, ..., ax € C les racines de P

P/
F:

18



Soit P € C[X], non constant, soient4q, ..., ax € C les racines de P

P&
F:ZX*Q,'

i=1

18



Soit P € C[X], non constant, soient4q, ..., ax € C les racines de P

P/ K mj
F :ZX*Q,'

i=1

18



Soit P € C[X], non constant, soient4q, ..., ax € C les racines de P

P/ K mj
F :ZX*Q,'

i=1

Exercice 2

Etablir la décomposition donnée par le théoreme.
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Exemple 6

n—1

n_l'

Décomposer en éléments simples dans C(X) la fraction

18



Application au calcul de
primitives

Application au calcul de primitives
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Application au calcul de primitives

Cadre
b

Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

20



Application au calcul de primitives On décompose F
puis on primitive les morceaux

Cadre
A
Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

20



Application au calcul de primitives On décompose F
puis on primitive les morceaux

Cadre
A
Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1

= Fonction :

Polynéme

= Primitive :

20



Application au calcul de primitives On décompose F
puis on primitive les morceaux

Cadre
A
Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1

= Fonction :

Polynéme

= Primitive :
Polynome

20



Application au calcul de primitives On décompose F
puis on primitive les morceaux

Cadre
A
Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1 Type 2

= Fonction : = Fonction :
Polynéme X m

= Primitive : = Primitive :

Polynome

20



Application au calcul de primitives On décompose F
puis on primitive les morceaux

Cadre
A
Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1 Type 2

= Fonction : = Fonction :
Polynéme X m

= Primitive : = Primitive :

Polynome » Sik=1

20



Application au calcul de primitives On décompose F

Cadre

puis on primitive les morceaux

A

Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1

= Fonction :

Polynéme

= Primitive :
Polynome

Type 2

= Fonction :

X ———

(x —a)k
= Primitive :
= Sik=1

x = In|x — aj

20



Application au calcul de primitives On décompose F

Cadre

puis on primitive les morceaux

A

Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1

= Fonction :

Polynéme

= Primitive :
Polynome

Type 2

= Fonction :

X|—>7(X_a)k
= Primitive :
» Sik=1

x = In|x — aj
s Sik>2:

20



Application au calcul de primitives On décompose F
puis on primitive les morceaux

Cadre
A
Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1 Type 2
= Fonction : = Fonction :
Polynéme X m
= Primitive : = Primitive :
Polynome » Sik=1
x = In|x — aj
= Sik>2:

1
X = T—H(Xfa)ikﬁ»l

20



Application au calcul de primitives On décompose F
puis on primitive les morceaux

Cadre
A
Etant donné F € R(X) on cherche a calculer : / F(t) dt.
a

Type 1 Type 2 Type 3
= Fonction : = Fonction : = Fonction :
. 1 ax + b
Polynéme X ——— X —— 7
(x —a) x2+px+gq

= Primitive : = Primitive : = Primitive

Polynome » Sik=1

x = In|x — aj
= Sik>2:

)7k+1

— ! (x—a
X P

20



Application au calcul de primitives

puis on primitive les morceaux

On décompose F

Cadre

Etant donné F € R(X) on cherche a calculer : /
a

Type 1 Type 2
= Fonction : = Fonction :
Polynome X —
y (x — a)k
= Primitive : = Primitive :
Polynéme = Sik=1
x = In|x — a|
= Sik>2:
X ! (x—a)~k+!

—k+1

A

F(t) dt.

Type 3
= Fonction :
ax+ b
b
X<+ px+q
= Primitive
i) On fait apparaitre “7/ en
factorisant par 5
ii) Le morceau restant se
primitive a |'aide d'un
arctangente

20



Application au calcul de primitives

Type 1 Type 2 Type 3
= Fonction : = Fonction : = Fonction :
. 1 ax+ b
Polynéme X —— Xy —— 7
(x — a) x2 4+ px+q
= Primitive : = Primitive : = Primitive
Polyndme » Sik=1 i) On fait apparaitre “7/ en
x = In|x — a| factorisant par 5
. Sik>2: ii) Le morceau restant se
. r—>_ (x—a)—k+ primitive a I'aide d'un

—k+1

arcta ngente/

Rappel :

1 1 X+ao
ta) 182 5 B Arctan (*5%)

20



Application au calcul de primitives

Type 1 Type 2 Type 3
= Fonction : = Fonction : = Fonction :
. 1 ax + b
Polynéme X —— Xy —— 7
(x — a) x2 4+ px+q
= Primitive : = Primitive : = Primitive
Polyndme » Sik=1 i) On fait apparaitre “7/ en
x = In|x — a| factorisant par 5
. Sik>2: ii) Le morceau restant se
. r—>_ (x—a)—k+ primitive a I'aide d'un
—k+1

arcta ngente/

Rappel :

3+ 4x 1 i X+a
a) X — > (X+u)2+52 ? 3 AI’Ctan( 5 )
X2+ 4

Exemple 1 : Déterminer une primitiv
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Application au calcul de primitives

Type 1 Type 2 Type 3
= Fonction : = Fonction : = Fonction :
. 1 ax + b
Polynéme X —— Xy —— 7
(x — a) x2 4+ px+q
= Primitive : = Primitive : = Primitive
Polyndme » Sik=1 i) On fait apparaitre “7/ en
x = In|x — a| factorisant par 5
. Sik>2: ii) Le morceau restant se
. r—>_ (x—a)—k+ primitive a I'aide d'un
—k+1

arcta ngente/

Rappel :
x+3 S Arctan (*£2)
b —_ — +a)24 2 B B
)5 x24+2x+5 (cte) °

Exemple 1 : Déterminer une primitiv

20



Application au calcul de primitives

Type 1 Type 2 Type 3
= Fonction : = Fonction : = Fonction :
. 1 ax + b
Polynéme X —— X
(x —a) x4+ px+q
= Primitive : = Primitive : = Primitive
Polyndme » Sik=1 i) On fait apparaitre “7/ en
x = In|x — a| factorisant par 5
. Sik>2: ii) Le morceau restant se
B primitive a 'aide d'un
o\ —k+1
X = — 1 (x—a)

arcta ngente/

Rappel :

1 1 1 +o
/2 4t5 dt (X+u)2+52 F} g ArCtan(Xﬁu>
4
o t*—1

Exemple 2 : Calculer

20



Application au calcul de primitives

Type 1 Type 2 Type 3
= Fonction : = Fonction : = Fonction :
. 1 ax + b
Polynéme X —— X
(x —a) x4+ px+q
= Primitive : = Primitive : = Primitive
Polyndme » Sik=1 i) On fait apparaitre “7/ en
x = In|x — a| factorisant par 5
. Sik>2: ii) Le morceau restant se
B primitive a 'aide d'un
—k+1
A +1 (x—a) arctangente/
Exemple 3 : Calculer Rappel :
5% 1 1 +a
lim t dt Cro)+F 7 B ArCta”(X‘g”
x—+o0 Jo (t2+t+1)(1+t)3

20
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