
Construction de l’ensemble des polyômes
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L’objet polynôme

Connu

• Notion de fonction polynomiale

P : x 7→ 4 + 5x2 − x3 + x5

• Ensemble de définition ?

•

Objectif

• Définir un objet polynôme

P

=4 + 5X 2 − X 3 + X 5

=
déf.

[4 , 0 , 5 , −1 , 0 , 1]

Définition
Un polynôme est une suite de la forme (a0, a1, . . . , an, 0, 0, . . . )

Quantités essentielles
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Opérations sur les polynômes

L’ensemble K[X ]

▶ Eléments : suites

P = (a0, a1, . . . , an, 0, . . . )

▶Opérations : Pour
P = (ak)k∈N, Q = (bk)k∈N

▶ But : Définir l’écriture :

P = anXn + an−1Xn−1 + · · · + a1X + a0
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L’anneau des polynômes

Opérations

Pour : P =
p∑

k=0
akX k et Q =

q∑
k=0

bkX k

• Somme. P + Q =
max(p,q)∑

k=0
(ak + bk)X k

• Produit. P × Q =
p+q∑
k=0

ckX k où ck =
k∑

i=0
aibk−i
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Exemple 2
A partir de (X + 1)2n = (X + 1)n(X + 1)n,

démontrer l’identité de Vandermonde :
n∑

k=0

(
n
k

)2

=
(

2n
n

)
.
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